Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días

ilustraciones a color, diagramas

Autores:
González Castiblanco, Johana Katerine
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85679
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85679
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::615 - Farmacología y terapéutica
Sulfato de Butirosina
Antibacterianos
Biomarcadores farmacológicos
Butirosin Sulfate
Anti-Bacterial agents
Biomarkers, pharmacological
Producción animal
Lechones lactantes - Salud
Etapas del desarrollo animal
Animal husbandry
Baby pigs - Health
Animal developmental stages
Antibióticos promotores de crecimiento
Butirinas
Biomarcadores
Citoquinas
Escherichia coli
Vellosidad
Lechones destetos
Growth promoting antibiotics
Tributyrin
Biomarkers
Cytokines
Escherichia coli
Villus
Weaned pigs
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ab5b3ef2450a2c3b02e53a9789673e3c
oai_identifier_str oai:repositorio.unal.edu.co:unal/85679
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
dc.title.translated.eng.fl_str_mv Effect of replacing antibiotic growth promoters with tributyrin in pre-starter diets on growth performance and some intestinal health parameters of weaned piglets
title Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
spellingShingle Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::615 - Farmacología y terapéutica
Sulfato de Butirosina
Antibacterianos
Biomarcadores farmacológicos
Butirosin Sulfate
Anti-Bacterial agents
Biomarkers, pharmacological
Producción animal
Lechones lactantes - Salud
Etapas del desarrollo animal
Animal husbandry
Baby pigs - Health
Animal developmental stages
Antibióticos promotores de crecimiento
Butirinas
Biomarcadores
Citoquinas
Escherichia coli
Vellosidad
Lechones destetos
Growth promoting antibiotics
Tributyrin
Biomarkers
Cytokines
Escherichia coli
Villus
Weaned pigs
title_short Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
title_full Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
title_fullStr Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
title_full_unstemmed Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
title_sort Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días
dc.creator.fl_str_mv González Castiblanco, Johana Katerine
dc.contributor.advisor.spa.fl_str_mv Casas Bedoya, Gloria Amparo
Galvis Mogollón, José Darío
dc.contributor.author.spa.fl_str_mv González Castiblanco, Johana Katerine
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::615 - Farmacología y terapéutica
topic 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
610 - Medicina y salud::615 - Farmacología y terapéutica
Sulfato de Butirosina
Antibacterianos
Biomarcadores farmacológicos
Butirosin Sulfate
Anti-Bacterial agents
Biomarkers, pharmacological
Producción animal
Lechones lactantes - Salud
Etapas del desarrollo animal
Animal husbandry
Baby pigs - Health
Animal developmental stages
Antibióticos promotores de crecimiento
Butirinas
Biomarcadores
Citoquinas
Escherichia coli
Vellosidad
Lechones destetos
Growth promoting antibiotics
Tributyrin
Biomarkers
Cytokines
Escherichia coli
Villus
Weaned pigs
dc.subject.decs.spa.fl_str_mv Sulfato de Butirosina
Antibacterianos
Biomarcadores farmacológicos
dc.subject.decs.eng.fl_str_mv Butirosin Sulfate
Anti-Bacterial agents
Biomarkers, pharmacological
dc.subject.lemb.spa.fl_str_mv Producción animal
Lechones lactantes - Salud
Etapas del desarrollo animal
dc.subject.lemb.eng.fl_str_mv Animal husbandry
Baby pigs - Health
Animal developmental stages
dc.subject.proposal.spa.fl_str_mv Antibióticos promotores de crecimiento
Butirinas
Biomarcadores
Citoquinas
Escherichia coli
Vellosidad
Lechones destetos
dc.subject.proposal.eng.fl_str_mv Growth promoting antibiotics
Tributyrin
Biomarkers
Cytokines
Escherichia coli
Villus
Weaned pigs
description ilustraciones a color, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-02-09T20:10:44Z
dc.date.available.none.fl_str_mv 2024-02-09T20:10:44Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85679
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85679
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aarestrup, F. (2012). Get pigs off antibiotics. Nature, 486, 465–466. https://doi.org/10.1038/486465a.
Adewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - A review. Asian-Australasian Journal of Animal Sciences, 29(7), 909–924. https://doi.org/10.5713/ajas.15.0795
Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002
Anee, I. J., Alam, S., Begum, R. A., Shahjahan, R. M., & Khandaker, A. M. (2021). The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology, 82(1). https://doi.org/10.1186/s41936-021-00250-x
Aslam, B., Wang, W., Arshad, M. I., Mohsin, K., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
Aubry, P., Thompson, J. L., Pasma, T., Furness, M. C., & Tataryn, J. (2017). Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds. Journal of Swine Health and Production, 25(2), 69–72.
Azad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001
Bischoff, S. C. (2011). “Gut health”: A new objective in medicine? BMC Medicine, 9. https://doi.org/10.1186/1741-7015-9-24
Bonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals, 11(3), 1–24. https://doi.org/10.3390/ani11030642
Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256
Broom, L. J., & Kogut, M. H. (2018). Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Animal Health Research Reviews, 19(1), 46–52. https://doi.org/10.1017/S1466252318000026
Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2–5. https://doi.org/10.1186/2049-1891-4-19
Cardinal, K. M., Pires, P. G. da S., & Ribeiro, A. M. L. R. (2020). Promotor de crescimento na produção de frangos e suínos. Pubvet, 14(3), 1–6. https://doi.org/10.31533/pubvet.v14n3a532.1-11
Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012
Cera, K. R., Mahan, D. C., Cross, R. F., Reinhart, G. A., & Whitmoyer, R. E. (1988). Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science, 66(2), 574–584. https://doi.org/10.2527/jas1988.662574x
Cox, E., Loos, M., Coddens, A., Devriendt, B., Melkebeek, V., Vanrompay, D., & Goddeeris, B. M. (2012). Post-weaning E. coli infections in pigs and importance of the immune system. Association Française de Médecine Vétérinaire Porcine, December, 1–13.
Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal Biotechnology, 13(1), 7–27. https://doi.org/10.1081/ABIO-120005767
de Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065
Desiree, K., Mosimann, S., & Ebner, P. (2021). Efficacy of phage therapy in pigs: Systematic review and meta-analysis. Journal of Animal Science, 99(7), 1–11. https://doi.org/10.1093/jas/skab157
Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11(4), 453–463. https://doi.org/10.1093/japr/11.4.453
Duarte, M. E., & Kim, S. W. (2022). Intestinal microbiota and its interaction to intestinal health in nursery pigs. Animal Nutrition, 8(1), 169–184. https://doi.org/10.1016/j.aninu.2021.05.001
Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6
Eurell, J. A. C. (2004). VETERINARY HISTOLOGY. Teton NewMedia.
Ewing, W. N. (2008). The Living gut (L. A. Tucker, Ed.; 2nd ed.). Nottingham University Press.
Fairbrother, J. M., & Nadeau, É. (2019). Colibacillosis. In J. J. Zimmerman, L. A. Karriker, A. Ramirez, K. J. Schwartz, G. W. Stevenson, & J. Zhang (Eds.), Diseases of Swine (Eleventh). John Wiley and Sons.
Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105
Fan, M. Z., Adeola, O., Asem, E. K., & King, D. (2002). Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 132(3), 599–607. https://doi.org/10.1016/S1095-6433(02)00102-2
Freitag, M. (2009). Organic Acids ansd Salts Promote Performance and Health in Animal Husbandry. In C. Lückstädt (Ed.), Acidifiers in Animal Nutrition (First, pp. 1–85). Nottingham University Press.
García, G. R., Dogi, C. A., Ashworth, G. E., Berardo, D., Godoy, G., Cavaglieri, L. R., de Moreno de LeBlanc, A., & Greco, C. R. (2016). Effect of breast feeding time on physiological, immunological and microbial parameters of weaned piglets in an intensive breeding farm. Veterinary Immunology and Immunopathology, 176, 44–49. https://doi.org/10.1016/j.vetimm.2016.02.009
Gaskins, H. R., Collier, C. T., & Anderson, D. B. (2002). Antibiotics as growth promotants: Mode of action. Animal Biotechnology, 13(1), 29–42. https://doi.org/10.1081/ABIO-120005768
Gilani, S., Howarth, G. S., Kitessa, S. M., Tran, C. D., Forder, R. E. A., & Hughes, R. J. (2017). New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens. Journal of Animal Physiology and Animal Nutrition, 101(5), e237–e245. https://doi.org/10.1111/jpn.12596
Grand View Research. (2022). Animal Feed Additives Market Size, Share & Trends Analysis Report by Product (Antibiotic, Vitamin, Antioxidant), By Livestock (Poultry, Pork, Cattle, Aquaculture), By Region, And Segment Forecasts, 2022 – 2030. https://www.grandviewresearch.com/industry-analysis/animal-feed-additives-market
Grashorn, M. A. (2010). Use of phytobiotics in broiler nutrition - An alternative to infeed antibiotics? Journal of Animal and Feed Sciences, 19(3), 338–347. https://doi.org/10.22358/jafs/66297/2010
Gresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343
Guarino, M. P. L., Altomare, A., Emerenziani, S., Di Rosa, C., Ribolsi, M., Balestrieri, P., Iovino, P., Rocchi, G., & Cicala, M. (2020). Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients, 12(4), 1–24. https://doi.org/10.3390/nu12041037
Hampson, D. J. (1986). Alterations in piglet small intestinal structure at weaning. Research in Veterinary Science, 40(1), 32–40. https://doi.org/10.1016/s0034-5288(18)30482-x
Han, Y., Zhan, T., Tang, C., Zhao, Q., Dansou, D. M., Yu, Y., Barbosa, F. F., & Zhang, J. (2021). Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals, 11(1292), 1–13. https://doi.org/10.3390/ani11051292
Hedemann, B., Højsgaard, S., & Jensen, B. (2003). Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. J. Anim. Physiol. a. Anim. Nutr., 87, 32–41. https://doi.org/10.1046/j.1439-0396.2003.00405.x
Hu, C. H., Xiao, K., Luan, Z. S., & Song, J. (2013). Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 91(3), 1094–1101. https://doi.org/10.2527/jas.2012-5796
Hung, Y. T., Hu, Q., Faris, R. J., Guo, J., Urriola, P. E., Shurson, G. C., Chen, C., & Saqui‐salces, M. (2020). Analysis of gastrointestinal responses revealed both shared and specific targets of zinc oxide and carbadox in weaned pigs. Antibiotics, 9(8), 1–17. https://doi.org/10.3390/antibiotics9080463
Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402
Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402
Kahn, L. H., Bergeron, G., Bourassa, M. W., De Vegt, B., Gill, J., Gomes, F., Malouin, F., Opengart, K., Ritter, G. D., Singer, R. S., Storrs, C., & Topp, E. (2019). From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture. Annals of the New York Academy of Sciences, 1441(1), 31–39. https://doi.org/10.1111/nyas.14034
Kerrola, K. (1995). Literature review: Isolation of essential oils and flavor compounds by dense carbon dioxide. Food Reviews International, 11(4), 547–573. https://doi.org/10.1080/87559129509541061
Kim, B., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J. H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089–2093. https://doi.org/10.4014/jmb.1709.09027
Kim, J., Hansen, C., Mullan, B., & Pluske, J. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1–2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022
Kim, K., He, Y., Jinno, C., Kovanda, L., Li, X., Song, M., & Liu, Y. (2021). Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. Journal of Animal Science, 99(3), 1–13. https://doi.org/10.1093/jas/skab073
Kim, K., Song, M., Liu, Y., & Ji, P. (2022). Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Frontiers in Immunology, 13(885253), 1–15. https://doi.org/10.3389/fimmu.2022.885253
Kim, Y., Kil, D., Oh, H. K., & Han, I. K. (2005). Acidifier as an alternative material to antibiotics in animal feed. Asian-Australasian Journal of Animal Sciences, 18(7), 1048–1060. https://doi.org/10.5713/ajas.2005.1048
Kogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 3(AUG), 10–13. https://doi.org/10.3389/fvets.2016.00071
Lærke, H. N., & Hedemann, M. S. (2012). The digestive system of the pig. In K. E. B. Knudsen, N. J. Kjeldsen, H. D. Poulsen, & B. B. Jensen (Eds.), Nutritional physiology of pigs - Online Publication. ed. Videncenter for Svineproduktion.
