Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.

Ilustraciones

Autores:
Arroyave Gómez, Diana Marcela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80283
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80283
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Sewage
Sedimentation and deposition
Aguas residuales
Sedimentación
sewage outfall
benthic metabolism
upwelling
denitrification
Emisario de aguas residuales
Metabolismo béntico
Surgencia
Desnitrificación y nitrato amonificación
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_abcb485fd57e685302bdeb5f85d8d645
oai_identifier_str oai:repositorio.unal.edu.co:unal/80283
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
dc.title.translated.spa.fl_str_mv Condiciones biogeoquímicas en la columna de agua y en la anterface sedimento - agua en las cercanías del emisario submarino de la Bahía de Santa Marta (Caribe - Colombiano) producidas por patrones climáticos estacionales.
title Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
spellingShingle Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Sewage
Sedimentation and deposition
Aguas residuales
Sedimentación
sewage outfall
benthic metabolism
upwelling
denitrification
Emisario de aguas residuales
Metabolismo béntico
Surgencia
Desnitrificación y nitrato amonificación
title_short Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
title_full Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
title_fullStr Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
title_full_unstemmed Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
title_sort Seasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.
dc.creator.fl_str_mv Arroyave Gómez, Diana Marcela
dc.contributor.advisor.none.fl_str_mv Toro Botero, Francisco Mauricio
dc.contributor.author.none.fl_str_mv Arroyave Gómez, Diana Marcela
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Sewage
Sedimentation and deposition
Aguas residuales
Sedimentación
sewage outfall
benthic metabolism
upwelling
denitrification
Emisario de aguas residuales
Metabolismo béntico
Surgencia
Desnitrificación y nitrato amonificación
dc.subject.lemb.eng.fl_str_mv Sewage
Sedimentation and deposition
dc.subject.lemb.spa.fl_str_mv Aguas residuales
Sedimentación
dc.subject.proposal.eng.fl_str_mv sewage outfall
benthic metabolism
upwelling
denitrification
dc.subject.proposal.spa.fl_str_mv Emisario de aguas residuales
Metabolismo béntico
Surgencia
Desnitrificación y nitrato amonificación
description Ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06
dc.date.accessioned.none.fl_str_mv 2021-09-23T21:31:32Z
dc.date.available.none.fl_str_mv 2021-09-23T21:31:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80283
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80283
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Alkhatib M, Lehmann MF and Del Giorgio PA (2012) The nitrogen isotope effect of benthic remineralization-nitrification- denitrification coupling in an estuarine environment. Biogeosciences, 9(5), 1633–1646. https://doi.org/10.5194/bg-9-1633-2012
Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures BT - Nitrogen Cycling in Coastal Marine Environments. In T. H. Blackburn & J. Sørensen (Eds.), Nitrogen Cycling in Coastal Marine Environments (JOHN WILEY, pp. 301–338).
Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114(3–4), 331–345. https://doi.org/10.1016/0009-2541(94)90062-0
An S and Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecology Progress Series, 237, 41–50. https://doi.org/10.3354/meps237041
Andrade CA and Barton ED (2005) The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012
Arévalo-Martínez DL and Franco - Herrera A (2008) Características oceanográficas de la surgencia frente a la ensenada de Gaira, Departamento de Magdalena, época seca menor de 2006. Boletín de Investigaciones Marinas y Costeras, 37(2), 131–162.
Aspila K, Agemian Hand Chau ASY(1976) A Semi-automated Method for the Determination of Inorganic , Organic and Total Phosphate in Sediments. Analyst, 101, 187–197.
Banta GT, Giblin AE, Hobbie JE et al. (1995) Benthic respiration and nitrogen release in Buzzards Bay , Massachusetts. Jornal of Marine Research, 53, 107–135.
Bayraktarov E, Bastidas-Salamanca ML and Wild C (2014) The physical environment in coral reefs of the Tayrona National Natural Park (Colombian Caribbean) in response to seasonal upwelling. Boletín de Investigaciones Marinas y Costeras, 43(1), 137–157.
Bayraktarov E, Pizarro V, Eidens C et al. (2013) Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling. PLoS ONE, 8(11), 1–11. https://doi.org/10.1371/journal.pone.0080536
Bayraktarov E and Wild C (2014) Spatiotemporal variability of sedimentary organic matter supply and recycling processes in coral reefs of Tayrona National Natural Park, Colombian Caribbean. Biogeosciences, 11(11), 2977–2990. https://doi.org/10.5194/bg-11-2977-2014
Bedard-Haughn A, Van Groenigen JW and Van Kessel C (2003) Tracing15N through landscapes: Potential uses and precautions. Journal of Hydrology, 272(1–4), 175–190. https://doi.org/10.1016/S0022-1694(02)00263-9
Berelson WM, Johnson K, Coale K et al. (2002) Organic matter diagenesis in the sediments of the San Pedro Shelf along a transect affected by sewage effluent. Continental Shelf Research, 22, 1101–1115.
