High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information
Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book vo...
- Autores:
-
Sandoval Archila, Javier Hernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/58647
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/58647
http://bdigital.unal.edu.co/55461/
- Palabra clave:
- 6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Machine Learning
Dynamic Bayesian Networks
Price Prediction
Order Book Information
Hierarchical Hidden Markov Model
Wavelet Transform
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ab568fd4eb6a48faa1c3f41b4b9e7dd5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/58647 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez, German JairoSandoval Archila, Javier Hernando2fa89c4b-8ef8-4bce-9be0-94cc365ebd8a3002019-07-02T14:33:22Z2019-07-02T14:33:22Z2016-11-03https://repositorio.unal.edu.co/handle/unal/58647http://bdigital.unal.edu.co/55461/Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasSandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá.6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringMachine LearningDynamic Bayesian NetworksPrice PredictionOrder Book InformationHierarchical Hidden Markov ModelWavelet TransformHigh frequency exchange rate prediction using dynamic bayesian networks over the limit order book informationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINALJavier H. SandovalA.2016.pdfapplication/pdf4944176https://repositorio.unal.edu.co/bitstream/unal/58647/1/Javier%20H.%20SandovalA.2016.pdf063b05ee563932c192dc1953f7acfdb2MD51THUMBNAILJavier H. SandovalA.2016.pdf.jpgJavier H. SandovalA.2016.pdf.jpgGenerated Thumbnailimage/jpeg4759https://repositorio.unal.edu.co/bitstream/unal/58647/2/Javier%20H.%20SandovalA.2016.pdf.jpg3807b14039feec9183684759815f99c7MD52unal/58647oai:repositorio.unal.edu.co:unal/586472023-03-28 23:08:39.69Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
title |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
spellingShingle |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Machine Learning Dynamic Bayesian Networks Price Prediction Order Book Information Hierarchical Hidden Markov Model Wavelet Transform |
title_short |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
title_full |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
title_fullStr |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
title_full_unstemmed |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
title_sort |
High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information |
dc.creator.fl_str_mv |
Sandoval Archila, Javier Hernando |
dc.contributor.author.spa.fl_str_mv |
Sandoval Archila, Javier Hernando |
dc.contributor.spa.fl_str_mv |
Hernandez, German Jairo |
dc.subject.ddc.spa.fl_str_mv |
6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Machine Learning Dynamic Bayesian Networks Price Prediction Order Book Information Hierarchical Hidden Markov Model Wavelet Transform |
dc.subject.proposal.spa.fl_str_mv |
Machine Learning Dynamic Bayesian Networks Price Prediction Order Book Information Hierarchical Hidden Markov Model Wavelet Transform |
description |
Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-11-03 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T14:33:22Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T14:33:22Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/58647 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/55461/ |
url |
https://repositorio.unal.edu.co/handle/unal/58647 http://bdigital.unal.edu.co/55461/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Sandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/58647/1/Javier%20H.%20SandovalA.2016.pdf https://repositorio.unal.edu.co/bitstream/unal/58647/2/Javier%20H.%20SandovalA.2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
063b05ee563932c192dc1953f7acfdb2 3807b14039feec9183684759815f99c7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090054457360384 |