Lallès, J. P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Weaning - A challenge to gut physiologists. Livestock Science, 108(1–3), 82–93. https://doi.org/10.1016/j.livsci.2007.01.091
Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22. https://doi.org/10.1177/003335491212700103
Lei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011
Lei, X. J., Liu, Z. Z., Park, J. H., & Kim, I. H. (2022). Novel zinc sources as antimicrobial growth promoters for monogastric animals: a review. Journal of Animal Science and Technology, 64(2), 187–196. https://doi.org/10.5187/jast.2022.e1
Lekagul, A., Tangcharoensathien, V., & Yeung, S. (2019). Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7(April). https://doi.org/10.1016/j.vas.2019.100058
Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. https://doi.org/10.1016/j.aninu.2017.06.007
Li, J. (2017). Current status and prospects for in-feed antibiotics in the different stages of pork production - A review. Asian-Australasian Journal of Animal Sciences, 30(12), 1667–1673. https://doi.org/10.5713/ajas.17.0418
Liu, X., Liu, Q., Cheng, Y., Liu, R., Zhao, R., Wang, J., Wang, Y., Yang, S., & Chen, A. (2022). Effect of Bacterial Resistance of Escherichia coli From Swine in Large-Scale Pig Farms in Beijing. Frontiers in Microbiology, 13(March), 1–12. https://doi.org/10.3389/fmicb.2022.820833
Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V, Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007
Liu, Y., Song, M., Che, T. M., Lee, J. J., Bravo, D., Maddox, C. W., & Pettigrew, J. E. (2014). Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection. Journal of Animal Science, 92(5), 2050–2062. https://doi.org/10.2527/jas.2013-6422
Lourenco, J. M., Hampton, R. S., Johnson, H. M., Callaway, T. R., Jr, M. J. R., & Azain, M. J. (2021). The Effects of Feeding Antibiotic on the Intestinal Microbiota of Weanling Pigs. Frontiers in Veterinary Science, 8(March), 1–12. https://doi.org/10.3389/fvets.2021.601394
Luppi, A. (2017). Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porcine Health Management, 3, 1–18. https://doi.org/10.1186/s40813-017-0063-4
Main, R. G., Dritz, S. S., Tokach, M. D., Goodband, R. D., & Nelssen, J. L. (2005). Effects of weaning age on growing-pig costs and revenue in a multi-site production system. Journal of Swine Health and Production, 13(4), 189–197.
Mair, K. H., Sedlak, C., Käser, T., Pasternak, A., Levast, B., Gerner, W., Saalmüller, A., Summerfield, A., Gerdts, V., Wilson, H., & Meurens, F. (2014). The porcine innate immune system: An update. January. https://doi.org/10.1016/j.dci.2014.03.022
Markowiak, P., & Ślizewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 1–20. https://doi.org/10.1186/s13099-018-0250-0
Maron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(1). https://doi.org/10.1186/1744-8603-9-48
Ma, X. K., Shang, Q. H., Wang, Q. Q., Hu, J. X., & Piao, X. S. (2019). Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Animal Feed Science and Technology, 248(July 2018), 47–58. https://doi.org/10.1016/j.anifeedsci.2018.12.003
Ming, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169
Modina, S. C., Aidos, L., Rossi, R., Pocar, P., Corino, C., & Di Giancamillo, A. (2021). Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals, 11(5), 1–11. https://doi.org/10.3390/ani11051412
Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313–321. https://doi.org/10.1016/j.aninu.2017.06.003
Mohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition–a review. Italian Journal of Animal Science, 17(1), 92–99. https://doi.org/10.1080/1828051X.2017.1350120
Mo, K., Li, J., Liu, F., Xu, Y., Huang, X., & Ni, H. (2022). Superiority of Microencapsulated Essential Oils Compared With Common Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Frontiers in Nutrition, 8(January), 1–14. https://doi.org/10.3389/fnut.2021.808106
Murugesan, G. R., Ledoux, D. R., Naehrer, K., Berthiller, F., Applegate, T. J., Grenier, B., Phillips, T. D., & Schatzmayr, G. (2015). Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science, 94(6), 1298–1315. https://doi.org/10.3382/ps/pev075
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451
Nguyen, D. H., Seok, W. J., & Kim, I. H. (2020). Organic acids mixture as a dietary additive for pigs—a review. Animals, 10(6). https://doi.org/10.3390/ani10060952
O’Connor, A. M., Anderson, K. M., Goodell, C. K., & Sargeant, J. M. (2014). Conducting Systematic Reviews of Intervention Questions I: Writing the Review Protocol, Formulating the Question and Searching the Literature. Zoonoses and Public Health, 61(SUPPL1), 28–38. https://doi.org/10.1111/zph.12125
OIE. (2021). Annual Report on Antimicrobia Agents Intender for Use in Animals. In OIE.
Olsen, K. M., Gabler, N. K., Rademacher, C. J., Schwartz, K. J., Schweer, W. P., Gourley, G. G., & Patience, J. F. (2018). The effects of group size and subtherapeutic antibiotic alternatives on growth performance and morbidity of nursery pigs: a model for feed additive evaluation 1. Translational Animal Science, 2, 298–310. https://doi.org/10.1093/tas/txy068
Organización Mundial de la Salud (OMS). 2019.AntimicrobialResistance. (Consultado en Noviembre 15 de 2019). [En línea]. Disponible en: https://www.who.int/antimicrobial-resistance/en/
Omonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Handel, K., Fairles, J., & Alexandersen, S. (2014). Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transboundary and Emerging Diseases, 61(5), 397–410. https://doi.org/10.1111/tbed.12269
Pearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558–569. https://doi.org/10.1111/jpn.13282
Peng, J., Tang, Y., & Huang, Y. (2021). Gut health: The results of microbial and mucosal immune interactions in pigs. Animal Nutrition, 7(2), 282–294. https://doi.org/10.1016/j.aninu.2021.01.001
Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(NOV), 1–21. https://doi.org/10.3389/fmicb.2018.02928
Pluske, J. (2016). Invited review: Aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(7), 399–411. https://doi.org/10.2527/jas2015-9767
Pluske, J., Le Dividich, J., & Verstegen, M. (2003). Weaning the pig – concepts and consequences. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-513-0
Pluske, J. R., Kim, J. C., & Black, J. L. (2018). Manipulating the immune system for pigs to optimise performance. Animal Production Science, 58(4), 666–680. https://doi.org/10.1071/AN17598
Pluske, J., Turpin, D., & Kim, J. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004
Ruckman, L. A., Petry, A. L., Gould, S. A., & Patience, J. F. (2020). The impact of porcine spray-dried plasma protein and dried egg protein harvested from hyper-immunized hens, provided in the presence or absence of subtherapeutic levels of antibiotics in the feed, on growth and indicators of intestinal function and phys. Translational Animal Science, 1–16. https://doi.org/10.1093/tas/txaa095
Saito, Y., Sato, T., Nomoto, K., & Tsuji, H. (2018). Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiology Ecology, 94(9). https://doi.org/10.1093/femsec/fiy125
San Andres, J. V., Mastromano, G. A., Li, Y., Tran, H., Bundy, J. W., Miller, P. S., & Burkey, T. E. (2019). The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Translational Animal Science, 3(4), 1315–1325. https://doi.org/10.1093/tas/txz129
Scholz-Ahrens, K. E., Schaafsma, G., Van den Heuvel, E. G. H. M., & Schrezenmeir, J. (2001). Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.459s
Silveira, R. F., Roque-Borda, C. A., & Vicente, E. F. (2021). Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Animal Nutrition, 7(3), 896–904. https://doi.org/10.1016/j.aninu.2021.01.004
Spreeuwenberg, M. A. M., Verdonk, J. M. A. J., Gaskins, H. R., & Verstegen, M. W. A. (2001). Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. Journal of Nutrition, 131(5), 1520–1527. https://doi.org/10.1093/jn/131.5.1520
Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466. https://doi.org/10.1097/COH.0b013e32833ed177
Suiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1–11. https://doi.org/10.1186/s40104-015-0042-z
Sun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001
Su, W., Gong, T., Jiang, Z., Lu, Z., & Wang, Y. (2022). The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Frontiers in Cellular and Infection Microbiology, 12(May), 1–12. https://doi.org/10.3389/fcimb.2022.883107
Tariq, H., Sharma, A., Sarkar, S., Ojha, L., Pal, R. P., & Mani, V. (2020). Perspectives for rare earth elements as feed additive in livestock - A review. Asian-Australasian Journal of Animal Sciences, 33(3), 373–381. https://doi.org/10.5713/ajas.19.0242
Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918
Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918
Tugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134
Tugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996
Valenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D., & González-Ríos, H. (2017). Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science and Technology, 59(1), 1–17. https://doi.org/10.1186/s40781-017-0133-9
Van Saun, R. J. (2013). Feeds for Camelids. In Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health: First Edition (Issue 1). Elsevier Inc. https://doi.org/10.1016/B978-1-4377-2352-6.00010-9
Ventola, Lee. (2015). The Antibiotics Resistance Crisis Part 1: Causes and Threats. P&T, 40(4), 277–283.