Bernard RJ, Mortazavi B and Kleinhuizen AA (2015) Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3− reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 125(1), 47–64. https://doi.org/10.1007/s10533-015-0111-6
Bonaglia S, Nascimento FJA, Bartoli M et al. (2014) Meiofauna increases bacterial denitrification in marine sediments. Nature Communications, 5(5133), 1005–1011. https://doi.org/10.1038/ncomms6133
Boynton WR, Ceballos MAC, Bailey EM et al. (2018) Oxygen and nutrient exchanges at the sediment-water interface: a global synthesis and critique of estuarine and coastal data. Estuaries and Coasts, 41(2), 301–333. https://doi.org/10.1007/s12237-017-0275-5
Burd B, Macdonald T and Bertold S (2013) The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments. Marine Pollution Bulletin, 74(1), 351–363. https://doi.org/10.1016/j.marpolbul.2013.06.029
Burgin AJ and Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89–96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG et al. (2014) Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio, 43(1), 26–36. https://doi.org/10.1007/s13280-013-0474-7
Church TM, Sommerfield CK, Velinsky DJ et al. (2006) Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. Marine Chemistry, 102(1–2), 72–95. https://doi.org/10.1016/j.marchem.2005.10.026
Cline JD (1969) Spectrophometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3), 454–458. https://doi.org/10.4319/lo.1969.14.3.0454
Dalsgaard T (2003) Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnology and Oceanography, 48(6), 2138–2150. https://doi.org/10.4319/lo.2003.48.6.2138
Dalsgaard T, Nielsen LP, Brotas V et al. (2000) Protocol Handbook for Nitrogen Cycling In Estuaries. National Environmental Research Institute, Silkeborg, Denmark. T. Dalsgaard (ed.). ISBN: 87-7772-535-2
Dalsgaard T, Thamdrup B and Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 156(4), 457–464. https://doi.org/10.1016/j.resmic.2005.01.011
Dalsgaard, T., & Krause-Jensen, D. (2006). Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture, 256(1-4), 302-310.
Dang DH, Evans RD, Durrieu G et al. (2018) Quantitative model of carbon and nitrogen isotope composition to highlight phosphorus cycling and sources in coastal sediments (Toulon Bay, France). Chemosphere, 195, 683–692. https://doi.org/10.1016/j.chemosphere.2017.12.109
De Brabandere L, Bonaglia S, Kononets MY et al (2015). Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry, 126(1–2), 131–152. https://doi.org/10.1007/s10533-015-0148-6
Diaz-Pulido G, and Garzón-Ferreira J (2002) Seasonality in algal assemblages on upwelling-influenced coral reefs in the Colombian Caribbean. Botanica Marina, 45(3), 284–292. https://doi.org/10.1515/BOT.2002.028
Díaz-Rocca LH and Causado-Rodríguez E (2007) La insostenibilidad del desarrollo urbano: El caso de Santa Marta–Colombia. Clío América, 1(1), 64–100.
Diaz RJ (2001) Overview of hypoxia around the world. Journal of Environmental Quality, 30(2), 275–281. https://doi.org/10.2134/jeq2001.302275x
Dong LF, Sobey MN, Smith CJ et al. (2011) Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnology and Oceanography, 56(1), 279–291. https://doi.org/10.4319/lo.2011.56.1.0279
Downing JA, Mcclain M, Twilley R et al. (1999) The Impact of Accelerating Land-Use Change on the N-Cycle of Tropical Aquatic Ecosystems : Current Conditions and Projected Changes., Biogeochemistry, 46, 109–148.
Escobar A (1988) Estudio de algunos aspectos ecologicos y de la contaminacion bacteriana en la Bahia de Santa Marta, Caribe Colombiano. Boletin de Investigaciones Marinas y Costeras, 18, 39–57.
Eyre BD, Maher DT and Squire P (2013) Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Global Biogeochemical Cycles, 27(4), 1083–1095. https://doi.org/10.1002/2013GB004631
Eyre BD, Rysgaard S, Dalsgaard T and Christensen PB (2002) Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification - Assumptions, modifications, and implications. Estuaries, 25(6 A), 1077–1087. https://doi.org/10.1007/bf02692205
Fajardo G (1979) Surgencia costera en las proximidades de la península colombiana de La Guajira. Boletin Cientifico CIOH, 2, 7–19.
Ferguson A and Eyre B (2012) Interaction of benthic microalgae and macrofauna in the control of benthic metabolism, nutrient fluxes and denitrification in a shallow sub-tropical coastal embayment (western Moreton Bay, Australia). Biogeochemistry, 112(1–3), 423–440. https://doi.org/10.1007/s10533-012-9736-x
Fox J (2005) The R Commander: A Basic-Statistics Graphical User Interface to R. Journal of Statistical Software, 14(9), 1–42.
Franco-Herrera A, Castro L and Tigreros P (2006) Plankton dynamics in the south-central Caribbean Sea: Strong seasonal changes in a coastal tropical system. Caribbean Journal of Science, 42(1), 24–38.
Gao J, Wang Y, Pan S et al. (2008) Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area. Journal of Geographical Sciences, 18(1), 46–58. https://doi.org/10.1007/s11442-008-0046-0
Garcés-Ordóñez O, Arteaga E, Obando P et al. (2016) Atención a eventuales emergencias ambientales en la zona marino-costera del departamento del Magdalena. Convenio CORPAMAG-INVEMAR; código: PRY-CAM-011-14. Informe técnico final. (Issue 14).
García-Hoyos LM, Franco-Herrera A, Ramire-Barón JS et al. (2010) Dinámica océano-atmósfera y su influencia en la biomasa fitoplanctónica en la zona costera del epartamento del Magdalena. Boletín de Investigaciones Marinas y Costeras, 39(2), 307–335.
García F (2013) Modelación de los efectos del emisario submarino de santa marta sobre la calidad del agua. PhD Dissertation, Universidad de Antioquia, Facultad de Ingeniería.
García F, Palacio C and Garcia U (2012) Water quality at Santa Marta Coastal Area ( Colombia ). Dyna, 79(173), 85–94.
Gardner WS and McCarthy MJ (2009) Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay: Why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry, 95(2), 185–198. https://doi.org/10.1007/s10533-009-9329-5
Gardner WS, McCarthy MJ, An S et al. (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography, 51(1 II), 558–568.
Gearing JN, Gearing PJ, Rudnick DT et al. (1984) Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary. Geochimica et Cosmochimica Acta, 48(5), 1089–1098. https://doi.org/10.1016/0016-7037(84)90199-6
Giblin AE, Hopkinson CS and Tucker J (1997) Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries, 20(2), 346–364. https://doi.org/10.1007/BF02690378
Grall J and Chauvaud L (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology, 8(9), 813–830.
Grasshoff KM, Ehrhardt and K Kremling (1983) Methods of Seawater Analysis, 2nd ed. Berlin: Verlag Chemie.
