High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information

Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book vo...

Full description

Autores:
Sandoval Archila, Javier Hernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/58647
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/58647
http://bdigital.unal.edu.co/55461/
Palabra clave:
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Machine Learning
Dynamic Bayesian Networks
Price Prediction
Order Book Information
Hierarchical Hidden Markov Model
Wavelet Transform
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ab568fd4eb6a48faa1c3f41b4b9e7dd5
oai_identifier_str oai:repositorio.unal.edu.co:unal/58647
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez, German JairoSandoval Archila, Javier Hernando2fa89c4b-8ef8-4bce-9be0-94cc365ebd8a3002019-07-02T14:33:22Z2019-07-02T14:33:22Z2016-11-03https://repositorio.unal.edu.co/handle/unal/58647http://bdigital.unal.edu.co/55461/Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasSandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá.6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringMachine LearningDynamic Bayesian NetworksPrice PredictionOrder Book InformationHierarchical Hidden Markov ModelWavelet TransformHigh frequency exchange rate prediction using dynamic bayesian networks over the limit order book informationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINALJavier H. SandovalA.2016.pdfapplication/pdf4944176https://repositorio.unal.edu.co/bitstream/unal/58647/1/Javier%20H.%20SandovalA.2016.pdf063b05ee563932c192dc1953f7acfdb2MD51THUMBNAILJavier H. SandovalA.2016.pdf.jpgJavier H. SandovalA.2016.pdf.jpgGenerated Thumbnailimage/jpeg4759https://repositorio.unal.edu.co/bitstream/unal/58647/2/Javier%20H.%20SandovalA.2016.pdf.jpg3807b14039feec9183684759815f99c7MD52unal/58647oai:repositorio.unal.edu.co:unal/586472023-03-28 23:08:39.69Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
title High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
spellingShingle High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Machine Learning
Dynamic Bayesian Networks
Price Prediction
Order Book Information
Hierarchical Hidden Markov Model
Wavelet Transform
title_short High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
title_full High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
title_fullStr High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
title_full_unstemmed High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
title_sort High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
dc.creator.fl_str_mv Sandoval Archila, Javier Hernando
dc.contributor.author.spa.fl_str_mv Sandoval Archila, Javier Hernando
dc.contributor.spa.fl_str_mv Hernandez, German Jairo
dc.subject.ddc.spa.fl_str_mv 6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
topic 6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Machine Learning
Dynamic Bayesian Networks
Price Prediction
Order Book Information
Hierarchical Hidden Markov Model
Wavelet Transform
dc.subject.proposal.spa.fl_str_mv Machine Learning
Dynamic Bayesian Networks
Price Prediction
Order Book Information
Hierarchical Hidden Markov Model
Wavelet Transform
description Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-11-03
dc.date.accessioned.spa.fl_str_mv 2019-07-02T14:33:22Z
dc.date.available.spa.fl_str_mv 2019-07-02T14:33:22Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/58647
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/55461/
url https://repositorio.unal.edu.co/handle/unal/58647
http://bdigital.unal.edu.co/55461/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas
Ingeniería de Sistemas
dc.relation.references.spa.fl_str_mv Sandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/58647/1/Javier%20H.%20SandovalA.2016.pdf
https://repositorio.unal.edu.co/bitstream/unal/58647/2/Javier%20H.%20SandovalA.2016.pdf.jpg
bitstream.checksum.fl_str_mv 063b05ee563932c192dc1953f7acfdb2
3807b14039feec9183684759815f99c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090054457360384