Verdile, N., Mirmahmoudi, R., Brevini, T. A. L., & Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal, 13(12), 2830–2839. https://doi.org/10.1017/S1751731119001319
Verdonk, J. M. A. J. (2006). Nutritional strategy affects gut wall integrity in weaned piglets. Wageningen Institute for Animal Sciences.
Welcome, M. (2018). Gastrointestinal physiology. Development, Principles and Mechanisms of Regulation. Springer US. https://doi.org/10.1007/978-3-319-91056-7
Wijtten, P., Meulen, J., & Verstegen, M. (2011a). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660
Wijtten, P., Verstijnen, J., Van Kempen, T., Perdok, H., Gort, G., & Verstegen, M. (2011b). Lactulose as a marker of intestinal barrier function in pigs after weaning. Journal of Animal Science, 89(5), 1347–1357. https://doi.org/10.2527/jas.2010-3571
Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-z
Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-z
Xiong, X., Yang, H. S., Wang, X. C., Hu, Q., Liu, C. X., Wu, X., Deng, D., Hou, Y. Q., Nyachoti, C. M., Xiao, D. F., & Yin, Y. L. (2015). Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. Journal of Animal Science, 93(3), 1089–1097. https://doi.org/10.2527/jas.2014-7851
Xu, B. C., Fu, J., Zhu, L. Y., Li, Z., Wang, Y. Z., & Jin, M. L. (2020). Overall assessment of antimicrobial peptides in piglets: a set of meta-analyses. Animal, 14(12), 2463–2471. https://doi.org/10.1017/S1751731120001640
Yan, H., Yu, B., Degroote, J., Spranghers, T., Van Noten, N., Majdeddin, M., Van Poucke, M., Peelman, L., De Vrieze, J., Boon, N., Gielen, I., Smet, S. De, Chen, D., & Michiels, J. (2020). Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research, 16(1), 1–12. https://doi.org/10.1186/s12917-020-02592-0
Yin, J., Li, F., Kong, X., Wen, C., Guo, Q., Zhang, L., Wang, W., Duan, Y., Li, T., Tan, Z., & Yin, Y. (2019). Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food and Function, 10(5), 2701–2709. https://doi.org/10.1039/c8fo02485e
Yoo, B. B., & Mazmanian, S. K. (2017). The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 46(6), 910–926. https://doi.org/10.1016/j.immuni.2017.05.011
Żbikowska, K., Michalczuk, M., & Dolka, B. (2020). The use of bacteriophages in the poultry industry. Animals, 10(5). https://doi.org/10.3390/ani10050872
Zhang, Z. F., & Kim, I. H. (2014). Effects of levan supplementation on growth performance, nutrient digestibility and fecal dry matter content in comparison to apramycin (antibacterial growth promoter) in weanling pigs. Livestock Science, 159, 71–74. https://doi.org/10.1016/j.livsci.2013.10.027
Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Frontiers in Veterinary Science, 8(February), 1–18. https://doi.org/10.3389/fvets.2021.628258
Al-Sadi, M., & Ma, T. Y. (2007). IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. J Immunol., 178(7), 4641–4649.
American Association Swine Veterinarian. (2016). On-Farm Euthanasia. In Pork Checkoff.
Andrews, C., McLean, M. H., & Durum, S. K. (2018). Cytokine tuning of intestinal epithelial function. Frontiers in Immunology, 9(JUN). https://doi.org/10.3389/fimmu.2018.01270
AOAC. (2006). Official Methods of Analysis of AOAC INTERNATIONAL. Aoac, February.
Barba-Vidal, E., Roll, V. F. B., Castillejos, L., Guerra-Ordaz, A. A., Manteca, X., Mallo, J. J., & Martín-Orúe, S. M. (2017). Response to a Salmonella Typhimurium challenge in piglets supplemented with protected sodium butyrate or Bacillus licheniformis: Effects on performance, intestinal health and behavior. Translational Animal Science, 1(2), 186–200. https://doi.org/10.2527/tas2017.0021
Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010
Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256
Cao, S. T., Wang, C. C., Wu, H., Zhang, Q. H., Jiao, L. F., & Hu, C. H. (2018). Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. Journal of Animal Science, 96(3), 1073–1083. https://doi.org/10.1093/jas/skx062
Casas, G. A., Blavi, L., Cross, T. W. L., Lee, A. H., Swanson, K. S., & Stein, H. H. (2020). Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance. Journal of Animal Science, 98(1), 1–12. https://doi.org/10.1093/jas/skz372
Cuff, M. A., Lambert, D. W., & Shirazi-Beechey, S. P. (2002). Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. Journal of Physiology, 539(2), 361–371. https://doi.org/10.1113/jphysiol.2001.014241
de Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065
Dell’anno, M., Reggi, S., Caprarulo, V., Hejna, M., Rossi, C. A. S., Callegari, M. L., Baldi, A., & Rossi, L. (2021). Evaluation of tannin extracts, leonardite and tributyrin supplementation on diarrhoea incidence and gut microbiota of weaned piglets. Animals, 11(6). https://doi.org/10.3390/ani11061693
Donovan, J. D., Bauer, L., Fahey, G. C., & Lee, Y. (2017). In Vitro Digestion and Fermentation of Microencapsulated Tributyrin for the Delivery of Butyrate. Journal of Food Science, 82(6), 1491–1499. https://doi.org/10.1111/1750-3841.13725
Droessler, L., Cornelius, V., Markov, A. G., & Amasheh, S. (2021). Tumor necrosis factor alpha effects on the porcine intestinal epithelial barrier include enhanced expression of TNF receptor 1. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168746
Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6
Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105
Fang, C. L., Sun, H., Wu, J., Niu, H. H., & Feng, J. (2014). Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. Journal of Animal Physiology and Animal Nutrition, 98(4), 680–685. https://doi.org/10.1111/jpn.12122
Feng, W., Wu, Y., Chen, G., Fu, S., Li, B., Huang, B., Wang, D., Wang, W., & Liu, J. (2018). Sodium Butyrate Attenuates Diarrhea in Weaned Piglets and Promotes Tight Junction Protein Expression in Colon in a GPR109A-Dependent Manner. Cellular Physiology and Biochemistry, 47(4), 1617–1629. https://doi.org/10.1159/000490981
Ghosh, S., Whitley, C. S., Haribabu, B., & Jala, V. R. (2021). Regulation of Intestinal Barrier Function by Microbial Metabolites. Celullar and Molecular Gastroenterology and Hepatology, 11(5), 1463–1482. https://doi.org/10.1016/j.jcmgh.2021.02.007
Gitter, A. H., Bendfeldt, K., Schulzke, J.-D., & Fromm, M. (2000). Leaks in the epithelial barrier caused by spontaneous and TNF‐α‐induced single‐cell apoptosis. The FASEB Journal, 14(12), 1749–1753. https://doi.org/10.1096/fj.99-0898com
Gresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343
Grilli, E., Tugnoli, B., Foerster, C. J., & Piva, A. (2016). Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs. Journal of Animal Science, 94(7), 433–436. https://doi.org/10.2527/jas2015-9787
Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Van Immerseel, F. (2010). From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition Research Reviews, 23(2), 366–384. https://doi.org/10.1017/S0954422410000247
Gu, Y., Song, Y., Yin, H., Lin, S., Zhang, X., Che, L., Lin, Y., Xu, S., Feng, B., Wu, D., & Fang, Z. (2017). Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation. Journal of Animal Science, 95(1), 226. https://doi.org/10.2527/jas2016.0911
Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R. J. (2008). Review article: The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics, 27(2), 104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
Han, Y., Zhao, Q., Tang, C., Li, Y., Zhang, K., Li, F., & Zhang, J. (2020). Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut–Liver Axis. Frontiers in Microbiology, 11(December). https://doi.org/10.3389/fmicb.2020.588666
Heo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Nyachoti, C. M. (2013). Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207–237. https://doi.org/10.1111/j.1439-0396.2012.01284.x
Huang, C., Song, P., Fan, P., Hou, C., Thacker, P., & Ma, X. (2015). Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. Journal of Nutrition, 145(12), 2774–2780. https://doi.org/10.3945/jn.115.217406
Instituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2005). Microbiología de alimentos para animales, Prepearación de muestars para ensayo, suspensión inicial y diluciones decimales para análisis microbiológico. Parte 1. Reglas generales para la preparación de la suspensión inicial y de diluciones decimales-NTC-4491-1.
Instituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2018). Microbiología de alimentos para animales. Método horizontal para el recuento de coliformes o Escherichia coli o ambos. Técnicas de recuento de colonias utilizando medios fluorogénicos o cromogénicos.
Iji, P. A., Saki, A., & Tivey, D. R. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42(4), 505–513. https://doi.org/10.1080/00071660120073151
Itza-Ortiz, M., Quezada-Casasola, A., Castillo-Castillo, Y., Rodríguez-Galindo, E., Carrera-Chávez, J. M., Martín-Orozco, U., Jaramillo-López, E., & Calzada-Nieves, A. (2018). Comparison of three sampling procedures for evaluating intestinal villi: A swine model. Revista Colombiana de Ciencias Pecuarias, 31(1), 3–9. https://doi.org/10.17533/udea.rccp.v31n1a01
Kim, B.G., & Lindemann, M.D. (2007). A spreadsheet method for experimental animal allotment.