Hall POJ, Almroth E, Bonaglia S et al. (2017) Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon. Frontiers in Marine Science, 4(February), 1–14. https://doi.org/10.3389/fmars.2017.00027
Hargrave BT, Holmer M and Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 56(5), 810–824. https://doi.org/10.1016/j.marpolbul.2008.02.006
Hopkinson CS, Giblin AE and Tucker J (2001) Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Marine Ecology Progress Series, 224, 1–19. https://doi.org/10.3354/meps224001
Howarth R, Chan F, Conley DJ et al. (2011) Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1), 18–26. https://doi.org/10.1890/100008
Koop-Jakobsen K and Giblin AE (2009) Anammox in tidal marsh sediments: The role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts, 32(2), 238–245. https://doi.org/10.1007/s12237-008-9131-y
Legendre P, Legendre L. Numerical Ecology. 2nd ed. Amsterdam: Elsevier, 1998. ISBN 978-0444892508.
Li Y, Zhang H, Tu C et al. (2016) Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio. Estuarine, Coastal and Shelf Science, 181, 114–122. https://doi.org/10.1016/j.ecss.2016.08.024
Lunstrum A and Aoki LR (2016) Oxygen interference with membrane inlet mass spectrometry may overestimate denitrification rates calculated with the isotope pairing technique. Limnology and Oceanography: Methods, 14(7), 425–431. https://doi.org/10.1002/lom3.10101
Mancera-Pineda J, Pinto G and Vilardy S (2013) Patrones de distribución espacial de masas de agua en la bahía de Santa Marta, Caribe Colombiano: Importancia relativa del upwelling y outwelling. Boletín de Investigaciones Marinas y Costeras, 42(2), 329–360.
Mariotti A, Germon JC, Hubert P et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62(3), 413–430. https://doi.org/10.1007/BF02374138
Martínez S and Acosta A (2005) Cambio temporal en la Estructura de la comunidad coralina del área de Santa Marta - Parque Nacional Natural Tayrona (Caribe Colombiano). Boletin de Investigaciones Marinas y Costeras, 34, 161–192. https://doi.org/10.1213/ane.0b013e31816e5128
McCarthy MJ, Newell SE, Carini SA et al. (2015) Denitrification Dominates Sediment Nitrogen Removal and Is Enhanced by Bottom-Water Hypoxia in the Northern Gulf of Mexico. Estuaries and Coasts, 38(6), 2279–2294. https://doi.org/10.1007/s12237-015-9964-0
Mermillod-Blondin F, Rosenberg R, Norling K et al. (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology, 36, 271–284. https://doi.org/10.3354/ame036271
Meyers PA (1997) Organic geochemical proxies of paleoceanographic,paleoimnologic,and paleoclimatic processes. Organic Geochemistry, 27(5–6), 213–250. https://doi.org/doi:10.1016/S0146-6380(97)00049-1
Newell SE, McCarthy MJ, Gardner WS et al. (2016) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Estuaries and Coasts, 39(6), 1626–1638. https://doi.org/10.1007/s12237-016-0116-y
Nielsen LP (1992) Denitrificaction in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology, 86, 357–362.
Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199–219. https://doi.org/10.1080/00785236.1995.10422044
Paramo J, Correa M and Núñez S (2011) Evidencias de desacople físico-biológico en el sistema de surgencia en la Guajira, caribe Colombiano. Revista de Biologia Marina y Oceanografia, 46(3), 421–430. https://doi.org/10.4067/S0718-19572011000300011
Preisler A, De Beer D, Lichtschlag A et al. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME Journal, 1(4), 341–353. https://doi.org/10.1038/ismej.2007.50
Ramírez-Barón JS, Franco-Herrera A, García-Hoyos LM and López-Cerón DA (2010) La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la Zona Costera del Departamento del Magdalena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 39(2), 233–263.
Ramírez G (1981) Características Fisico-Químicas de la Bahía de Santa Marta (Agosto 1980-Julio 1981). Boletín de Investigaciones Marinas y Costeras, 13, 111–121.
Ramos-Ortega LM, Vidal LA, Vilardy S et al. (2008) Análisis de la contaminación microbiológica (coliformes totales y fecales) en la bahía de Santa Marta, caribe colombiano. Acta Biológica Colombiana, 13(3), 87–98.
Robertson EK, Bartoli M, Brüchert V (2019) Application of the isotope pairing technique in sediments: Use, challenges, and new directions. Limnology and Oceanography: Methods, 17(2), 112–136. https://doi.org/10.1002/lom3.10303
Rooze J and Meile C (2016) The effect of redox conditions and bioirrigation on nitrogen isotope fractionation in marine sediments. Geochimica et Cosmochimica Acta, 184, 227–239. https://doi.org/10.1016/j.gca.2016.04.040
Rosenberg R and Loo LO (1988) Marine eutrophication induced oxygen deficiency: Effects on soft bottom fauna, western Sweden. Ophelia, 29(3), 213–225. https://doi.org/10.1080/00785326.1988.10430830
Rueda-Roa DT and Muller-Karger FE (2013) The southern Caribbean upwelling system : Sea surface temperature , wind forcing and chlorophyll concentration patterns. Deep-Sea Research Part I, 78, 102–114. https://doi.org/10.1016/j.dsr.2013.04.008
Salzwedel H and Müller K (1983) A summary of Meteorological and hydrological data from the Bay of Santa Marta, Colombian Caribbean. Boletin de Investigaciones Marinas y Costeras, 13, 67–83.
Sampaio L, Freitas R, Máguas C et al. (2010) Coastal sediments under the influence of multiple organic enrichment sources: An evaluation using carbon and nitrogen stable isotopes. Marine Pollution Bulletin, 60(2), 272–282. https://doi.org/10.1016/j.marpolbul.2009.09.008
Schlunz B, Schneider RR, Muller PJ et al. (1999) Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chemical Geology, 159(1–4), 263–281.
