Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas

ilustraciones, fotografías, gráficas, tablas

Autores:
Pérez Martínez, Vanesa
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84304
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84304
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Solución Salina
Administración Intravenosa
Saline Solution
Administration, Intravenous
Envase
Solución intravenosa
PVC
DEP
Microondas
Mujeres en embarazo
PHBV
Container
Intravenous saline solution
PVC
DEP
Microwave
Pregnant women
PHBV
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_abd05b2857a34962ff1da1bcb019b74b
oai_identifier_str oai:repositorio.unal.edu.co:unal/84304
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
dc.title.translated.eng.fl_str_mv Analysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processes
title Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
spellingShingle Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
620 - Ingeniería y operaciones afines::621 - Física aplicada
Solución Salina
Administración Intravenosa
Saline Solution
Administration, Intravenous
Envase
Solución intravenosa
PVC
DEP
Microondas
Mujeres en embarazo
PHBV
Container
Intravenous saline solution
PVC
DEP
Microwave
Pregnant women
PHBV
title_short Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
title_full Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
title_fullStr Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
title_full_unstemmed Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
title_sort Análisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
dc.creator.fl_str_mv Pérez Martínez, Vanesa
dc.contributor.advisor.none.fl_str_mv Sierra Ávila, César Augusto
Méndez Córdoba, Luis Carlos
dc.contributor.author.none.fl_str_mv Pérez Martínez, Vanesa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Macromoléculas
Grupo de Investigación en Ciencia, Ingeniería y Salud - Gicis.
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Solución Salina
Administración Intravenosa
Saline Solution
Administration, Intravenous
Envase
Solución intravenosa
PVC
DEP
Microondas
Mujeres en embarazo
PHBV
Container
Intravenous saline solution
PVC
DEP
Microwave
Pregnant women
PHBV
dc.subject.decs.spa.fl_str_mv Solución Salina
Administración Intravenosa
dc.subject.decs.eng.fl_str_mv Saline Solution
Administration, Intravenous
dc.subject.proposal.spa.fl_str_mv Envase
Solución intravenosa
PVC
DEP
Microondas
Mujeres en embarazo
PHBV
dc.subject.proposal.eng.fl_str_mv Container
Intravenous saline solution
PVC
DEP
Microwave
Pregnant women
PHBV
description ilustraciones, fotografías, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06-09
dc.date.accessioned.none.fl_str_mv 2023-07-27T15:23:03Z
dc.date.available.none.fl_str_mv 2023-07-27T15:23:03Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84304
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84304
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv McGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012.
Fleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010
Bachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010
Nagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001
Thomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201
Gamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25–
Borja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006
Farmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumen
Textos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07)
Van Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526
PVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24
Parisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194
Madrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6
Thomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8
Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07)
Plastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07)
Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.
KleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017
Štrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741
Venkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041
Salwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010
CIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14)
Mrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102
Galotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807
Haji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7
Excellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017
Epstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15)
Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021.
Centers for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer Look
Wesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0
Benavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36
McKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7
Corpaul. Solución cloruro de sodio al 0,9%. Corpaul
Plastics Europe; EPRO. Plásticos – Situación en 2020. Plastics Europe
Johnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed Alliance
Gavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63
Herbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482
Erythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8
Autian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043
Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011
Center for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001
Malarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087
Markarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8
Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015
Plastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12
Shea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467
Den Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896
Report Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022
Tüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291
Aouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588
Satapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831
Rijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479
Chiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024
Keller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940
Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011
Castillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103.
John, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626
Yokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010
López, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45
Chittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433
Rischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19
Sieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4
Leaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5
Anshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3
y, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.x
Martucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004
Plastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPE
Gotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7
Baxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021
Chiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800
mexpolimeros. polihidroxibutirato-valerato. Biopolímeros
El-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8
Lindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.x
Baxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9
Smith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29
MERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpage
Khalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309
Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200
Yuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316c
Hitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022.
Centro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChem
Centro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChem
GreenFacts. Ftalatos Dibutilftalato. GreenFacts
Rastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33
Ribeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078
ASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedades
Mofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019
Bledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005
Jost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257
Olejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898
Zhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034.
Boufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2023
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 127 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84304/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84304/2/10184719152023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84304/3/10184719152023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
722532467beaeda05202e44b25acabf4
37ac3157a4e30dc5b286c3342c07a253
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089549144391680
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ávila, César Augusto394dd93f7303a80405d9212168b6c837Méndez Córdoba, Luis Carlos50d5bc69e1136e21db880853e792ad0dPérez Martínez, Vanesa5c5802faa65c45a699ac11231f922edcGrupo de Investigación en MacromoléculasGrupo de Investigación en Ciencia, Ingeniería y Salud - Gicis.2023-07-27T15:23:03Z2023-07-27T15:23:03Z2022-06-09https://repositorio.unal.edu.co/handle/unal/84304Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasPara el área de la salud, en la distribución, almacenamiento y transporte de medicamentos, existen diversos envases poliméricos comercializados en Colombia. Para el caso específico del envase de soluciones salinas intravenosas, el material polimérico más utilizado es el poli cloruro de vinilo (PVC). Desafortunadamente, no hay información clara sobre la composición exacta de estos envases, ni los efectos sobre el material y la solución salina al exponer estos a calentamiento por microondas, proceso normalmente usado para acondicionar el líquido antes de suministrarlo a un paciente. Por tal motivo, envases de soluciones salinas comercializados en Colombia se caracterizaron por espectroscopia infrarroja (IR), termogravimetría (TGA), calorimetría diferencial de barrido (DSC), prueba de esfuerzo-deformación y cromatografía de gases acoplada a espectrómetro de masas (GC-MS). Caracterizaciones realizadas antes y después de someter el empaque junto a su solución salina a calentamiento con microondas. Los resultados indican que el material polimérico en el envase es PVC con un alto contenido de DEP como plastificante. Adicionalmente, y teniendo en cuenta que los resultados muestran que el plastificante está migrando desde el empaque hacia la solución y al ser estas soluciones empleadas en mujeres en estado de embarazo, se generó un protocolo adecuado de calentamiento para ser implementado en el instituto materno infantil de la ciudad de Bogotá. Por último, se planteó una alternativa de envase libre de plastificante con un material biodegradable, el cual es poli 3-hidroxibutirato-co-3-hidroxivalerato (PHBV). (Texto tomado de la fuente)For the health sector, in the distribution, storage and transport of medicines, there are various options of polymeric packaging available in Colombia. For the specific case of intravenous saline solution containers, the most commonly used polymeric material is polyvinyl chloride (PVC). Unfortunately, there is no clear information on the exact composition of these packaging materials, nor the effects on the material and saline when exposed to microwave heating, a process typically used to condition liquid before administration to a patient. . For this reason, the saline solution containers marketed in Colombia were characterized by infrared spectroscopy (IR), thermogravimetry (TGA), differential scanning calorimetry (DSC), stress-strain tests and gas chromatography-mass spectrometry (GC-MS). The characterizations were carried out before and after submitting the container and the saline solution to microwave heating. The results indicate that the polymeric material of the packaging is PVC with a high content of DEP as a plasticizer. Additionally, considering that the results show that the plasticizer is migrating from the container to the solution and since these solutions used in pregnant women, an adequate heating protocol developed to be implemented in the maternal and child institute of the city of Bogota. Finally, an alternative packaging option proposed that does not contain plasticizers and is made from a biodegradable material called poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV).MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales poliméricos usados en la industria médica127 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaSolución SalinaAdministración IntravenosaSaline SolutionAdministration, IntravenousEnvaseSolución intravenosaPVCDEPMicroondasMujeres en embarazoPHBVContainerIntravenous saline solutionPVCDEPMicrowavePregnant womenPHBVAnálisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondasAnalysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMcGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012.Fleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010Bachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010Nagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001Thomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201Gamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25–Borja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006Farmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumenTextos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07)Van Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526PVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24Parisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194Madrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6Thomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07)Plastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07)Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.KleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017Štrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741Venkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041Salwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010CIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14)Mrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102Galotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807Haji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7Excellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017Epstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15)Rudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021.Centers for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer LookWesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0Benavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36McKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7Corpaul. Solución cloruro de sodio al 0,9%. CorpaulPlastics Europe; EPRO. Plásticos – Situación en 2020. Plastics EuropeJohnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed AllianceGavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63Herbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482Erythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8Autian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011Center for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001Malarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087Markarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8Rodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015Plastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12Shea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467Den Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896Report Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022Tüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291Aouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588Satapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831Rijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479Chiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024Keller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940Haned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011Castillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103.John, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626Yokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010López, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45Chittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433Rischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19Sieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4Leaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5Anshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3y, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.xMartucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004Plastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPEGotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7Baxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021Chiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800mexpolimeros. polihidroxibutirato-valerato. BiopolímerosEl-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8Lindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.xBaxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9Smith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29MERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpageKhalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200Yuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316cHitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022.Centro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChemCentro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChemGreenFacts. Ftalatos Dibutilftalato. GreenFactsRastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33Ribeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078ASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedadesMofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019Bledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005Jost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257Olejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898Zhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034.Boufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84304/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL10184719152023.pdf10184719152023.pdfTesis de Maestría en ingeniería - Materiales y procesosapplication/pdf4715596https://repositorio.unal.edu.co/bitstream/unal/84304/2/10184719152023.pdf722532467beaeda05202e44b25acabf4MD52THUMBNAIL10184719152023.pdf.jpg10184719152023.pdf.jpgGenerated Thumbnailimage/jpeg5252https://repositorio.unal.edu.co/bitstream/unal/84304/3/10184719152023.pdf.jpg37ac3157a4e30dc5b286c3342c07a253MD53unal/84304oai:repositorio.unal.edu.co:unal/843042024-08-12 23:11:29.23Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=