Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Pérez Martínez, Vanesa
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84304
- Palabra clave:
- 620 - Ingeniería y operaciones afines::621 - Física aplicada
Solución Salina
Administración Intravenosa
Saline Solution
Administration, Intravenous
Envase
Solución intravenosa
PVC
DEP
Microondas
Mujeres en embarazo
PHBV
Container
Intravenous saline solution
PVC
DEP
Microwave
Pregnant women
PHBV
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_abd05b2857a34962ff1da1bcb019b74b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84304 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
dc.title.translated.eng.fl_str_mv |
Analysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processes |
title |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
spellingShingle |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas 620 - Ingeniería y operaciones afines::621 - Física aplicada Solución Salina Administración Intravenosa Saline Solution Administration, Intravenous Envase Solución intravenosa PVC DEP Microondas Mujeres en embarazo PHBV Container Intravenous saline solution PVC DEP Microwave Pregnant women PHBV |
title_short |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
title_full |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
title_fullStr |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
title_full_unstemmed |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
title_sort |
Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas |
dc.creator.fl_str_mv |
Pérez Martínez, Vanesa |
dc.contributor.advisor.none.fl_str_mv |
Sierra Ávila, César Augusto Méndez Córdoba, Luis Carlos |
dc.contributor.author.none.fl_str_mv |
Pérez Martínez, Vanesa |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Macromoléculas Grupo de Investigación en Ciencia, Ingeniería y Salud - Gicis. |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::621 - Física aplicada |
topic |
620 - Ingeniería y operaciones afines::621 - Física aplicada Solución Salina Administración Intravenosa Saline Solution Administration, Intravenous Envase Solución intravenosa PVC DEP Microondas Mujeres en embarazo PHBV Container Intravenous saline solution PVC DEP Microwave Pregnant women PHBV |
dc.subject.decs.spa.fl_str_mv |
Solución Salina Administración Intravenosa |
dc.subject.decs.eng.fl_str_mv |
Saline Solution Administration, Intravenous |
dc.subject.proposal.spa.fl_str_mv |
Envase Solución intravenosa PVC DEP Microondas Mujeres en embarazo PHBV |
dc.subject.proposal.eng.fl_str_mv |
Container Intravenous saline solution PVC DEP Microwave Pregnant women PHBV |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-06-09 |
dc.date.accessioned.none.fl_str_mv |
2023-07-27T15:23:03Z |
dc.date.available.none.fl_str_mv |
2023-07-27T15:23:03Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84304 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84304 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
McGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012. Fleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010 Bachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010 Nagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001 Thomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201 Gamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25– Borja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006 Farmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumen Textos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07) Van Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526 PVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24 Parisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194 Madrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6 Thomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8 Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07) Plastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07) Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014. KleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017 Štrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741 Venkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041 Salwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010 CIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14) Mrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102 Galotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807 Haji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7 Excellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017 Epstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15) Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021. Centers for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer Look Wesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0 Benavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36 McKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7 Corpaul. Solución cloruro de sodio al 0,9%. Corpaul Plastics Europe; EPRO. Plásticos – Situación en 2020. Plastics Europe Johnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed Alliance Gavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63 Herbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482 Erythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8 Autian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043 Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011 Center for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001 Malarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087 Markarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8 Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015 Plastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12 Shea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467 Den Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896 Report Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022 Tüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291 Aouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588 Satapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831 Rijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479 Chiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024 Keller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940 Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011 Castillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103. John, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626 Yokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010 López, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45 Chittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433 Rischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19 Sieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4 Leaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5 Anshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3 y, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.x Martucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004 Plastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPE Gotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7 Baxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021 Chiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800 mexpolimeros. polihidroxibutirato-valerato. Biopolímeros El-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8 Lindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.x Baxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9 Smith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29 MERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpage Khalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309 Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200 Yuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316c Hitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022. Centro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChem Centro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChem GreenFacts. Ftalatos Dibutilftalato. GreenFacts Rastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33 Ribeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078 ASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedades Mofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019 Bledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005 Jost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257 Olejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898 Zhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034. Boufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2023 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