Smith J, Burford MA, Revill AT et al. (2012) Effect of nutrient loading on biogeochemical processes in tropical tidal creeks. Biogeochemistry, 108(1–3), 359–380. https://doi.org/10.1007/s10533-011-9605-z
Song GD, Liu SM, Marchant H, Kuypers MMM Lavik G (2013) Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences, 10(11), 6851–6864. https://doi.org/10.5194/bg-10-6851-2013
Testa JM and Kemp WM (2011) Oxygen – Dynamics and Biogeochemical Consequences. In Treatise on Estuarine and Coastal Science (Vol. 5). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374711-2.00505-2
Trimmer M, Risgaard-Petersen N, Nicholls JC et al. (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores Mark. Marine Ecology Progress Series, 326, 37–47. https://doi.org/10.3354/meps326037
Tucker J and Giblin A (2010) Quality Assurance Project Plan ( QAPP ) for Benthic Nutrient Flux Studies : 2010. Boston: Massachusetts Water Resources Authority, Report 201, 65 pp.
Vega-Sequeda J, Rodríguez-Ramírez A, Reyes-Nivia MC et al. (2008) Formaciones Coralinas Del Área De Santa Marta: Estado Y Patrones De Distribución Espacial De La Comunidad Bentonica. Boletin de Investigaciones Marinas y Costeras, 37(2), 87–105.
Warembourg FR (1993) Nitrogen fixation in soil and plant systems. Nitrogen isotope techniques, pp.127-156.
Zhou J, Wu Y, Zhang J et al. (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 65(2), 310–317. https://doi.org/10.1016/j.chemosphere.2006.02.026
Zilius M, Bartoli M, Bresciani M, Katarzyte M et al. (2014) Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and Coasts, 37(3), 680–694. https://doi.org/10.1007/s12237-013-9717-x
Zilius M, Vybernaite-Lubiene I, Vaiciute D et al. (2018) The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon. Biogeochemistry, 141(2), 143–165. https://doi.org/10.1007/s10533-018-0508-0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 138 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Santa Marta (Colombia)
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ciencias del Mar
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80283/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/80283/5/43874051_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80283/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80283/7/43874051_2021.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
38182fe8f74bf503428d686d1779f062
cccfe52f796b7c63423298c2d3365fc6
6a4a9f900c3ab5229192c4990f23f13d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886625259552768
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Toro Botero, Francisco Mauriciocf257e79744a6dbf5281054eb02b0352600Arroyave Gómez, Diana Marcela84a6eec2f1aed3a89ba33431383e99782021-09-23T21:31:32Z2021-09-23T21:31:32Z2020-06https://repositorio.unal.edu.co/handle/unal/80283Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThe biogeochemical conditions at the sediment-water interface and along the water column near the discharge of the Santa Marta sewage outfall (SMSO) were studied during the non upwelling (NUPW) and upwelling (UPW) seasons by sedimentary properties and benthic metabolism measurements, as well as, by the implementation of a coupled 3D hydrodynamic-ecological model (AEM3D). Sediment properties (organic matter quantity, C, N and P pools and δ13C, δ15N and redox potential) and benthic metabolism (aerobic respiration, denitrification, nitrate ammonification and nutrient recycling) were analyzed in four stations located in the proximity and 100, 750 and 1800 m far from the untreated wastewater effluent discharge in both seasons in the Santa Marta Coastal Area (SMCA). From each site, sediment cores were collected between 20 and 30 m depth. Then, the nutrient fluxes were measured in the laboratory via dark incubations; sequentially to fluxes denitrification and dissimilative nitrate reduction to ammonium were measured via the r-IPT (Isotope Pairing Tecnnique). The results indicate that the sediments trace the impact of the outfall (at 750 m and 1800 m with a contribution of terrestrial organic carbon of ~ 40 and ~ 20%, respectively). The results suggest significantly higher sediment oxygen demands (SOD) in the outfall vicinity, as well as a suppression of denitrification and increments in the ammonia nitrogen release through disassimilatory reduction of nitrate to ammonium (DNRA), which was increased during the UPW season. On the other hand, AEM3D model was applied to analyze the seasonal variations of water physico-chemical and biological parameters in SMAC under two different nutrient and organic matter loads from wastewater outfall (flow-rate of 1.0 m3 s-1 and 2.5 m3 s-1) and along the NUPW and UPW season. The model was set up, calibrated and validated based on benthic metabolic measurements carried out within the simulation period, satellite–derived chlorophyll-a (Chl-a) and sea surface temperature (SST) maps, HYCOM database and field and literature water quality data. The model was able to reproduce the magnitude and timing of complex dynamics and fast transitions of temperature, nutrients, and phytoplankton, including the time and duration of stratification and mixing periods during the NUPW and UPW seasons. The model was also able to capture the effect of fertilization from upwelling and from the outfall plume. The wind field was the main driver of nearshore hydrodynamics and the outfall plume dispersion. The shortest average residence times of the outfall plume (3.7 ± 0.4 days) corresponded to the period of highest upwelling intensity. Temperature, light intensity and nutrients were the factors that limited phytoplankton growth. The plume concentrations of TOC, TP and PO43- increased slightly under two scenarios of different wastewater loading. The phytoplankton growth was limited in both NUPW and UPW seasons due to large changes in temperature and advection and mixing in the coastal area, resulting in large dilution of nutrient loads. Wide and fast changes in the temperatures and the highly energetic environment uncoupled phytoplankton growth and nutrient supply in the benthic and pelagic compartments. The model proved to be a reasonably reliable research and management tool to predict nutrient and phytoplankton dynamics, and to analyze the individual role of different inputs during NUPW and UPW seasons. The main model outputs suggest limited impact of the nutrients from the outfall and from upwelling to the chemical and biological quality of the water in the SMCA. However, sediment analyses revealed the occurrence of a pronounced organic impact, altering sediment biogeochemical dynamics and suggest maintaining this system continuously monitored and studied, via combination of experimental activities, satellite-based monitoring and modeling approaches. This seems particularly important due to increasing anthropogenic pressures on the coastal area and on watersheds and to ongoing global changes affecting climate, wind intensity, water temperature and mixing rates.Las condiciones biogeoquímicas en la interface sedimento-agua y en la columna de agua cerca de la descarga del emisario de aguas residuales de Santa Marta (ESM) fueron estudiadas en el periodo de surgencia (S) y no surgencia (NS) mediante mediciones de propiedades sedimentarias y flujos de nutrientes bentónicos, así como, con la implementación del modelo acoplado hidrodinámicoecológico AEM3D. Las propiedades sedimentarias (materia orgánica, contenido de C, N, P, δ 13C y δ 15N, y potencial redox) y el metabolismo béntico (respiración aerobia, desnitrificación, nitrato amonificación y reciclaje de nutrientes) fueron analizadas en cuatro estaciones ubicadas en la proximidad, a 100 m, 750 m y 1800 m de distancia de la descarga del efluente de aguas residuales no tratadas en ambos periodos climáticos en el Área Costera de Santa Marta (ACSM). En cada sitio, se muestrearon núcleos de sedimento a profundidades entre 20 m y 30 m. Luego, los flujos de nutrientes fueron medidos en el laboratorio vía incubaciones oscuras; en paralelo a los flujos, se midieron la desnitrificación y la reducción desasimilatoria del nitrato a amonio vía IPT (por sus siglas en inglés, Isotope Pairing Tecnnique). Los resultados indican que los sedimentos permitieron trazar el impacto del emisario (a 750 m y 1800 m con una contribución del carbono orgánico terrestre del ∼ 40 y ~20 %, respectivamente). Los resultados sugieren altas demandas de oxígeno de los sedimentos en la proximidad del emisario, así como una supresión de la desnitrificación e incrementos en la libración de nitrógeno amoniacal por medio reducción desasimilatoria de nitrato a amonio (por sus siglas en inglés, DNRA), el cual se vió incrementado durante el período de surgencia. Por otra parte, el modelo AEM3D fue aplicado para analizar las variaciones estacionales de los parámetros fisicoquímicos y biológicos en la columna de agua del ACSM bajo dos cargas diferentes de nutrientes y materia orgánica provenientes del efluente del agua residual del emisario (caudal de 1.0 m3 s-1 y 2.5 m3 s-1) durante los periodos de NS y S. El modelo fue configurado, calibrado y validado con base en mediciones de metabolismo béntico obtenida dentro del periodo de simulación, imágenes satelitales de temperatura superficial del mar (TSM) y clorofila-a (Chla), información de base datos de HYCOM, campañas de campo y literatura. El modelo fue capaz de reproducir la magnitud y la compleja dinámica de las rápidas transiciones de temperatura, nutrientes y fitoplancton, incluido el tiempo y la duración de los períodos de estratificación y II mezcla durante las temporadas NS y S. El modelo también pudo capturar el efecto de la fertilización de la surgencia y del emisario. El campo de viento fue el principal forzante de la hidrodinámica costera y la dispersión de la pluma. Los tiempos de residencia promedio más bajos de la pluma (3.7 ± 0.4 días) correspondieron al período de mayor intensidad de la surgencia. La temperatura, la luz y los nutrientes fueron los factores que limitaron el crecimiento del fitoplancton. Las concentraciones carbono orgánico total (COT), fósforo total (TP) y fosfato (PO4 3-) aumentaron levemente en los dos escenarios de carga de aguas residuales. El crecimiento del fitoplancton fue limitado tanto en el periodo de NS como en S debido a los grandes cambios de temperatura y advección y mezcla en el área costera, lo que resultó en una gran dilución de las cargas de nutrientes. Los grandes y rápidos cambios en la temperatura y el ambiente altamente energético desacoplaron el crecimiento del fitoplancton con el suministro de nutrientes en los compartimentos bentónico y pelágico. El modelo demostró ser una herramienta de investigación y de gestión razonablemente confiable para predecir la dinámica de nutrientes y fitoplancton, y para analizar el papel individual de diferentes entradas de nutrientes durante los periodos de NS y S. El principal resultado del modelo sugiere un impacto limitado de los nutrientes del emisario y de la surgencia sobre la calidad química y biológica del agua en el ACMS. Sin embargo, los análisis de sedimentos revelaron la ocurrencia de un impacto orgánico pronunciado, alterando la dinámica biogeoquímica de los sedimentos y sugieren mantener este sistema continuamente monitoreado y estudiado, a través de una combinación de actividades experimentales, monitoreo basado en imágenes de satélites y enfoques de modelación. Esto parece particularmente importante debido a las crecientes presiones antropogénicas en las áreas costeras y en las cuencas hidrográficas, y a los cambios globales en curso que afectan el clima, la intensidad del viento, la temperatura del agua y las tasas de mezcla. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias del Marxviii, 138 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ciencias del MarDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaSewageSedimentation and depositionAguas residualesSedimentaciónsewage outfallbenthic metabolismupwellingdenitrificationEmisario de aguas residualesMetabolismo bénticoSurgenciaDesnitrificación y nitrato amonificaciónSeasonal patterns of biogeochemical conditions of the water column and sediment - water interface near the submarine outfall in the Santa Marta Bay, Colombian Caribbean.Condiciones biogeoquímicas en la columna de agua y en la anterface sedimento - agua en las cercanías del emisario submarino de la Bahía de Santa Marta (Caribe - Colombiano) producidas por patrones climáticos estacionales.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDSanta Marta (Colombia)Alkhatib M, Lehmann MF and Del Giorgio PA (2012) The nitrogen isotope effect of benthic remineralization-nitrification- denitrification coupling in an estuarine environment. Biogeosciences, 9(5), 1633–1646. https://doi.org/10.5194/bg-9-1633-2012Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures BT - Nitrogen Cycling in Coastal Marine Environments. In T. H. Blackburn & J. Sørensen (Eds.), Nitrogen Cycling in Coastal Marine Environments (JOHN WILEY, pp. 301–338).Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114(3–4), 331–345. https://doi.org/10.1016/0009-2541(94)90062-0An S and Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecology Progress Series, 237, 41–50. https://doi.org/10.3354/meps237041Andrade CA and Barton ED (2005) The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012Arévalo-Martínez DL and Franco - Herrera A (2008) Características oceanográficas de la surgencia frente a la ensenada de Gaira, Departamento de Magdalena, época seca menor de 2006. Boletín de Investigaciones Marinas y Costeras, 37(2), 131–162.Aspila K, Agemian Hand Chau ASY(1976) A Semi-automated Method for the Determination of Inorganic , Organic and Total Phosphate in Sediments. Analyst, 101, 187–197.Banta GT, Giblin AE, Hobbie JE et al. (1995) Benthic respiration and nitrogen release in Buzzards Bay , Massachusetts. Jornal of Marine Research, 53, 107–135.Bayraktarov E, Bastidas-Salamanca ML and Wild C (2014) The physical environment in coral reefs of the Tayrona National Natural Park (Colombian Caribbean) in response to seasonal upwelling. Boletín de Investigaciones Marinas y Costeras, 43(1), 137–157.Bayraktarov E, Pizarro V, Eidens C et al. (2013) Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling. PLoS ONE, 8(11), 1–11. https://doi.org/10.1371/journal.pone.0080536Bayraktarov E and Wild C (2014) Spatiotemporal variability of sedimentary organic matter supply and recycling processes in coral reefs of Tayrona National Natural Park, Colombian Caribbean. Biogeosciences, 11(11), 2977–2990. https://doi.org/10.5194/bg-11-2977-2014Bedard-Haughn A, Van Groenigen JW and Van Kessel C (2003) Tracing15N through landscapes: Potential uses and precautions. Journal of Hydrology, 272(1–4), 175–190. https://doi.org/10.1016/S0022-1694(02)00263-9Berelson WM, Johnson K, Coale K et al. (2002) Organic matter diagenesis in the sediments of the San Pedro Shelf along a transect affected by sewage effluent. Continental Shelf Research, 22, 1101–1115.Bernard RJ, Mortazavi B and Kleinhuizen AA (2015) Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3− reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 125(1), 47–64. https://doi.org/10.1007/s10533-015-0111-6Bonaglia S, Nascimento FJA, Bartoli M et al. (2014) Meiofauna increases bacterial denitrification in marine sediments. Nature Communications, 5(5133), 1005–1011. https://doi.org/10.1038/ncomms6133Boynton WR, Ceballos MAC, Bailey EM et al. (2018) Oxygen and nutrient exchanges at the sediment-water interface: a global synthesis and critique of estuarine and coastal data. Estuaries and Coasts, 41(2), 301–333. https://doi.org/10.1007/s12237-017-0275-5Burd B, Macdonald T and Bertold S (2013) The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments. Marine Pollution Bulletin, 74(1), 351–363. https://doi.org/10.1016/j.marpolbul.2013.06.029Burgin AJ and Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89–96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG et al. (2014) Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio, 43(1), 26–36. https://doi.org/10.1007/s13280-013-0474-7Church TM, Sommerfield CK, Velinsky DJ et al. (2006) Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. Marine Chemistry, 102(1–2), 72–95. https://doi.org/10.1016/j.marchem.2005.10.026Cline JD (1969) Spectrophometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3), 454–458. https://doi.org/10.4319/lo.1969.14.3.0454Dalsgaard T (2003) Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnology and Oceanography, 48(6), 2138–2150. https://doi.org/10.4319/lo.2003.48.6.2138Dalsgaard T, Nielsen LP, Brotas V et al. (2000) Protocol Handbook for Nitrogen Cycling In Estuaries. National Environmental Research Institute, Silkeborg, Denmark. T. Dalsgaard (ed.). ISBN: 87-7772-535-2Dalsgaard T, Thamdrup B and Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 156(4), 457–464. https://doi.org/10.1016/j.resmic.2005.01.011Dalsgaard, T., & Krause-Jensen, D. (2006). Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture, 256(1-4), 302-310.Dang DH, Evans RD, Durrieu G et al. (2018) Quantitative model of carbon and nitrogen isotope composition to highlight phosphorus cycling and sources in coastal sediments (Toulon Bay, France). Chemosphere, 195, 683–692. https://doi.org/10.1016/j.chemosphere.2017.12.109De Brabandere L, Bonaglia S, Kononets MY et al (2015). Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry, 126(1–2), 131–152. https://doi.org/10.1007/s10533-015-0148-6Diaz-Pulido G, and Garzón-Ferreira J (2002) Seasonality in algal assemblages on upwelling-influenced coral reefs in the Colombian Caribbean. Botanica Marina, 45(3), 284–292. https://doi.org/10.1515/BOT.2002.028Díaz-Rocca LH and Causado-Rodríguez E (2007) La insostenibilidad del desarrollo urbano: El caso de Santa Marta–Colombia. Clío América, 1(1), 64–100.Diaz RJ (2001) Overview of hypoxia around the world. Journal of Environmental Quality, 30(2), 275–281. https://doi.org/10.2134/jeq2001.302275xDong LF, Sobey MN, Smith CJ et al. (2011) Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnology and Oceanography, 56(1), 279–291. https://doi.org/10.4319/lo.2011.56.1.0279Downing JA, Mcclain M, Twilley R et al. (1999) The Impact of Accelerating Land-Use Change on the N-Cycle of Tropical Aquatic Ecosystems : Current Conditions and Projected Changes., Biogeochemistry, 46, 109–148.Escobar A (1988) Estudio de algunos aspectos ecologicos y de la contaminacion bacteriana en la Bahia de Santa Marta, Caribe Colombiano. Boletin de Investigaciones Marinas y Costeras, 18, 39–57.Eyre BD, Maher DT and Squire P (2013) Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Global Biogeochemical Cycles, 27(4), 1083–1095. https://doi.org/10.1002/2013GB004631Eyre BD, Rysgaard S, Dalsgaard T and Christensen PB (2002) Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification - Assumptions, modifications, and implications. Estuaries, 25(6 A), 1077–1087. https://doi.org/10.1007/bf02692205Fajardo G (1979) Surgencia costera en las proximidades de la península colombiana de La Guajira. Boletin Cientifico CIOH, 2, 7–19.Ferguson A and Eyre B (2012) Interaction of benthic microalgae and macrofauna in the control of benthic metabolism, nutrient fluxes and denitrification in a shallow sub-tropical coastal embayment (western Moreton Bay, Australia). Biogeochemistry, 112(1–3), 423–440. https://doi.org/10.1007/s10533-012-9736-xFox J (2005) The R Commander: A Basic-Statistics Graphical User Interface to R. Journal of Statistical Software, 14(9), 1–42.Franco-Herrera A, Castro L and Tigreros P (2006) Plankton dynamics in the south-central Caribbean Sea: Strong seasonal changes in a coastal tropical system. Caribbean Journal of Science, 42(1), 24–38.Gao J, Wang Y, Pan S et al. (2008) Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area. Journal of Geographical Sciences, 18(1), 46–58. https://doi.org/10.1007/s11442-008-0046-0Garcés-Ordóñez O, Arteaga E, Obando P et al. (2016) Atención a eventuales emergencias ambientales en la zona marino-costera del departamento del Magdalena. Convenio CORPAMAG-INVEMAR; código: PRY-CAM-011-14. Informe técnico final. (Issue 14).García-Hoyos LM, Franco-Herrera A, Ramire-Barón JS et al. (2010) Dinámica océano-atmósfera y su influencia en la biomasa fitoplanctónica en la zona costera del epartamento del Magdalena. Boletín de Investigaciones Marinas y Costeras, 39(2), 307–335.García F (2013) Modelación de los efectos del emisario submarino de santa marta sobre la calidad del agua. PhD Dissertation, Universidad de Antioquia, Facultad de Ingeniería.García F, Palacio C and Garcia U (2012) Water quality at Santa Marta Coastal Area ( Colombia ). Dyna, 79(173), 85–94.Gardner WS and McCarthy MJ (2009) Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay: Why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry, 95(2), 185–198. https://doi.org/10.1007/s10533-009-9329-5Gardner WS, McCarthy MJ, An S et al. (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography, 51(1 II), 558–568.Gearing JN, Gearing PJ, Rudnick DT et al. (1984) Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary. Geochimica et Cosmochimica Acta, 48(5), 1089–1098. https://doi.org/10.1016/0016-7037(84)90199-6Giblin AE, Hopkinson CS and Tucker J (1997) Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries, 20(2), 346–364. https://doi.org/10.1007/BF02690378Grall J and Chauvaud L (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology, 8(9), 813–830.Grasshoff KM, Ehrhardt and K Kremling (1983) Methods of Seawater Analysis, 2nd ed. Berlin: Verlag Chemie.Hall POJ, Almroth E, Bonaglia S et al. (2017) Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon. Frontiers in Marine Science, 4(February), 1–14. https://doi.org/10.3389/fmars.2017.00027Hargrave BT, Holmer M and Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 56(5), 810–824. https://doi.org/10.1016/j.marpolbul.2008.02.006Hopkinson CS, Giblin AE and Tucker J (2001) Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Marine Ecology Progress Series, 224, 1–19. https://doi.org/10.3354/meps224001Howarth R, Chan F, Conley DJ et al. (2011) Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1), 18–26. https://doi.org/10.1890/100008Koop-Jakobsen K and Giblin AE (2009) Anammox in tidal marsh sediments: The role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts, 32(2), 238–245. https://doi.org/10.1007/s12237-008-9131-yLegendre P, Legendre L. Numerical Ecology. 2nd ed. Amsterdam: Elsevier, 1998. ISBN 978-0444892508.Li Y, Zhang H, Tu C et al. (2016) Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio. Estuarine, Coastal and Shelf Science, 181, 114–122. https://doi.org/10.1016/j.ecss.2016.08.024Lunstrum A and Aoki LR (2016) Oxygen interference with membrane inlet mass spectrometry may overestimate denitrification rates calculated with the isotope pairing technique. Limnology and Oceanography: Methods, 14(7), 425–431. https://doi.org/10.1002/lom3.10101Mancera-Pineda J, Pinto G and Vilardy S (2013) Patrones de distribución espacial de masas de agua en la bahía de Santa Marta, Caribe Colombiano: Importancia relativa del upwelling y outwelling. Boletín de Investigaciones Marinas y Costeras, 42(2), 329–360.Mariotti A, Germon JC, Hubert P et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62(3), 413–430. https://doi.org/10.1007/BF02374138Martínez S and Acosta A (2005) Cambio temporal en la Estructura de la comunidad coralina del área de Santa Marta - Parque Nacional Natural Tayrona (Caribe Colombiano). Boletin de Investigaciones Marinas y Costeras, 34, 161–192. https://doi.org/10.1213/ane.0b013e31816e5128McCarthy MJ, Newell SE, Carini SA et al. (2015) Denitrification Dominates Sediment Nitrogen Removal and Is Enhanced by Bottom-Water Hypoxia in the Northern Gulf of Mexico. Estuaries and Coasts, 38(6), 2279–2294. https://doi.org/10.1007/s12237-015-9964-0Mermillod-Blondin F, Rosenberg R, Norling K et al. (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology, 36, 271–284. https://doi.org/10.3354/ame036271Meyers PA (1997) Organic geochemical proxies of paleoceanographic,paleoimnologic,and paleoclimatic processes. Organic Geochemistry, 27(5–6), 213–250. https://doi.org/doi:10.1016/S0146-6380(97)00049-1Newell SE, McCarthy MJ, Gardner WS et al. (2016) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Estuaries and Coasts, 39(6), 1626–1638. https://doi.org/10.1007/s12237-016-0116-yNielsen LP (1992) Denitrificaction in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology, 86, 357–362.Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199–219. https://doi.org/10.1080/00785236.1995.10422044Paramo J, Correa M and Núñez S (2011) Evidencias de desacople físico-biológico en el sistema de surgencia en la Guajira, caribe Colombiano. Revista de Biologia Marina y Oceanografia, 46(3), 421–430. https://doi.org/10.4067/S0718-19572011000300011Preisler A, De Beer D, Lichtschlag A et al. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME Journal, 1(4), 341–353. https://doi.org/10.1038/ismej.2007.50Ramírez-Barón JS, Franco-Herrera A, García-Hoyos LM and López-Cerón DA (2010) La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la Zona Costera del Departamento del Magdalena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 39(2), 233–263.Ramírez G (1981) Características Fisico-Químicas de la Bahía de Santa Marta (Agosto 1980-Julio 1981). Boletín de Investigaciones Marinas y Costeras, 13, 111–121.Ramos-Ortega LM, Vidal LA, Vilardy S et al. (2008) Análisis de la contaminación microbiológica (coliformes totales y fecales) en la bahía de Santa Marta, caribe colombiano. Acta Biológica Colombiana, 13(3), 87–98.Robertson EK, Bartoli M, Brüchert V (2019) Application of the isotope pairing technique in sediments: Use, challenges, and new directions. Limnology and Oceanography: Methods, 17(2), 112–136. https://doi.org/10.1002/lom3.10303Rooze J and Meile C (2016) The effect of redox conditions and bioirrigation on nitrogen isotope fractionation in marine sediments. Geochimica et Cosmochimica Acta, 184, 227–239. https://doi.org/10.1016/j.gca.2016.04.040Rosenberg R and Loo LO (1988) Marine eutrophication induced oxygen deficiency: Effects on soft bottom fauna, western Sweden. Ophelia, 29(3), 213–225. https://doi.org/10.1080/00785326.1988.10430830Rueda-Roa DT and Muller-Karger FE (2013) The southern Caribbean upwelling system : Sea surface temperature , wind forcing and chlorophyll concentration patterns. Deep-Sea Research Part I, 78, 102–114. https://doi.org/10.1016/j.dsr.2013.04.008Salzwedel H and Müller K (1983) A summary of Meteorological and hydrological data from the Bay of Santa Marta, Colombian Caribbean. Boletin de Investigaciones Marinas y Costeras, 13, 67–83.Sampaio L, Freitas R, Máguas C et al. (2010) Coastal sediments under the influence of multiple organic enrichment sources: An evaluation using carbon and nitrogen stable isotopes. Marine Pollution Bulletin, 60(2), 272–282. https://doi.org/10.1016/j.marpolbul.2009.09.008Schlunz B, Schneider RR, Muller PJ et al. (1999) Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chemical Geology, 159(1–4), 263–281.Smith J, Burford MA, Revill AT et al. (2012) Effect of nutrient loading on biogeochemical processes in tropical tidal creeks. Biogeochemistry, 108(1–3), 359–380. https://doi.org/10.1007/s10533-011-9605-zSong GD, Liu SM, Marchant H, Kuypers MMM Lavik G (2013) Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences, 10(11), 6851–6864. https://doi.org/10.5194/bg-10-6851-2013Testa JM and Kemp WM (2011) Oxygen – Dynamics and Biogeochemical Consequences. In Treatise on Estuarine and Coastal Science (Vol. 5). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374711-2.00505-2Trimmer M, Risgaard-Petersen N, Nicholls JC et al. (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores Mark. Marine Ecology Progress Series, 326, 37–47. https://doi.org/10.3354/meps326037Tucker J and Giblin A (2010) Quality Assurance Project Plan ( QAPP ) for Benthic Nutrient Flux Studies : 2010. Boston: Massachusetts Water Resources Authority, Report 201, 65 pp.Vega-Sequeda J, Rodríguez-Ramírez A, Reyes-Nivia MC et al. (2008) Formaciones Coralinas Del Área De Santa Marta: Estado Y Patrones De Distribución Espacial De La Comunidad Bentonica. Boletin de Investigaciones Marinas y Costeras, 37(2), 87–105.Warembourg FR (1993) Nitrogen fixation in soil and plant systems. Nitrogen isotope techniques, pp.127-156.Zhou J, Wu Y, Zhang J et al. (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere, 65(2), 310–317. https://doi.org/10.1016/j.chemosphere.2006.02.026Zilius M, Bartoli M, Bresciani M, Katarzyte M et al. (2014) Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and Coasts, 37(3), 680–694. https://doi.org/10.1007/s12237-013-9717-xZilius M, Vybernaite-Lubiene I, Vaiciute D et al. (2018) The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon. Biogeochemistry, 141(2), 143–165. https://doi.org/10.1007/s10533-018-0508-0COLCIENCIASInvestigadoresCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/80283/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53ORIGINAL43874051_2021.pdf43874051_2021.pdfTesis Doctorado en Ciencias del Marapplication/pdf5412294https://repositorio.unal.edu.co/bitstream/unal/80283/5/43874051_2021.pdf38182fe8f74bf503428d686d1779f062MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80283/6/license.txtcccfe52f796b7c63423298c2d3365fc6MD56THUMBNAIL43874051_2021.pdf.jpg43874051_2021.pdf.jpgGenerated Thumbnailimage/jpeg4467https://repositorio.unal.edu.co/bitstream/unal/80283/7/43874051_2021.pdf.jpg6a4a9f900c3ab5229192c4990f23f13dMD57unal/80283oai:repositorio.unal.edu.co:unal/802832024-07-22 00:43:00.741Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==