Kruse, R., Essén-Gustavsson, B., Fossum, C., & Jensen-Waern, M. (2008). Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery. Acta Veterinaria Scandinavica, 50(1). https://doi.org/10.1186/1751-0147-50-32
Kuhn, K. A., Manieri, N. A., Liu, T. C., & Stappenbeck, T. S. (2014). IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS ONE, 9(12), 1–18. https://doi.org/10.1371/journal.pone.0114195
Kuhn, K. A., Schulz, H. M., Regner, E. H., Severs, E. L., Hendrickson, J. D., Gaurav, M., Whitney, A. K., Neha Ohri, D. I., Robertson, C. E., Frank, D. N., Campbell, E. L., & Colgan, S. P. (2018). Bacteroidales recruit IL-6 producing intraepithelial lymphocytes in the colon to promote barrier
Lallès, J. P., & Montoya, C. A. (2021). Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? In Animal Feed Science and Technology (Vol. 274). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2021.114836
Le Gall, M., Gallois, M., Sève, B., Louveau, I., Holst, J. J., Oswald, I. P., Lallès, J. P., & Guilloteau, P. (2009). Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 102(9), 1285–1296. https://doi.org/10.1017/S0007114509990213
Lei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011
Leppkes, M., Roulis, M., Neurath, M. F., Kollias, G., & Becker, C. (2014). Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. International Immunology, 26(9), 509–515. https://doi.org/10.1093/intimm/dxu051
Limbach, J. R. (2020). Reducing Crude Protein Levels in Diets Fed To Young Pigs To Optimize. 133. https://nutrition.ansci.illinois.edu/sites/nutrition.ansci.illinois.edu/files/LIMBACH-THESIS-2020.pdf
Lin, F., Li, X., Wen, J., Wang, C., Peng, Y., Feng, J., & Hu, C. (2020). Effects of coated sodium butyrate on performance, diarrhea, intestinal microflora and barrier function of pigs during the first 2-week post-weaning. Animal Feed Science and Technology, 263(866), 114464. https://doi.org/10.1016/j.anifeedsci.2020.114464
Liu, D., Zong, E. Y., Huang, P. F., Yang, H. S., Yan, S. L., Li, J. Z., Li, Y. L., Ding, X. Q., He, S. P., Xiong, X., & Yin, Y. L. (2019). The effects of dietary sulfur amino acids on serum biochemical variables, mucosal amino acid profiles, and intestinal inflammation in weaning piglets. Livestock Science, 220, 32–36. https://doi.org/https://doi.org/10.1016/j.livsci.2018.12.013
Liu, P., Piao, X. S., Thacker, P. A., Zeng, Z. K., Li, P. F., Wang, D., & Kim, S. W. (2010). Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. Journal of Animal Science, 88(12), 3871–3879. https://doi.org/10.2527/jas.2009-2771
Liu, W., Yuan, C., Meng, X., Du, Y., Gao, R., Tang, J., & Shi, D. (2014). Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Veterinary Journal, 199(2), 286–289. https://doi.org/10.1016/j.tvjl.2013.11.019
Lu, J. J., Zou, X. T., & Wang, Y. M. (2008). Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. Journal of Animal and Feed Sciences, 17(4), 568–578. https://doi.org/10.22358/jafs/66685/2008
Maneewan, C., Yamauchi, K. en, Mekbungwan, A., Nakano, T., Fukuta, K., Kashimura, J., Mizu, M., Kawai, T., & Nakagawa, J. (2012). Histological alterations of intestinal villi and epithelial cells after feeding dietary sugar cane extract in piglets. Italian Journal of Animal Science, 11(3), 236–241. https://doi.org/10.4081/ijas.2012.e43
Ma, X., Fan, P. X., Li, L. S., Qiao, S. Y., Zhang, G. L., & Li, D. F. (2012). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. Journal of Animal Science, 90(SUPPL4), 266–268. https://doi.org/10.2527/jas.50965
McCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Applied and Environmental Microbiology, 83(15). https://doi.org/10.1128/AEM.00380-17
Melaku, M., Zhong, R., Han, H., Wan, F., Yi, B., & Zhang, H. (2021). Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910392
Ming, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169
Montagne, L., Boundry, G., Favier, C., Le Huerou-Luron, I., Lallès, J. P., & Sève, B. (2007). Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. British Journal of Nutrition, 97(1), 45–57. https://doi.org/10.1017/S000711450720580X
Murray, R. L., Zhang, W., Iwaniuk, M., Grilli, E., & Stahl, C. H. (2018). Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells. Physiological Reports, 6(10), 1–11. https://doi.org/10.14814/phy2.13706
Nabuurs, M. J. A., Hoogendoorn, A., Van Der Molen, E. J., & Van Osta, A. L. M. (1993). Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Research in Veterinary Science, 55(1), 78–84. https://doi.org/10.1016/0034-5288(93)90038-H
Namkung, H., Yu, H., Gong, J., & Leeson, S. (2011). Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens. Poultry Science, 90(10), 2217–2222. https://doi.org/10.3382/ps.2011-01498
O’Shea, C. J., McAlpine, P., Sweeney, T., Varley, P. F., & O’Doherty, J. V. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. British Journal of Nutrition, 111(5), 798–807. https://doi.org/10.1017/S0007114513003280
Öztürk, E., & Temiz, U. (2018). Encapsulation Methods and Use in Animal Nutrition. Selcuk Journal of Agricultural and Food Sciences, 32(3), 624–631. https://doi.org/10.15316/sjafs.2018.145
Peng, L., Zhong-Rong, L., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619–1625. https://doi.org/10.3945/jn.109.104638
PIC. (2022). PIC® Nutrition and Feeding Guidelines. MetricVersion 2022.10.20. In https:/ /www.pic.com/ resources/nutrition
Pié, S., Lallès, J. P., Blazy, F., Laffitte, J., Sève, B., & Oswald, I. P. (2004). Weaning Is Associated with an Upregulation of Expression of Inflamatory Cytokines in the Intestine of Piglets. Journal of Nutrition, 134(3), 641–647. https://doi.org/10.1093/jn/134.3.641
Piva, A., Prandini, A., Fiorentini, L., Morlacchini, M., Galvano, F., & Luchansky, J. B. (2002). Tributyrin and lactitol synergistically enhanced the trophic status of the intestinal mucosa and reduced histamine levels in the gut of nursery pigs. Journal of Animal Science, 80(3), 670–680. https://doi.org/10.2527/2002.803670x
Pluske, J. R., Williams, I. H., & Aherne, F. X. (1996). Villous height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. Animal Science, 62(1), 145–158. https://doi.org/10.1017/S1357729800014429
Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1–19. https://doi.org/10.1186/s13028-017-0299-7
Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, 5(6), 2010–2013. https://doi.org/10.1101/pdb.prot5439
Salvi, P. S., & Cowles, R. A. (2021). Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells, 10(7). https://doi.org/10.3390/cells10071775
Segain, J. P., Galmiche, J. P., Raingeard De La Blétière, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., & Blottière, H. M. (2000). Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut, 47(3), 397–403. https://doi.org/10.1136/gut.47.3.397
Shifflett, D. E., Bottone, F. G., Young, K. M., Moeser, A. J., Jones, S. L., & Blikslager, A. T. (2004). Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-1-and COX-2-dependent mechanism. Am J Physiol Gastroi-Ntest Liver Physiol, 287, 50–57. https://doi.org/10.1152/ajpgi.00076.2003.-Polymorphonuclear
Sotira, S., Dell’Anno, M., Caprarulo, V., Hejna, M., Pirrone, F., Callegari, M. L., Tucci, T. V., & Rossi, L. (2020). Effects of tributyrin supplementation on growth performance, insulin, blood metabolites and gut microbiota in weaned piglets. Animals, 10(4). https://doi.org/10.3390/ani10040726
Sun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001
Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), 1–12. https://doi.org/10.1111/asj.13357
Thermo Fisher Scientific. (2016). TRIzol Reagent User Guide - Pub. no. MAN0001271 - Rev. A.0. User Guide, 15596018(15596026), 1–6.
Tugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134
Tugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996
Wang, C., Cao, S., Shen, Z., Hong, Q., Feng, J., Peng, Y., & Hu, C. (2019a). Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0394-x
Wang, C., Shen, Z., Cao, S., Zhang, Q., Peng, Y., Hong, Q., Feng, J., & Hu, C. (2019b). Effects of tributyrin on growth performance, intestinal microflora and barrier function of weaned pigs. Animal Feed Science and Technology, 258(866), 114311. https://doi.org/10.1016/j.anifeedsci.2019.114311
Wick, M. R. (2008). Diagnostic Histochemistry Pathology. Cambridge University Press.
Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6(FEB), 1–14. https://doi.org/10.3389/fvets.2019.00046
Yang, Q., Huang, X., Wang, P., Yan, Z., Sun, W., Zhao, S., & Gun, S. (2019). Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. MicrobiologyOpen, 8(12), 1–17. https://doi.org/10.1002/mbo3.923
Zhai, H., Ren, W., Wang, S., Wu, J., Guggenbuhl, P., & Kluenter, A. M. (2017). Growth performance of nursery and grower-finisher pigs fed diets supplemented with benzoic acid. Animal Nutrition, 3(3), 232–235. https://doi.org/10.1016/j.aninu.2017.05.001
Zhang, W., Zhao, M., Ruesch, L., Omot, A., & Francis, D. (2007). Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Veterinary Microbiology, 123(1–3), 145–152. https://doi.org/10.1016/j.vetmic.2007.02.018
Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., Wang, R. X., Onyiah, J. C., Kominsky, D. J., & Colgan, S. P. (2017). Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology, 199(8), 2976–2984. https://doi.org/10.4049/jimmunol.1700105
Zhong, X., Zhang, Z., Wang, S., Cao, L., Zhou, L., Sun, A., Zhong, Z., & Nabben, M. (2019). Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Frontiers in Microbiology, 10(JAN), 1–18. https://doi.org/10.3389/fmicb.2018.03335
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 106 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina Veterinaria y de Zootecnia
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85679/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85679/2/1020783128.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85679/3/1020783128.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f5b147118b9b0b6a0dff9bf20a8b7705
8e5b513624c9c917a60200bfb7a2329c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886269951672320
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Casas Bedoya, Gloria Amparo5c6fb123ce812075a2f0188b0d32173aGalvis Mogollón, José Darío307d8d1ce83ef8e9016c40d366dfd301González Castiblanco, Johana Katerineeec05e6cb9f62ff532f016e27163de6b2024-02-09T20:10:44Z2024-02-09T20:10:44Z2023https://repositorio.unal.edu.co/handle/unal/85679Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramasLos antibióticos promotores de crecimiento (APC) han sido usados por años para mejorar los parámetros productivos y la salud intestinal en los animales, sin embargo, su uso desmedido ha contribuido al aumento de la resistencia antimicrobiana tanto en animales como en humanos, siendo un problema relevante de salud pública. En consecuencia, se ha impulsado tendencia de buscar nuevas alternativas como las tributirinas o butirinas esterificadas que alcanzan a tener un mayor efecto en la parte distal del intestino, mejorando los parámetros productivos y la salud intestinal de lechones destetos. El objetivo del proyecto fue evaluar el efecto de la inclusión de una butirina esterificada como alternativa a los antibióticos promotores de crecimiento en lechones destetos, en algunos parámetros productivos y de salud intestinal. En este estudio se seleccionaron 96 lechones de 21 días de edad y fueron asignados a tres tratamientos: un control negativo (CN) sin APC, ácidos orgánicos u óxido de zinc, un control positivo (CP), en el que se incluyó un antibiótico promotor de crecimiento (avilamicina 0,3kg/Ton) y el tratamiento de evaluación que consistió en adicionar una butirina esterificada (2kg/Ton) (CN+B), al control negativo. Los lechones fueron alimentados por 14 días. No se observaron diferencias estadísticamente significativas entre los tratamientos en los parámetros productivos. Sin embargo, el score de consistencia de las heces en los lechones tratados con butirinas esterificadas fue menor que en CP o el CN (p<0.05). El uso de butirinas esterificadas incrementó (p<0.05) la altura de la vellosidad en yeyuno e íleon, así como la relación altura de la vellosidad: profundidad de la cripta en íleon. Así mismo, la expresión de TNF-α en yeyuno fue mayor, mientras que la expresión de IL-6 disminuyó en íleon (p<0.05) en lechones alimentados con dietas suplementadas con butirinas. Se concluyó que las butirinas esterificadas pueden mejorar la función intestinal por su efecto en la morfología intestinal y la consistencia fecal. (Texto tomado de la fuente)Antibiotic growth promoters have been used for years to improve growth performance and gut health, however, their excessive use has contributed to the increase in antimicrobial resistance in animals and humans, being a problem relevant to health. Consequently, there has been a tendency to look for new alternatives such as tributyrin or esterified butyrin that have a greater effect on the distal part of the intestine, improving the growth performance and gut health of weaned piglets. The objective of the project was to evaluate the effect of the inclusion of esterified butyrate as an alternative to antibiotic growth promoters in weaned piglets on some growth performance and gut health parameters. In this study, 96 piglets of 21 days of age were selected and allowed three treatments: a negative control (NC) without APC, organic acid, or zinc oxide, a positive control (PC), in which an antibiotic growth promoter was included (avilamycin 0.3kg/Ton), and the evaluation treatment which consisted of adding an esterified butyrate (2kg/Ton) (NC+B), to the negative control. The piglets were fed for 14 days. No statistically significant differences were observed between treatments in growth performance. However, the fecal consistency score in piglets treated with esterified butyrates was lower than in PC or NC (p<0.05). The use of esterified butyrines increased (p<0.05) the height of the villus in the jejunum and ileum, as well as the ratio of villus height: to crypt depth of the ileum. Likewise, the expression of TNF-α in the jejunum was higher, while the expression of IL-6 decreased in the ileum. Overall, esterified butyrates can improve intestinal function due to their effect on intestinal morphology and fecal consistency.MaestríaMagíster en Salud Animal o Magíster en Producción AnimalNutrición Animal106 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción AnimalFacultad de Medicina Veterinaria y de ZootecniaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::636 - Producción animal610 - Medicina y salud::615 - Farmacología y terapéuticaSulfato de ButirosinaAntibacterianosBiomarcadores farmacológicosButirosin SulfateAnti-Bacterial agentsBiomarkers, pharmacologicalProducción animalLechones lactantes - SaludEtapas del desarrollo animalAnimal husbandryBaby pigs - HealthAnimal developmental stagesAntibióticos promotores de crecimientoButirinasBiomarcadoresCitoquinasEscherichia coliVellosidadLechones destetosGrowth promoting antibioticsTributyrinBiomarkersCytokinesEscherichia coliVillusWeaned pigsEfecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 díasEffect of replacing antibiotic growth promoters with tributyrin in pre-starter diets on growth performance and some intestinal health parameters of weaned pigletsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAarestrup, F. (2012). Get pigs off antibiotics. Nature, 486, 465–466. https://doi.org/10.1038/486465a.Adewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - A review. Asian-Australasian Journal of Animal Sciences, 29(7), 909–924. https://doi.org/10.5713/ajas.15.0795Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002Anee, I. J., Alam, S., Begum, R. A., Shahjahan, R. M., & Khandaker, A. M. (2021). The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology, 82(1). https://doi.org/10.1186/s41936-021-00250-xAslam, B., Wang, W., Arshad, M. I., Mohsin, K., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867Aubry, P., Thompson, J. L., Pasma, T., Furness, M. C., & Tataryn, J. (2017). Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds. Journal of Swine Health and Production, 25(2), 69–72.Azad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001Bischoff, S. C. (2011). “Gut health”: A new objective in medicine? BMC Medicine, 9. https://doi.org/10.1186/1741-7015-9-24Bonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals, 11(3), 1–24. https://doi.org/10.3390/ani11030642Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256Broom, L. J., & Kogut, M. H. (2018). Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Animal Health Research Reviews, 19(1), 46–52. https://doi.org/10.1017/S1466252318000026Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2–5. https://doi.org/10.1186/2049-1891-4-19Cardinal, K. M., Pires, P. G. da S., & Ribeiro, A. M. L. R. (2020). Promotor de crescimento na produção de frangos e suínos. Pubvet, 14(3), 1–6. https://doi.org/10.31533/pubvet.v14n3a532.1-11Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012Cera, K. R., Mahan, D. C., Cross, R. F., Reinhart, G. A., & Whitmoyer, R. E. (1988). Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science, 66(2), 574–584. https://doi.org/10.2527/jas1988.662574xCox, E., Loos, M., Coddens, A., Devriendt, B., Melkebeek, V., Vanrompay, D., & Goddeeris, B. M. (2012). Post-weaning E. coli infections in pigs and importance of the immune system. Association Française de Médecine Vétérinaire Porcine, December, 1–13.Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal Biotechnology, 13(1), 7–27. https://doi.org/10.1081/ABIO-120005767de Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065Desiree, K., Mosimann, S., & Ebner, P. (2021). Efficacy of phage therapy in pigs: Systematic review and meta-analysis. Journal of Animal Science, 99(7), 1–11. https://doi.org/10.1093/jas/skab157Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11(4), 453–463. https://doi.org/10.1093/japr/11.4.453Duarte, M. E., & Kim, S. W. (2022). Intestinal microbiota and its interaction to intestinal health in nursery pigs. Animal Nutrition, 8(1), 169–184. https://doi.org/10.1016/j.aninu.2021.05.001Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6Eurell, J. A. C. (2004). VETERINARY HISTOLOGY. Teton NewMedia.Ewing, W. N. (2008). The Living gut (L. A. Tucker, Ed.; 2nd ed.). Nottingham University Press.Fairbrother, J. M., & Nadeau, É. (2019). Colibacillosis. In J. J. Zimmerman, L. A. Karriker, A. Ramirez, K. J. Schwartz, G. W. Stevenson, & J. Zhang (Eds.), Diseases of Swine (Eleventh). John Wiley and Sons.Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105Fan, M. Z., Adeola, O., Asem, E. K., & King, D. (2002). Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 132(3), 599–607. https://doi.org/10.1016/S1095-6433(02)00102-2Freitag, M. (2009). Organic Acids ansd Salts Promote Performance and Health in Animal Husbandry. In C. Lückstädt (Ed.), Acidifiers in Animal Nutrition (First, pp. 1–85). Nottingham University Press.García, G. R., Dogi, C. A., Ashworth, G. E., Berardo, D., Godoy, G., Cavaglieri, L. R., de Moreno de LeBlanc, A., & Greco, C. R. (2016). Effect of breast feeding time on physiological, immunological and microbial parameters of weaned piglets in an intensive breeding farm. Veterinary Immunology and Immunopathology, 176, 44–49. https://doi.org/10.1016/j.vetimm.2016.02.009Gaskins, H. R., Collier, C. T., & Anderson, D. B. (2002). Antibiotics as growth promotants: Mode of action. Animal Biotechnology, 13(1), 29–42. https://doi.org/10.1081/ABIO-120005768Gilani, S., Howarth, G. S., Kitessa, S. M., Tran, C. D., Forder, R. E. A., & Hughes, R. J. (2017). New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens. Journal of Animal Physiology and Animal Nutrition, 101(5), e237–e245. https://doi.org/10.1111/jpn.12596Grand View Research. (2022). Animal Feed Additives Market Size, Share & Trends Analysis Report by Product (Antibiotic, Vitamin, Antioxidant), By Livestock (Poultry, Pork, Cattle, Aquaculture), By Region, And Segment Forecasts, 2022 – 2030. https://www.grandviewresearch.com/industry-analysis/animal-feed-additives-marketGrashorn, M. A. (2010). Use of phytobiotics in broiler nutrition - An alternative to infeed antibiotics? Journal of Animal and Feed Sciences, 19(3), 338–347. https://doi.org/10.22358/jafs/66297/2010Gresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343Guarino, M. P. L., Altomare, A., Emerenziani, S., Di Rosa, C., Ribolsi, M., Balestrieri, P., Iovino, P., Rocchi, G., & Cicala, M. (2020). Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients, 12(4), 1–24. https://doi.org/10.3390/nu12041037Hampson, D. J. (1986). Alterations in piglet small intestinal structure at weaning. Research in Veterinary Science, 40(1), 32–40. https://doi.org/10.1016/s0034-5288(18)30482-xHan, Y., Zhan, T., Tang, C., Zhao, Q., Dansou, D. M., Yu, Y., Barbosa, F. F., & Zhang, J. (2021). Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals, 11(1292), 1–13. https://doi.org/10.3390/ani11051292Hedemann, B., Højsgaard, S., & Jensen, B. (2003). Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. J. Anim. Physiol. a. Anim. Nutr., 87, 32–41. https://doi.org/10.1046/j.1439-0396.2003.00405.xHu, C. H., Xiao, K., Luan, Z. S., & Song, J. (2013). Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 91(3), 1094–1101. https://doi.org/10.2527/jas.2012-5796Hung, Y. T., Hu, Q., Faris, R. J., Guo, J., Urriola, P. E., Shurson, G. C., Chen, C., & Saqui‐salces, M. (2020). Analysis of gastrointestinal responses revealed both shared and specific targets of zinc oxide and carbadox in weaned pigs. Antibiotics, 9(8), 1–17. https://doi.org/10.3390/antibiotics9080463Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402Kahn, L. H., Bergeron, G., Bourassa, M. W., De Vegt, B., Gill, J., Gomes, F., Malouin, F., Opengart, K., Ritter, G. D., Singer, R. S., Storrs, C., & Topp, E. (2019). From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture. Annals of the New York Academy of Sciences, 1441(1), 31–39. https://doi.org/10.1111/nyas.14034Kerrola, K. (1995). Literature review: Isolation of essential oils and flavor compounds by dense carbon dioxide. Food Reviews International, 11(4), 547–573. https://doi.org/10.1080/87559129509541061Kim, B., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J. H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089–2093. https://doi.org/10.4014/jmb.1709.09027Kim, J., Hansen, C., Mullan, B., & Pluske, J. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1–2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022Kim, K., He, Y., Jinno, C., Kovanda, L., Li, X., Song, M., & Liu, Y. (2021). Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. Journal of Animal Science, 99(3), 1–13. https://doi.org/10.1093/jas/skab073Kim, K., Song, M., Liu, Y., & Ji, P. (2022). Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Frontiers in Immunology, 13(885253), 1–15. https://doi.org/10.3389/fimmu.2022.885253Kim, Y., Kil, D., Oh, H. K., & Han, I. K. (2005). Acidifier as an alternative material to antibiotics in animal feed. Asian-Australasian Journal of Animal Sciences, 18(7), 1048–1060. https://doi.org/10.5713/ajas.2005.1048Kogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 3(AUG), 10–13. https://doi.org/10.3389/fvets.2016.00071Lærke, H. N., & Hedemann, M. S. (2012). The digestive system of the pig. In K. E. B. Knudsen, N. J. Kjeldsen, H. D. Poulsen, & B. B. Jensen (Eds.), Nutritional physiology of pigs - Online Publication. ed. Videncenter for Svineproduktion.Lallès, J. P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Weaning - A challenge to gut physiologists. Livestock Science, 108(1–3), 82–93. https://doi.org/10.1016/j.livsci.2007.01.091Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22. https://doi.org/10.1177/003335491212700103Lei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011Lei, X. J., Liu, Z. Z., Park, J. H., & Kim, I. H. (2022). Novel zinc sources as antimicrobial growth promoters for monogastric animals: a review. Journal of Animal Science and Technology, 64(2), 187–196. https://doi.org/10.5187/jast.2022.e1Lekagul, A., Tangcharoensathien, V., & Yeung, S. (2019). Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7(April). https://doi.org/10.1016/j.vas.2019.100058Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. https://doi.org/10.1016/j.aninu.2017.06.007Li, J. (2017). Current status and prospects for in-feed antibiotics in the different stages of pork production - A review. Asian-Australasian Journal of Animal Sciences, 30(12), 1667–1673. https://doi.org/10.5713/ajas.17.0418Liu, X., Liu, Q., Cheng, Y., Liu, R., Zhao, R., Wang, J., Wang, Y., Yang, S., & Chen, A. (2022). Effect of Bacterial Resistance of Escherichia coli From Swine in Large-Scale Pig Farms in Beijing. Frontiers in Microbiology, 13(March), 1–12. https://doi.org/10.3389/fmicb.2022.820833Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V, Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007Liu, Y., Song, M., Che, T. M., Lee, J. J., Bravo, D., Maddox, C. W., & Pettigrew, J. E. (2014). Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection. Journal of Animal Science, 92(5), 2050–2062. https://doi.org/10.2527/jas.2013-6422Lourenco, J. M., Hampton, R. S., Johnson, H. M., Callaway, T. R., Jr, M. J. R., & Azain, M. J. (2021). The Effects of Feeding Antibiotic on the Intestinal Microbiota of Weanling Pigs. Frontiers in Veterinary Science, 8(March), 1–12. https://doi.org/10.3389/fvets.2021.601394Luppi, A. (2017). Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porcine Health Management, 3, 1–18. https://doi.org/10.1186/s40813-017-0063-4Main, R. G., Dritz, S. S., Tokach, M. D., Goodband, R. D., & Nelssen, J. L. (2005). Effects of weaning age on growing-pig costs and revenue in a multi-site production system. Journal of Swine Health and Production, 13(4), 189–197.Mair, K. H., Sedlak, C., Käser, T., Pasternak, A., Levast, B., Gerner, W., Saalmüller, A., Summerfield, A., Gerdts, V., Wilson, H., & Meurens, F. (2014). The porcine innate immune system: An update. January. https://doi.org/10.1016/j.dci.2014.03.022Markowiak, P., & Ślizewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 1–20. https://doi.org/10.1186/s13099-018-0250-0Maron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(1). https://doi.org/10.1186/1744-8603-9-48Ma, X. K., Shang, Q. H., Wang, Q. Q., Hu, J. X., & Piao, X. S. (2019). Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Animal Feed Science and Technology, 248(July 2018), 47–58. https://doi.org/10.1016/j.anifeedsci.2018.12.003Ming, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169Modina, S. C., Aidos, L., Rossi, R., Pocar, P., Corino, C., & Di Giancamillo, A. (2021). Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals, 11(5), 1–11. https://doi.org/10.3390/ani11051412Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313–321. https://doi.org/10.1016/j.aninu.2017.06.003Mohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition–a review. Italian Journal of Animal Science, 17(1), 92–99. https://doi.org/10.1080/1828051X.2017.1350120Mo, K., Li, J., Liu, F., Xu, Y., Huang, X., & Ni, H. (2022). Superiority of Microencapsulated Essential Oils Compared With Common Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Frontiers in Nutrition, 8(January), 1–14. https://doi.org/10.3389/fnut.2021.808106Murugesan, G. R., Ledoux, D. R., Naehrer, K., Berthiller, F., Applegate, T. J., Grenier, B., Phillips, T. D., & Schatzmayr, G. (2015). Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science, 94(6), 1298–1315. https://doi.org/10.3382/ps/pev075Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451Nguyen, D. H., Seok, W. J., & Kim, I. H. (2020). Organic acids mixture as a dietary additive for pigs—a review. Animals, 10(6). https://doi.org/10.3390/ani10060952O’Connor, A. M., Anderson, K. M., Goodell, C. K., & Sargeant, J. M. (2014). Conducting Systematic Reviews of Intervention Questions I: Writing the Review Protocol, Formulating the Question and Searching the Literature. Zoonoses and Public Health, 61(SUPPL1), 28–38. https://doi.org/10.1111/zph.12125OIE. (2021). Annual Report on Antimicrobia Agents Intender for Use in Animals. In OIE.Olsen, K. M., Gabler, N. K., Rademacher, C. J., Schwartz, K. J., Schweer, W. P., Gourley, G. G., & Patience, J. F. (2018). The effects of group size and subtherapeutic antibiotic alternatives on growth performance and morbidity of nursery pigs: a model for feed additive evaluation 1. Translational Animal Science, 2, 298–310. https://doi.org/10.1093/tas/txy068Organización Mundial de la Salud (OMS). 2019.AntimicrobialResistance. (Consultado en Noviembre 15 de 2019). [En línea]. Disponible en: https://www.who.int/antimicrobial-resistance/en/Omonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Handel, K., Fairles, J., & Alexandersen, S. (2014). Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transboundary and Emerging Diseases, 61(5), 397–410. https://doi.org/10.1111/tbed.12269Pearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558–569. https://doi.org/10.1111/jpn.13282Peng, J., Tang, Y., & Huang, Y. (2021). Gut health: The results of microbial and mucosal immune interactions in pigs. Animal Nutrition, 7(2), 282–294. https://doi.org/10.1016/j.aninu.2021.01.001Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(NOV), 1–21. https://doi.org/10.3389/fmicb.2018.02928Pluske, J. (2016). Invited review: Aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(7), 399–411. https://doi.org/10.2527/jas2015-9767Pluske, J., Le Dividich, J., & Verstegen, M. (2003). Weaning the pig – concepts and consequences. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-513-0Pluske, J. R., Kim, J. C., & Black, J. L. (2018). Manipulating the immune system for pigs to optimise performance. Animal Production Science, 58(4), 666–680. https://doi.org/10.1071/AN17598Pluske, J., Turpin, D., & Kim, J. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004Ruckman, L. A., Petry, A. L., Gould, S. A., & Patience, J. F. (2020). The impact of porcine spray-dried plasma protein and dried egg protein harvested from hyper-immunized hens, provided in the presence or absence of subtherapeutic levels of antibiotics in the feed, on growth and indicators of intestinal function and phys. Translational Animal Science, 1–16. https://doi.org/10.1093/tas/txaa095Saito, Y., Sato, T., Nomoto, K., & Tsuji, H. (2018). Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiology Ecology, 94(9). https://doi.org/10.1093/femsec/fiy125San Andres, J. V., Mastromano, G. A., Li, Y., Tran, H., Bundy, J. W., Miller, P. S., & Burkey, T. E. (2019). The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Translational Animal Science, 3(4), 1315–1325. https://doi.org/10.1093/tas/txz129Scholz-Ahrens, K. E., Schaafsma, G., Van den Heuvel, E. G. H. M., & Schrezenmeir, J. (2001). Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.459sSilveira, R. F., Roque-Borda, C. A., & Vicente, E. F. (2021). Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Animal Nutrition, 7(3), 896–904. https://doi.org/10.1016/j.aninu.2021.01.004Spreeuwenberg, M. A. M., Verdonk, J. M. A. J., Gaskins, H. R., & Verstegen, M. W. A. (2001). Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. Journal of Nutrition, 131(5), 1520–1527. https://doi.org/10.1093/jn/131.5.1520Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466. https://doi.org/10.1097/COH.0b013e32833ed177Suiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1–11. https://doi.org/10.1186/s40104-015-0042-zSun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001Su, W., Gong, T., Jiang, Z., Lu, Z., & Wang, Y. (2022). The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Frontiers in Cellular and Infection Microbiology, 12(May), 1–12. https://doi.org/10.3389/fcimb.2022.883107Tariq, H., Sharma, A., Sarkar, S., Ojha, L., Pal, R. P., & Mani, V. (2020). Perspectives for rare earth elements as feed additive in livestock - A review. Asian-Australasian Journal of Animal Sciences, 33(3), 373–381. https://doi.org/10.5713/ajas.19.0242Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918Tugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134Tugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996Valenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D., & González-Ríos, H. (2017). Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science and Technology, 59(1), 1–17. https://doi.org/10.1186/s40781-017-0133-9Van Saun, R. J. (2013). Feeds for Camelids. In Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health: First Edition (Issue 1). Elsevier Inc. https://doi.org/10.1016/B978-1-4377-2352-6.00010-9Ventola, Lee. (2015). The Antibiotics Resistance Crisis Part 1: Causes and Threats. P&T, 40(4), 277–283.Verdile, N., Mirmahmoudi, R., Brevini, T. A. L., & Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal, 13(12), 2830–2839. https://doi.org/10.1017/S1751731119001319Verdonk, J. M. A. J. (2006). Nutritional strategy affects gut wall integrity in weaned piglets. Wageningen Institute for Animal Sciences.Welcome, M. (2018). Gastrointestinal physiology. Development, Principles and Mechanisms of Regulation. Springer US. https://doi.org/10.1007/978-3-319-91056-7Wijtten, P., Meulen, J., & Verstegen, M. (2011a). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660Wijtten, P., Verstijnen, J., Van Kempen, T., Perdok, H., Gort, G., & Verstegen, M. (2011b). Lactulose as a marker of intestinal barrier function in pigs after weaning. Journal of Animal Science, 89(5), 1347–1357. https://doi.org/10.2527/jas.2010-3571Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-zXiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-zXiong, X., Yang, H. S., Wang, X. C., Hu, Q., Liu, C. X., Wu, X., Deng, D., Hou, Y. Q., Nyachoti, C. M., Xiao, D. F., & Yin, Y. L. (2015). Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. Journal of Animal Science, 93(3), 1089–1097. https://doi.org/10.2527/jas.2014-7851Xu, B. C., Fu, J., Zhu, L. Y., Li, Z., Wang, Y. Z., & Jin, M. L. (2020). Overall assessment of antimicrobial peptides in piglets: a set of meta-analyses. Animal, 14(12), 2463–2471. https://doi.org/10.1017/S1751731120001640Yan, H., Yu, B., Degroote, J., Spranghers, T., Van Noten, N., Majdeddin, M., Van Poucke, M., Peelman, L., De Vrieze, J., Boon, N., Gielen, I., Smet, S. De, Chen, D., & Michiels, J. (2020). Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research, 16(1), 1–12. https://doi.org/10.1186/s12917-020-02592-0Yin, J., Li, F., Kong, X., Wen, C., Guo, Q., Zhang, L., Wang, W., Duan, Y., Li, T., Tan, Z., & Yin, Y. (2019). Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food and Function, 10(5), 2701–2709. https://doi.org/10.1039/c8fo02485eYoo, B. B., & Mazmanian, S. K. (2017). The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 46(6), 910–926. https://doi.org/10.1016/j.immuni.2017.05.011Żbikowska, K., Michalczuk, M., & Dolka, B. (2020). The use of bacteriophages in the poultry industry. Animals, 10(5). https://doi.org/10.3390/ani10050872Zhang, Z. F., & Kim, I. H. (2014). Effects of levan supplementation on growth performance, nutrient digestibility and fecal dry matter content in comparison to apramycin (antibacterial growth promoter) in weanling pigs. Livestock Science, 159, 71–74. https://doi.org/10.1016/j.livsci.2013.10.027Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Frontiers in Veterinary Science, 8(February), 1–18. https://doi.org/10.3389/fvets.2021.628258Al-Sadi, M., & Ma, T. Y. (2007). IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. J Immunol., 178(7), 4641–4649.American Association Swine Veterinarian. (2016). On-Farm Euthanasia. In Pork Checkoff.Andrews, C., McLean, M. H., & Durum, S. K. (2018). Cytokine tuning of intestinal epithelial function. Frontiers in Immunology, 9(JUN). https://doi.org/10.3389/fimmu.2018.01270AOAC. (2006). Official Methods of Analysis of AOAC INTERNATIONAL. Aoac, February.Barba-Vidal, E., Roll, V. F. B., Castillejos, L., Guerra-Ordaz, A. A., Manteca, X., Mallo, J. J., & Martín-Orúe, S. M. (2017). Response to a Salmonella Typhimurium challenge in piglets supplemented with protected sodium butyrate or Bacillus licheniformis: Effects on performance, intestinal health and behavior. Translational Animal Science, 1(2), 186–200. https://doi.org/10.2527/tas2017.0021Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010Boudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256Cao, S. T., Wang, C. C., Wu, H., Zhang, Q. H., Jiao, L. F., & Hu, C. H. (2018). Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. Journal of Animal Science, 96(3), 1073–1083. https://doi.org/10.1093/jas/skx062Casas, G. A., Blavi, L., Cross, T. W. L., Lee, A. H., Swanson, K. S., & Stein, H. H. (2020). Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance. Journal of Animal Science, 98(1), 1–12. https://doi.org/10.1093/jas/skz372Cuff, M. A., Lambert, D. W., & Shirazi-Beechey, S. P. (2002). Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. Journal of Physiology, 539(2), 361–371. https://doi.org/10.1113/jphysiol.2001.014241de Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065Dell’anno, M., Reggi, S., Caprarulo, V., Hejna, M., Rossi, C. A. S., Callegari, M. L., Baldi, A., & Rossi, L. (2021). Evaluation of tannin extracts, leonardite and tributyrin supplementation on diarrhoea incidence and gut microbiota of weaned piglets. Animals, 11(6). https://doi.org/10.3390/ani11061693Donovan, J. D., Bauer, L., Fahey, G. C., & Lee, Y. (2017). In Vitro Digestion and Fermentation of Microencapsulated Tributyrin for the Delivery of Butyrate. Journal of Food Science, 82(6), 1491–1499. https://doi.org/10.1111/1750-3841.13725Droessler, L., Cornelius, V., Markov, A. G., & Amasheh, S. (2021). Tumor necrosis factor alpha effects on the porcine intestinal epithelial barrier include enhanced expression of TNF receptor 1. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168746Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105Fang, C. L., Sun, H., Wu, J., Niu, H. H., & Feng, J. (2014). Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. Journal of Animal Physiology and Animal Nutrition, 98(4), 680–685. https://doi.org/10.1111/jpn.12122Feng, W., Wu, Y., Chen, G., Fu, S., Li, B., Huang, B., Wang, D., Wang, W., & Liu, J. (2018). Sodium Butyrate Attenuates Diarrhea in Weaned Piglets and Promotes Tight Junction Protein Expression in Colon in a GPR109A-Dependent Manner. Cellular Physiology and Biochemistry, 47(4), 1617–1629. https://doi.org/10.1159/000490981Ghosh, S., Whitley, C. S., Haribabu, B., & Jala, V. R. (2021). Regulation of Intestinal Barrier Function by Microbial Metabolites. Celullar and Molecular Gastroenterology and Hepatology, 11(5), 1463–1482. https://doi.org/10.1016/j.jcmgh.2021.02.007Gitter, A. H., Bendfeldt, K., Schulzke, J.-D., & Fromm, M. (2000). Leaks in the epithelial barrier caused by spontaneous and TNF‐α‐induced single‐cell apoptosis. The FASEB Journal, 14(12), 1749–1753. https://doi.org/10.1096/fj.99-0898comGresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343Grilli, E., Tugnoli, B., Foerster, C. J., & Piva, A. (2016). Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs. Journal of Animal Science, 94(7), 433–436. https://doi.org/10.2527/jas2015-9787Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Van Immerseel, F. (2010). From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition Research Reviews, 23(2), 366–384. https://doi.org/10.1017/S0954422410000247Gu, Y., Song, Y., Yin, H., Lin, S., Zhang, X., Che, L., Lin, Y., Xu, S., Feng, B., Wu, D., & Fang, Z. (2017). Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation. Journal of Animal Science, 95(1), 226. https://doi.org/10.2527/jas2016.0911Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R. J. (2008). Review article: The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics, 27(2), 104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.xHan, Y., Zhao, Q., Tang, C., Li, Y., Zhang, K., Li, F., & Zhang, J. (2020). Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut–Liver Axis. Frontiers in Microbiology, 11(December). https://doi.org/10.3389/fmicb.2020.588666Heo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Nyachoti, C. M. (2013). Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207–237. https://doi.org/10.1111/j.1439-0396.2012.01284.xHuang, C., Song, P., Fan, P., Hou, C., Thacker, P., & Ma, X. (2015). Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. Journal of Nutrition, 145(12), 2774–2780. https://doi.org/10.3945/jn.115.217406Instituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2005). Microbiología de alimentos para animales, Prepearación de muestars para ensayo, suspensión inicial y diluciones decimales para análisis microbiológico. Parte 1. Reglas generales para la preparación de la suspensión inicial y de diluciones decimales-NTC-4491-1.Instituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2018). Microbiología de alimentos para animales. Método horizontal para el recuento de coliformes o Escherichia coli o ambos. Técnicas de recuento de colonias utilizando medios fluorogénicos o cromogénicos.Iji, P. A., Saki, A., & Tivey, D. R. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42(4), 505–513. https://doi.org/10.1080/00071660120073151Itza-Ortiz, M., Quezada-Casasola, A., Castillo-Castillo, Y., Rodríguez-Galindo, E., Carrera-Chávez, J. M., Martín-Orozco, U., Jaramillo-López, E., & Calzada-Nieves, A. (2018). Comparison of three sampling procedures for evaluating intestinal villi: A swine model. Revista Colombiana de Ciencias Pecuarias, 31(1), 3–9. https://doi.org/10.17533/udea.rccp.v31n1a01Kim, B.G., & Lindemann, M.D. (2007). A spreadsheet method for experimental animal allotment.Kruse, R., Essén-Gustavsson, B., Fossum, C., & Jensen-Waern, M. (2008). Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery. Acta Veterinaria Scandinavica, 50(1). https://doi.org/10.1186/1751-0147-50-32Kuhn, K. A., Manieri, N. A., Liu, T. C., & Stappenbeck, T. S. (2014). IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS ONE, 9(12), 1–18. https://doi.org/10.1371/journal.pone.0114195Kuhn, K. A., Schulz, H. M., Regner, E. H., Severs, E. L., Hendrickson, J. D., Gaurav, M., Whitney, A. K., Neha Ohri, D. I., Robertson, C. E., Frank, D. N., Campbell, E. L., & Colgan, S. P. (2018). Bacteroidales recruit IL-6 producing intraepithelial lymphocytes in the colon to promote barrierLallès, J. P., & Montoya, C. A. (2021). Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? In Animal Feed Science and Technology (Vol. 274). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2021.114836Le Gall, M., Gallois, M., Sève, B., Louveau, I., Holst, J. J., Oswald, I. P., Lallès, J. P., & Guilloteau, P. (2009). Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 102(9), 1285–1296. https://doi.org/10.1017/S0007114509990213Lei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011Leppkes, M., Roulis, M., Neurath, M. F., Kollias, G., & Becker, C. (2014). Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. International Immunology, 26(9), 509–515. https://doi.org/10.1093/intimm/dxu051Limbach, J. R. (2020). Reducing Crude Protein Levels in Diets Fed To Young Pigs To Optimize. 133. https://nutrition.ansci.illinois.edu/sites/nutrition.ansci.illinois.edu/files/LIMBACH-THESIS-2020.pdfLin, F., Li, X., Wen, J., Wang, C., Peng, Y., Feng, J., & Hu, C. (2020). Effects of coated sodium butyrate on performance, diarrhea, intestinal microflora and barrier function of pigs during the first 2-week post-weaning. Animal Feed Science and Technology, 263(866), 114464. https://doi.org/10.1016/j.anifeedsci.2020.114464Liu, D., Zong, E. Y., Huang, P. F., Yang, H. S., Yan, S. L., Li, J. Z., Li, Y. L., Ding, X. Q., He, S. P., Xiong, X., & Yin, Y. L. (2019). The effects of dietary sulfur amino acids on serum biochemical variables, mucosal amino acid profiles, and intestinal inflammation in weaning piglets. Livestock Science, 220, 32–36. https://doi.org/https://doi.org/10.1016/j.livsci.2018.12.013Liu, P., Piao, X. S., Thacker, P. A., Zeng, Z. K., Li, P. F., Wang, D., & Kim, S. W. (2010). Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. Journal of Animal Science, 88(12), 3871–3879. https://doi.org/10.2527/jas.2009-2771Liu, W., Yuan, C., Meng, X., Du, Y., Gao, R., Tang, J., & Shi, D. (2014). Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Veterinary Journal, 199(2), 286–289. https://doi.org/10.1016/j.tvjl.2013.11.019Lu, J. J., Zou, X. T., & Wang, Y. M. (2008). Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. Journal of Animal and Feed Sciences, 17(4), 568–578. https://doi.org/10.22358/jafs/66685/2008Maneewan, C., Yamauchi, K. en, Mekbungwan, A., Nakano, T., Fukuta, K., Kashimura, J., Mizu, M., Kawai, T., & Nakagawa, J. (2012). Histological alterations of intestinal villi and epithelial cells after feeding dietary sugar cane extract in piglets. Italian Journal of Animal Science, 11(3), 236–241. https://doi.org/10.4081/ijas.2012.e43Ma, X., Fan, P. X., Li, L. S., Qiao, S. Y., Zhang, G. L., & Li, D. F. (2012). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. Journal of Animal Science, 90(SUPPL4), 266–268. https://doi.org/10.2527/jas.50965McCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Applied and Environmental Microbiology, 83(15). https://doi.org/10.1128/AEM.00380-17Melaku, M., Zhong, R., Han, H., Wan, F., Yi, B., & Zhang, H. (2021). Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910392Ming, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169Montagne, L., Boundry, G., Favier, C., Le Huerou-Luron, I., Lallès, J. P., & Sève, B. (2007). Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. British Journal of Nutrition, 97(1), 45–57. https://doi.org/10.1017/S000711450720580XMurray, R. L., Zhang, W., Iwaniuk, M., Grilli, E., & Stahl, C. H. (2018). Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells. Physiological Reports, 6(10), 1–11. https://doi.org/10.14814/phy2.13706Nabuurs, M. J. A., Hoogendoorn, A., Van Der Molen, E. J., & Van Osta, A. L. M. (1993). Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Research in Veterinary Science, 55(1), 78–84. https://doi.org/10.1016/0034-5288(93)90038-HNamkung, H., Yu, H., Gong, J., & Leeson, S. (2011). Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens. Poultry Science, 90(10), 2217–2222. https://doi.org/10.3382/ps.2011-01498O’Shea, C. J., McAlpine, P., Sweeney, T., Varley, P. F., & O’Doherty, J. V. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. British Journal of Nutrition, 111(5), 798–807. https://doi.org/10.1017/S0007114513003280Öztürk, E., & Temiz, U. (2018). Encapsulation Methods and Use in Animal Nutrition. Selcuk Journal of Agricultural and Food Sciences, 32(3), 624–631. https://doi.org/10.15316/sjafs.2018.145Peng, L., Zhong-Rong, L., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619–1625. https://doi.org/10.3945/jn.109.104638PIC. (2022). PIC® Nutrition and Feeding Guidelines. MetricVersion 2022.10.20. In https:/ /www.pic.com/ resources/nutritionPié, S., Lallès, J. P., Blazy, F., Laffitte, J., Sève, B., & Oswald, I. P. (2004). Weaning Is Associated with an Upregulation of Expression of Inflamatory Cytokines in the Intestine of Piglets. Journal of Nutrition, 134(3), 641–647. https://doi.org/10.1093/jn/134.3.641Piva, A., Prandini, A., Fiorentini, L., Morlacchini, M., Galvano, F., & Luchansky, J. B. (2002). Tributyrin and lactitol synergistically enhanced the trophic status of the intestinal mucosa and reduced histamine levels in the gut of nursery pigs. Journal of Animal Science, 80(3), 670–680. https://doi.org/10.2527/2002.803670xPluske, J. R., Williams, I. H., & Aherne, F. X. (1996). Villous height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. Animal Science, 62(1), 145–158. https://doi.org/10.1017/S1357729800014429Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1–19. https://doi.org/10.1186/s13028-017-0299-7Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, 5(6), 2010–2013. https://doi.org/10.1101/pdb.prot5439Salvi, P. S., & Cowles, R. A. (2021). Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells, 10(7). https://doi.org/10.3390/cells10071775Segain, J. P., Galmiche, J. P., Raingeard De La Blétière, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., & Blottière, H. M. (2000). Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut, 47(3), 397–403. https://doi.org/10.1136/gut.47.3.397Shifflett, D. E., Bottone, F. G., Young, K. M., Moeser, A. J., Jones, S. L., & Blikslager, A. T. (2004). Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-1-and COX-2-dependent mechanism. Am J Physiol Gastroi-Ntest Liver Physiol, 287, 50–57. https://doi.org/10.1152/ajpgi.00076.2003.-PolymorphonuclearSotira, S., Dell’Anno, M., Caprarulo, V., Hejna, M., Pirrone, F., Callegari, M. L., Tucci, T. V., & Rossi, L. (2020). Effects of tributyrin supplementation on growth performance, insulin, blood metabolites and gut microbiota in weaned piglets. Animals, 10(4). https://doi.org/10.3390/ani10040726Sun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), 1–12. https://doi.org/10.1111/asj.13357Thermo Fisher Scientific. (2016). TRIzol Reagent User Guide - Pub. no. MAN0001271 - Rev. A.0. User Guide, 15596018(15596026), 1–6.Tugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134Tugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996Wang, C., Cao, S., Shen, Z., Hong, Q., Feng, J., Peng, Y., & Hu, C. (2019a). Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0394-xWang, C., Shen, Z., Cao, S., Zhang, Q., Peng, Y., Hong, Q., Feng, J., & Hu, C. (2019b). Effects of tributyrin on growth performance, intestinal microflora and barrier function of weaned pigs. Animal Feed Science and Technology, 258(866), 114311. https://doi.org/10.1016/j.anifeedsci.2019.114311Wick, M. R. (2008). Diagnostic Histochemistry Pathology. Cambridge University Press.Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6(FEB), 1–14. https://doi.org/10.3389/fvets.2019.00046Yang, Q., Huang, X., Wang, P., Yan, Z., Sun, W., Zhao, S., & Gun, S. (2019). Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. MicrobiologyOpen, 8(12), 1–17. https://doi.org/10.1002/mbo3.923Zhai, H., Ren, W., Wang, S., Wu, J., Guggenbuhl, P., & Kluenter, A. M. (2017). Growth performance of nursery and grower-finisher pigs fed diets supplemented with benzoic acid. Animal Nutrition, 3(3), 232–235. https://doi.org/10.1016/j.aninu.2017.05.001Zhang, W., Zhao, M., Ruesch, L., Omot, A., & Francis, D. (2007). Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Veterinary Microbiology, 123(1–3), 145–152. https://doi.org/10.1016/j.vetmic.2007.02.018Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., Wang, R. X., Onyiah, J. C., Kominsky, D. J., & Colgan, S. P. (2017). Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology, 199(8), 2976–2984. https://doi.org/10.4049/jimmunol.1700105Zhong, X., Zhang, Z., Wang, S., Cao, L., Zhou, L., Sun, A., Zhong, Z., & Nabben, M. (2019). Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Frontiers in Microbiology, 10(JAN), 1–18. https://doi.org/10.3389/fmicb.2018.03335Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 díasEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85679/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020783128.2023.pdf1020783128.2023.pdfTesis de Maestría en Salud y Producción Animalapplication/pdf2150246https://repositorio.unal.edu.co/bitstream/unal/85679/2/1020783128.2023.pdff5b147118b9b0b6a0dff9bf20a8b7705MD52THUMBNAIL1020783128.2023.pdf.jpg1020783128.2023.pdf.jpgGenerated Thumbnailimage/jpeg5452https://repositorio.unal.edu.co/bitstream/unal/85679/3/1020783128.2023.pdf.jpg8e5b513624c9c917a60200bfb7a2329cMD53unal/85679oai:repositorio.unal.edu.co:unal/856792024-02-09 23:07:10.09Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=