127 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84304/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84304/2/10184719152023.pdf https://repositorio.unal.edu.co/bitstream/unal/84304/3/10184719152023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 722532467beaeda05202e44b25acabf4 37ac3157a4e30dc5b286c3342c07a253 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089549144391680 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ávila, César Augusto394dd93f7303a80405d9212168b6c837Méndez Córdoba, Luis Carlos50d5bc69e1136e21db880853e792ad0dPérez Martínez, Vanesa5c5802faa65c45a699ac11231f922edcGrupo de Investigación en MacromoléculasGrupo de Investigación en Ciencia, Ingeniería y Salud - Gicis.2023-07-27T15:23:03Z2023-07-27T15:23:03Z2022-06-09https://repositorio.unal.edu.co/handle/unal/84304Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasPara el área de la salud, en la distribución, almacenamiento y transporte de medicamentos, existen diversos envases poliméricos comercializados en Colombia. Para el caso específico del envase de soluciones salinas intravenosas, el material polimérico más utilizado es el poli cloruro de vinilo (PVC). Desafortunadamente, no hay información clara sobre la composición exacta de estos envases, ni los efectos sobre el material y la solución salina al exponer estos a calentamiento por microondas, proceso normalmente usado para acondicionar el líquido antes de suministrarlo a un paciente. Por tal motivo, envases de soluciones salinas comercializados en Colombia se caracterizaron por espectroscopia infrarroja (IR), termogravimetría (TGA), calorimetría diferencial de barrido (DSC), prueba de esfuerzo-deformación y cromatografía de gases acoplada a espectrómetro de masas (GC-MS). Caracterizaciones realizadas antes y después de someter el empaque junto a su solución salina a calentamiento con microondas. Los resultados indican que el material polimérico en el envase es PVC con un alto contenido de DEP como plastificante. Adicionalmente, y teniendo en cuenta que los resultados muestran que el plastificante está migrando desde el empaque hacia la solución y al ser estas soluciones empleadas en mujeres en estado de embarazo, se generó un protocolo adecuado de calentamiento para ser implementado en el instituto materno infantil de la ciudad de Bogotá. Por último, se planteó una alternativa de envase libre de plastificante con un material biodegradable, el cual es poli 3-hidroxibutirato-co-3-hidroxivalerato (PHBV). (Texto tomado de la fuente)For the health sector, in the distribution, storage and transport of medicines, there are various options of polymeric packaging available in Colombia. For the specific case of intravenous saline solution containers, the most commonly used polymeric material is polyvinyl chloride (PVC). Unfortunately, there is no clear information on the exact composition of these packaging materials, nor the effects on the material and saline when exposed to microwave heating, a process typically used to condition liquid before administration to a patient. . For this reason, the saline solution containers marketed in Colombia were characterized by infrared spectroscopy (IR), thermogravimetry (TGA), differential scanning calorimetry (DSC), stress-strain tests and gas chromatography-mass spectrometry (GC-MS). The characterizations were carried out before and after submitting the container and the saline solution to microwave heating. The results indicate that the polymeric material of the packaging is PVC with a high content of DEP as a plasticizer. Additionally, considering that the results show that the plasticizer is migrating from the container to the solution and since these solutions used in pregnant women, an adequate heating protocol developed to be implemented in the maternal and child institute of the city of Bogota. Finally, an alternative packaging option proposed that does not contain plasticizers and is made from a biodegradable material called poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV).MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales poliméricos usados en la industria médica127 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaSolución SalinaAdministración IntravenosaSaline SolutionAdministration, IntravenousEnvaseSolución intravenosaPVCDEPMicroondasMujeres en embarazoPHBVContainerIntravenous saline solutionPVCDEPMicrowavePregnant womenPHBVAnálisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondasAnalysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMcGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012.Fleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010Bachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010Nagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001Thomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201Gamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25–Borja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006Farmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumenTextos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07)Van Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526PVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24Parisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194Madrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6Thomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07)Plastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07)Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.KleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017Štrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741Venkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041Salwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010CIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14)Mrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102Galotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807Haji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7Excellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017Epstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15)Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021.Centers for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer LookWesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0Benavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36McKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7Corpaul. Solución cloruro de sodio al 0,9%. CorpaulPlastics Europe; EPRO. Plásticos – Situación en 2020. Plastics EuropeJohnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed AllianceGavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63Herbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482Erythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8Autian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011Center for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001Malarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087Markarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015Plastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12Shea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467Den Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896Report Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022Tüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291Aouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588Satapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831Rijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479Chiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024Keller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011Castillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103.John, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626Yokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010López, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45Chittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433Rischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19Sieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4Leaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5Anshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3y, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.xMartucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004Plastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPEGotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7Baxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021Chiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800mexpolimeros. polihidroxibutirato-valerato. BiopolímerosEl-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8Lindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.xBaxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9Smith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29MERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpageKhalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200Yuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316cHitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022.Centro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChemCentro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChemGreenFacts. Ftalatos Dibutilftalato. GreenFactsRastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33Ribeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078ASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedadesMofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019Bledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005Jost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257Olejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898Zhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034.Boufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84304/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL10184719152023.pdf10184719152023.pdfTesis de Maestría en ingeniería - Materiales y procesosapplication/pdf4715596https://repositorio.unal.edu.co/bitstream/unal/84304/2/10184719152023.pdf722532467beaeda05202e44b25acabf4MD52THUMBNAIL10184719152023.pdf.jpg10184719152023.pdf.jpgGenerated Thumbnailimage/jpeg5252https://repositorio.unal.edu.co/bitstream/unal/84304/3/10184719152023.pdf.jpg37ac3157a4e30dc5b286c3342c07a253MD53unal/84304oai:repositorio.unal.edu.co:unal/843042024-08-12 23:11:29.23Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |