Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia
ilustraciones, diagramas, tablas
- Autores:
-
Ramírez Del Río, Juan Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81068
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
330 - Economía::332 - Economía financiera
330 - Economía::333 - Economía de la tierra y de la energía
Recursos energéticos renovables
Sistemas de energía fotovoltaica
Photovoltaic power systems
Energía solar
Renewable energy sources
Fotovoltaica
Hidroeléctrica
Viabilidad financiera
LCOE
Photovoltaic
Hydroelectric
Financial viability
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_ab11cf4b6c8a71507ae1a02858ae830d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81068 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
dc.title.translated.eng.fl_str_mv |
Comparison of photovoltaic and hydroelectric technologies in Colombia |
title |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
spellingShingle |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia 000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera 330 - Economía::333 - Economía de la tierra y de la energía Recursos energéticos renovables Sistemas de energía fotovoltaica Photovoltaic power systems Energía solar Renewable energy sources Fotovoltaica Hidroeléctrica Viabilidad financiera LCOE Photovoltaic Hydroelectric Financial viability |
title_short |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
title_full |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
title_fullStr |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
title_full_unstemmed |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
title_sort |
Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia |
dc.creator.fl_str_mv |
Ramírez Del Río, Juan Esteban |
dc.contributor.advisor.none.fl_str_mv |
Franco Cardona, Carlos Jaime |
dc.contributor.author.none.fl_str_mv |
Ramírez Del Río, Juan Esteban |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera 330 - Economía::333 - Economía de la tierra y de la energía |
topic |
000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera 330 - Economía::333 - Economía de la tierra y de la energía Recursos energéticos renovables Sistemas de energía fotovoltaica Photovoltaic power systems Energía solar Renewable energy sources Fotovoltaica Hidroeléctrica Viabilidad financiera LCOE Photovoltaic Hydroelectric Financial viability |
dc.subject.armarc.none.fl_str_mv |
Recursos energéticos renovables |
dc.subject.lemb.none.fl_str_mv |
Sistemas de energía fotovoltaica Photovoltaic power systems Energía solar Renewable energy sources |
dc.subject.proposal.spa.fl_str_mv |
Fotovoltaica Hidroeléctrica Viabilidad financiera |
dc.subject.proposal.eng.fl_str_mv |
LCOE Photovoltaic Hydroelectric Financial viability |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-28T13:16:00Z |
dc.date.available.none.fl_str_mv |
2022-02-28T13:16:00Z |
dc.date.issued.none.fl_str_mv |
2022-02-25 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81068 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81068 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acolgen. (2017). Análisis de la evolución del Cargo por Confiabilidad. Aghahosseini, A., Bogdanov, D., Barbosa, L. S. N. S., & Breyer, C. (2019). Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renewable and Sustainable Energy Reviews, 105(January), 187–205. https://doi.org/10.1016/j.rser.2019.01.046 Banco de la República de Colombia. (2021a). Índice de Precios al Consumidor (IPC). https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipc Banco de la República de Colombia. (2021b). Tasa Representativa del Mercado (TRM - Peso por dólar). https://www.banrep.gov.co/es/estadisticas/trm Blakers, A., Lu, B., & Stocks, M. (2017). 100% renewable electricity in Australia. Energy, 133, 471–482. https://doi.org/10.1016/j.energy.2017.05.168 Bloomberg NEF. (2020). New Energy Outlook 2020 (Issue October). https://bnef.turtl.co/story/neo2018?teaser=true Castillo-Ramírez, A., Mejía-Giraldo, D., & Giraldo-Ocampo, J. D. (2016). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171 Chahín, C., & Eudora. (2021). Análisis de las plantas menores en el contexto actual y futuro del mercado de energía mayorista colombiano. Clauser, C., & Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study. Renewable and Sustainable Energy Reviews, 82(October 2017), 3683–3693. https://doi.org/10.1016/j.rser.2017.10.095 Congreso de la República de Colombia. (1981). Ley 56 de 1981. Congreso de la República de Colombia. (1993). Ley 99 de 1993. Congreso de la República de Colombia. (2014). Ley 1715 de 2014. Congreso de la República de Colombia. (2015). Ley 1753 de 2015. Congreso de la República de Colombia. (2016). Ley 1819 De 2016. Congreso de la República de Colombia. (2018). Ley 1943 de 2018. Congreso de la República de Colombia. (2019). Ley 1955 de 2019. CREG. (1995). Resolución CREG 024 de 1995. CREG. (1996a). Resolución CREG 084 de 1996. CREG. (1996b). Resolución CREG 085 de 1996. CREG. (1996c). Resolución CREG 086 de 1996. CREG. (2001). Resolución CREG 039 de 2001. CREG. (2006). Resolución CREG 071 de 2006. CREG. (2009). Resolución CREG 051 de 2009. CREG. (2011). Resolución CREG 157 de 2011. CREG. (2013). Resolución CREG 174 de 2013. CREG. (2015). Resolución CREG 024 de 2015. CREG. (2018). Resolución CREG 030 de 2018. In Mme (p. 13). CREG. (2019). Resolución CREG 096 de 2019. Damodaran, A. (2012). Investment Valuation (Third Edit). John Wiley & Sons, Inc. EIA. (2021a). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2021 (Issue January). https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf EIA. (2021b). Levelized Cost of New Generation Resources in the Annual Energy Outlook 2021 (Issue January). Fernández, P. (2008). Métodos de Valorización de Empresas. IESE Business School - Universidad de Navarra. Gómez, E., & Diez, J. (2015). Evaluación financiera de proyectos (Segunda Ed). Holguín, E. S., Flores Chacón, R., & Gamarra, P. S. (2019). Sustainable and Renewable Business Model to Achieve 100% Rural Electrification in Perú by 2021. 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. https://doi.org/10.1109/ISGT-LA.2019.8895439 IEA. (2020a). Projected Cost of Generating Electricity (Issue January). https://ncdc.gov.ng/themes/common/docs/protocols/111_1579986179.pdf IEA. (2020b). World Energy Outlook 2020 (Vol. 0, Issue October). https://www.iea.org/reports/world-energy-outlook-2020 IEA. (2021). World Energy Outlook 2021. https://www.eia.gov/pressroom/presentations/AEO2021_Release_Presentation.pdf IRENA. (2020). Renewable Energy Capacity Highlights 31 March 2020 (Vol. 00, Issue March 2020). www.irena.org/publications. IRENA. (2021a). Renewable Energy Capacity Highlights. https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021 IRENA. (2021b). Renewable Power Generation Costs in 2020. In International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf Lanshina, T. A., “Skip” Laitner, J. A., Potashnikov, V. Y., & Barinova, V. A. (2018). The slow expansion of renewable energy in Russia: Competitiveness and regulation issues. Energy Policy, 120(July 2017), 600–609. https://doi.org/10.1016/j.enpol.2018.05.052 LAZARD. (2020). Lazard’s Levelized Cost of Energy Analysis - Version 14.0 (Issue October). Londoño, M. A. (2019). Evaluación financiera de un proyecto hidroeléctrico a partir del análisis de las leyes 1715 de 2014 y 1819 de 2016. Estudio de caso de una compañía del sector eléctrico. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI Matsuo, Y., & Komiyama, R. (2021). System LCOE of variable renewable energies: a case study of Japan’s decarbonized power sector in 2050. Sustainability Science, 16(2), 449–461. https://doi.org/10.1007/s11625-021-00914-1 Meza, C. G., Zuluaga Rodríguez, C., D’Aquino, C. A., Amado, N. B., Rodrigues, A., & Sauer, I. L. (2019). Toward a 100% renewable island: A case study of Ometepe’s energy mix. Renewable Energy, 132, 628–648. https://doi.org/10.1016/j.renene.2018.07.124 Ministerio de Minas y Energía. (2021). Transición energética : un legado para el presente y el futuro de Colombia. Nguyen, P. A., Abbott, M., & Nguyen, T. L. T. (2019). The development and cost of renewable energy resources in Vietnam. Utilities Policy, 57(September 2017), 59–66. https://doi.org/10.1016/j.jup.2019.01.009 NREL. (2021a). Annual Technology Baseline. https://atb.nrel.gov/electricity/2021/hydropower#capital_expenditures_(capex) NREL. (2021b). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory, September, 1–120. https://www.nrel.gov/docs/fy21osti/77324.pdf OLADE. (2020). Panorama Energético de América Latina y el Caribe 2020. http://biblioteca.olade.org/opac-tmpl/Documentos/old0456b.pdf Oxera Consulting Ltd. (2011). Discount rates for low-carbon and renewable generation technologies. April, 52. Ram, M., Child, M., Aghahosseini, A., Bogdanov, D., Lohrmann, A., & Breyer, C. (2018). A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199, 687–704. https://doi.org/10.1016/j.jclepro.2018.07.159 Reichenberg, L., Hedenus, F., Odenberger, M., & Johnsson, F. (2018). The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe. Energy, 152, 914–924. https://doi.org/10.1016/j.energy.2018.02.061 REN21. (2020). Renewables 2020 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).html REN21. (2021). Renewables 2021 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).html Restrepo, Y., Gaitan, S., & Franco, C. J. (2017). Methodology for the financial valuation of a power plant under regulatory changes. IEEE Latin America Transactions, 15(8), 1453–1459. https://doi.org/10.1109/TLA.2017.7994792 Shea, R. P., & Ramgolam, Y. K. (2019). Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius. Renewable Energy, 132, 1415–1424. https://doi.org/10.1016/j.renene.2018.09.021 Shen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., Meng, K., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133(March). https://doi.org/10.1016/j.rser.2020.110301 Timilsina, G. R. (2021). Are renewable energy technologies cost competitive for electricity generation? Renewable Energy, 180, 658–672. https://doi.org/10.1016/j.renene.2021.08.088 Timilsina, G., & Shah, K. (2020). Are Renewable Energy Technologies Competitive? Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change, ICUE 2020, 2018(October). https://doi.org/10.1109/ICUE49301.2020.9307150 Timmerberg, S., Sanna, A., Kaltschmitt, M., & Finkbeiner, M. (2019). Renewable electricity targets in selected MENA countries – Assessment of available resources, generation costs and GHG emissions. Energy Reports, 5, 1470–1487. https://doi.org/10.1016/j.egyr.2019.10.003 Timmons, D., Dhunny, A. Z., Elahee, K., Havumaki, B., Howells, M., Khoodaruth, A., Lema-Driscoll, A. K., Lollchund, M. R., Ramgolam, Y. K., Rughooputh, S. D. D. V., & Surroop, D. (2019). Cost minimization for fully renewable electricity systems: A Mauritius case study. Energy Policy, 133(July). https://doi.org/10.1016/j.enpol.2019.110895 Tran, T. T. D., & Smith, A. D. (2017). Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector. Renewable and Sustainable Energy Reviews, 80(April), 1372–1388. https://doi.org/10.1016/j.rser.2017.05.228 Tran, T. T. D., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied Energy, 216(January), 157–171. https://doi.org/10.1016/j.apenergy.2018.02.024 Tu, Q., Betz, R., Mo, J., & Fan, Y. (2019). The profitability of onshore wind and solar PV power projects in China - A comparative study. Energy Policy, 132(May 2019), 404–417. https://doi.org/10.1016/j.enpol.2019.05.041 UPME;Universidad de Antioquia. (2015). Costos Nivelados De Generación De Electricidad En Colombia - Hidroeléctricas. UPME. (2014). Atlas de radiación solar de Colombia. In Unidad de Planeación Minero Energética (Vol. 0). UPME. (2015). Integración de las Energías Renovables No Convencionales en Colombia. In Unidad de Planeación Minero Energética. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf UPME, UPB, IGAC, COLCIENCIAS, & IDEAM. (2015). Atlas Potencial Hidroenergético de Colombia. http://bdigital.upme.gov.co/handle/001/1336 Xiao, M., Junne, T., Haas, J., & Klein, M. (2021). Plummeting costs of renewables - Are energy scenarios lagging? Energy Strategy Reviews, 35(December 2020), 100636. https://doi.org/10.1016/j.esr.2021.100636 XM S.A. E.S.P. (2017a). Cargo por Confiabilidad. https://www.xm.com.co/Promocin Primera Subasta de Energa Firme/Forms/DispForm.aspx?ID=5 XM S.A. E.S.P. (2017b). Informe de operación del SIN y Administración del Mercado 2017. 323. XM S.A. E.S.P. (2019). Subasta energía firme: tercera subasta de energía firme (2022 - 2023). https://www.xm.com.co/Paginas/Mercado-de-energia/tercera-subasta-de-energia-firme.aspx XM S.A. E.S.P. (2021a). Análisis energético de largo plazo mpode - Resultado de estudios. Análisis energético de largo plazo mpode - resultado de estudios XM S.A. E.S.P. (2021b). Obligaciones de Energía Firme. https://www.xm.com.co/Paginas/Mercado-de-energia/obligacion-de-energia-firme.aspx XM S.A. E.S.P. (2021c). PARATEC. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad XM S.A. E.S.P. (2021d). XM Portal BI. http://portalbissrs.xm.com.co/Paginas/Home.aspx Yao, Y., Xu, J. H., & Sun, D. Q. (2021). Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. Journal of Cleaner Production, 285, 124827. https://doi.org/10.1016/j.jclepro.2020.124827 Zappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050? Applied Energy, 233–234(January 2018), 1027–1050. https://doi.org/10.1016/j.apenergy.2018.08.109 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
116 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81068/3/1152703752_2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81068/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81068/5/1152703752_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
b0015948eb258a5940d5336edc88c3c4 8153f7789df02f0a4c9e079953658ab2 c5b78ffe26a7b57fed7a48a0169e79a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089518146387968 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Cardona, Carlos Jaimee77c35ea37c7b92041b06767ea4b4d60600Ramírez Del Río, Juan Estebandb373b1489bf66971c4830bda0e2571e2022-02-28T13:16:00Z2022-02-28T13:16:00Z2022-02-25https://repositorio.unal.edu.co/handle/unal/81068Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLas energías renovables no convencionales como la fotovoltaica y la eólica, actualmente lideran la transición energética y año tras año su capacidad instalada crece alrededor del mundo, lo cual se debe principalmente a que este tipo de tecnologías se han vuelto mucho más competitivas, reduciendo sus costos de instalación a niveles nunca registrados. Para el caso de la energía solar fotovoltaica esta ha reducido sus costos de instalación en más del 80% en los últimos diez años, mientras que la energía renovable más utilizada a nivel mundial, la generación hidroeléctrica, ha ido perdiendo su poderío debido a los impactos ambientales que se presentan con su construcción y a la reducción de costos de las renovables no convencionales. Lo anterior, ha estado reflejado principalmente en los mercados asiáticos, europeos y norteamericanos, mientras que otros países apenas han iniciado la implementación a gran escala de las fuentes de energía renovable no convencional como resultado de la generación de incentivos por parte de los gobiernos locales. Colombia es una muestra de aquellos países con una incipiente participación en la instalación de fuentes de energía renovable no convencional, contando con alrededor del 68% de generación hidroeléctrica en su matriz energética. Teniendo como referencia la expedición de la Ley 1715 de 2014, se espera que aumente la capacidad de generación en no convencionales y así, se diversifique su matriz energética. Ante esto, este trabajo busca comparar financieramente las tecnologías fotovoltaica e hidroeléctrica en Colombia, con la finalidad de determinar para qué rangos de capacidad instalada una tecnología es más viable que la otra. (texto tomado de la fuente)Non-conventional renewable energies such as photovoltaic and wind power are currently leading the energy transition and year by year their installed capacity grows around the world, which is mainly since these technologies have become more competitive, reducing their installation costs to levels never recorded before. In the case of photovoltaic solar energy, it has reduced its installation costs by more than 80% in the last ten years, while the most widely used renewable energy worldwide, hydroelectric, has been losing its power due to the great environmental impacts of its implementation and the reduction of costs of non-conventional renewables. This has been mainly reflected in the Asian, European, and North American markets, while other countries have just started the large-scale implementation of non-conventional renewable energy sources because of the generation of incentives by local governments. Colombia is a sample of those countries with an incipient participation in the installation of non-conventional renewable energy sources, having around 68% of hydro energy in its energy matrix. With the issuance of Law 1715 of 2014 as a reference, it is expected to increase the non-conventional generation capacity and thus, diversify its energy matrix. In view of this, this work seeks to financially compare photovoltaic and hydroelectric technologies in Colombia, to determine for which ranges of installed capacity one technology is more viable than the other.MaestríaMagíster en Ingeniería - Sistemas EnergéticosÁrea Curricular de Ingeniería de Sistemas e Informática116 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Sistemas EnergéticosDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales330 - Economía::332 - Economía financiera330 - Economía::333 - Economía de la tierra y de la energíaRecursos energéticos renovablesSistemas de energía fotovoltaicaPhotovoltaic power systemsEnergía solarRenewable energy sourcesFotovoltaicaHidroeléctricaViabilidad financieraLCOEPhotovoltaicHydroelectricFinancial viabilityComparación de las tecnologías fotovoltaica e hidroeléctrica en ColombiaComparison of photovoltaic and hydroelectric technologies in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAcolgen. (2017). Análisis de la evolución del Cargo por Confiabilidad.Aghahosseini, A., Bogdanov, D., Barbosa, L. S. N. S., & Breyer, C. (2019). Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renewable and Sustainable Energy Reviews, 105(January), 187–205. https://doi.org/10.1016/j.rser.2019.01.046Banco de la República de Colombia. (2021a). Índice de Precios al Consumidor (IPC). https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipcBanco de la República de Colombia. (2021b). Tasa Representativa del Mercado (TRM - Peso por dólar). https://www.banrep.gov.co/es/estadisticas/trmBlakers, A., Lu, B., & Stocks, M. (2017). 100% renewable electricity in Australia. Energy, 133, 471–482. https://doi.org/10.1016/j.energy.2017.05.168Bloomberg NEF. (2020). New Energy Outlook 2020 (Issue October). https://bnef.turtl.co/story/neo2018?teaser=trueCastillo-Ramírez, A., Mejía-Giraldo, D., & Giraldo-Ocampo, J. D. (2016). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171Chahín, C., & Eudora. (2021). Análisis de las plantas menores en el contexto actual y futuro del mercado de energía mayorista colombiano.Clauser, C., & Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy – Review and case study. Renewable and Sustainable Energy Reviews, 82(October 2017), 3683–3693. https://doi.org/10.1016/j.rser.2017.10.095Congreso de la República de Colombia. (1981). Ley 56 de 1981.Congreso de la República de Colombia. (1993). Ley 99 de 1993.Congreso de la República de Colombia. (2014). Ley 1715 de 2014.Congreso de la República de Colombia. (2015). Ley 1753 de 2015.Congreso de la República de Colombia. (2016). Ley 1819 De 2016.Congreso de la República de Colombia. (2018). Ley 1943 de 2018.Congreso de la República de Colombia. (2019). Ley 1955 de 2019.CREG. (1995). Resolución CREG 024 de 1995.CREG. (1996a). Resolución CREG 084 de 1996.CREG. (1996b). Resolución CREG 085 de 1996.CREG. (1996c). Resolución CREG 086 de 1996.CREG. (2001). Resolución CREG 039 de 2001.CREG. (2006). Resolución CREG 071 de 2006.CREG. (2009). Resolución CREG 051 de 2009.CREG. (2011). Resolución CREG 157 de 2011.CREG. (2013). Resolución CREG 174 de 2013.CREG. (2015). Resolución CREG 024 de 2015.CREG. (2018). Resolución CREG 030 de 2018. In Mme (p. 13).CREG. (2019). Resolución CREG 096 de 2019.Damodaran, A. (2012). Investment Valuation (Third Edit). John Wiley & Sons, Inc.EIA. (2021a). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2021 (Issue January). https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdfEIA. (2021b). Levelized Cost of New Generation Resources in the Annual Energy Outlook 2021 (Issue January).Fernández, P. (2008). Métodos de Valorización de Empresas. IESE Business School - Universidad de Navarra.Gómez, E., & Diez, J. (2015). Evaluación financiera de proyectos (Segunda Ed).Holguín, E. S., Flores Chacón, R., & Gamarra, P. S. (2019). Sustainable and Renewable Business Model to Achieve 100% Rural Electrification in Perú by 2021. 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019. https://doi.org/10.1109/ISGT-LA.2019.8895439IEA. (2020a). Projected Cost of Generating Electricity (Issue January). https://ncdc.gov.ng/themes/common/docs/protocols/111_1579986179.pdfIEA. (2020b). World Energy Outlook 2020 (Vol. 0, Issue October). https://www.iea.org/reports/world-energy-outlook-2020IEA. (2021). World Energy Outlook 2021. https://www.eia.gov/pressroom/presentations/AEO2021_Release_Presentation.pdfIRENA. (2020). Renewable Energy Capacity Highlights 31 March 2020 (Vol. 00, Issue March 2020). www.irena.org/publications.IRENA. (2021a). Renewable Energy Capacity Highlights. https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021IRENA. (2021b). Renewable Power Generation Costs in 2020. In International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdfLanshina, T. A., “Skip” Laitner, J. A., Potashnikov, V. Y., & Barinova, V. A. (2018). The slow expansion of renewable energy in Russia: Competitiveness and regulation issues. Energy Policy, 120(July 2017), 600–609. https://doi.org/10.1016/j.enpol.2018.05.052LAZARD. (2020). Lazard’s Levelized Cost of Energy Analysis - Version 14.0 (Issue October).Londoño, M. A. (2019). Evaluación financiera de un proyecto hidroeléctrico a partir del análisis de las leyes 1715 de 2014 y 1819 de 2016. Estudio de caso de una compañía del sector eléctrico. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARIMatsuo, Y., & Komiyama, R. (2021). System LCOE of variable renewable energies: a case study of Japan’s decarbonized power sector in 2050. Sustainability Science, 16(2), 449–461. https://doi.org/10.1007/s11625-021-00914-1Meza, C. G., Zuluaga Rodríguez, C., D’Aquino, C. A., Amado, N. B., Rodrigues, A., & Sauer, I. L. (2019). Toward a 100% renewable island: A case study of Ometepe’s energy mix. Renewable Energy, 132, 628–648. https://doi.org/10.1016/j.renene.2018.07.124Ministerio de Minas y Energía. (2021). Transición energética : un legado para el presente y el futuro de Colombia.Nguyen, P. A., Abbott, M., & Nguyen, T. L. T. (2019). The development and cost of renewable energy resources in Vietnam. Utilities Policy, 57(September 2017), 59–66. https://doi.org/10.1016/j.jup.2019.01.009NREL. (2021a). Annual Technology Baseline. https://atb.nrel.gov/electricity/2021/hydropower#capital_expenditures_(capex)NREL. (2021b). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory, September, 1–120. https://www.nrel.gov/docs/fy21osti/77324.pdfOLADE. (2020). Panorama Energético de América Latina y el Caribe 2020. http://biblioteca.olade.org/opac-tmpl/Documentos/old0456b.pdfOxera Consulting Ltd. (2011). Discount rates for low-carbon and renewable generation technologies. April, 52.Ram, M., Child, M., Aghahosseini, A., Bogdanov, D., Lohrmann, A., & Breyer, C. (2018). A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199, 687–704. https://doi.org/10.1016/j.jclepro.2018.07.159Reichenberg, L., Hedenus, F., Odenberger, M., & Johnsson, F. (2018). The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe. Energy, 152, 914–924. https://doi.org/10.1016/j.energy.2018.02.061REN21. (2020). Renewables 2020 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).htmlREN21. (2021). Renewables 2021 Global Status Report. https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).htmlRestrepo, Y., Gaitan, S., & Franco, C. J. (2017). Methodology for the financial valuation of a power plant under regulatory changes. IEEE Latin America Transactions, 15(8), 1453–1459. https://doi.org/10.1109/TLA.2017.7994792Shea, R. P., & Ramgolam, Y. K. (2019). Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius. Renewable Energy, 132, 1415–1424. https://doi.org/10.1016/j.renene.2018.09.021Shen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., Meng, K., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133(March). https://doi.org/10.1016/j.rser.2020.110301Timilsina, G. R. (2021). Are renewable energy technologies cost competitive for electricity generation? Renewable Energy, 180, 658–672. https://doi.org/10.1016/j.renene.2021.08.088Timilsina, G., & Shah, K. (2020). Are Renewable Energy Technologies Competitive? Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change, ICUE 2020, 2018(October). https://doi.org/10.1109/ICUE49301.2020.9307150Timmerberg, S., Sanna, A., Kaltschmitt, M., & Finkbeiner, M. (2019). Renewable electricity targets in selected MENA countries – Assessment of available resources, generation costs and GHG emissions. Energy Reports, 5, 1470–1487. https://doi.org/10.1016/j.egyr.2019.10.003Timmons, D., Dhunny, A. Z., Elahee, K., Havumaki, B., Howells, M., Khoodaruth, A., Lema-Driscoll, A. K., Lollchund, M. R., Ramgolam, Y. K., Rughooputh, S. D. D. V., & Surroop, D. (2019). Cost minimization for fully renewable electricity systems: A Mauritius case study. Energy Policy, 133(July). https://doi.org/10.1016/j.enpol.2019.110895Tran, T. T. D., & Smith, A. D. (2017). Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector. Renewable and Sustainable Energy Reviews, 80(April), 1372–1388. https://doi.org/10.1016/j.rser.2017.05.228Tran, T. T. D., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied Energy, 216(January), 157–171. https://doi.org/10.1016/j.apenergy.2018.02.024Tu, Q., Betz, R., Mo, J., & Fan, Y. (2019). The profitability of onshore wind and solar PV power projects in China - A comparative study. Energy Policy, 132(May 2019), 404–417. https://doi.org/10.1016/j.enpol.2019.05.041UPME;Universidad de Antioquia. (2015). Costos Nivelados De Generación De Electricidad En Colombia - Hidroeléctricas.UPME. (2014). Atlas de radiación solar de Colombia. In Unidad de Planeación Minero Energética (Vol. 0).UPME. (2015). Integración de las Energías Renovables No Convencionales en Colombia. In Unidad de Planeación Minero Energética. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdfUPME, UPB, IGAC, COLCIENCIAS, & IDEAM. (2015). Atlas Potencial Hidroenergético de Colombia. http://bdigital.upme.gov.co/handle/001/1336Xiao, M., Junne, T., Haas, J., & Klein, M. (2021). Plummeting costs of renewables - Are energy scenarios lagging? Energy Strategy Reviews, 35(December 2020), 100636. https://doi.org/10.1016/j.esr.2021.100636XM S.A. E.S.P. (2017a). Cargo por Confiabilidad. https://www.xm.com.co/Promocin Primera Subasta de Energa Firme/Forms/DispForm.aspx?ID=5XM S.A. E.S.P. (2017b). Informe de operación del SIN y Administración del Mercado 2017. 323.XM S.A. E.S.P. (2019). Subasta energía firme: tercera subasta de energía firme (2022 - 2023). https://www.xm.com.co/Paginas/Mercado-de-energia/tercera-subasta-de-energia-firme.aspxXM S.A. E.S.P. (2021a). Análisis energético de largo plazo mpode - Resultado de estudios. Análisis energético de largo plazo mpode - resultado de estudiosXM S.A. E.S.P. (2021b). Obligaciones de Energía Firme. https://www.xm.com.co/Paginas/Mercado-de-energia/obligacion-de-energia-firme.aspxXM S.A. E.S.P. (2021c). PARATEC. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidadXM S.A. E.S.P. (2021d). XM Portal BI. http://portalbissrs.xm.com.co/Paginas/Home.aspxYao, Y., Xu, J. H., & Sun, D. Q. (2021). Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. Journal of Cleaner Production, 285, 124827. https://doi.org/10.1016/j.jclepro.2020.124827Zappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050? Applied Energy, 233–234(January 2018), 1027–1050. https://doi.org/10.1016/j.apenergy.2018.08.109InvestigadoresORIGINAL1152703752_2022.pdf1152703752_2022.pdfTesis de Maestría en Ingeniería - Sistemas Energéticosapplication/pdf1407203https://repositorio.unal.edu.co/bitstream/unal/81068/3/1152703752_2022.pdfb0015948eb258a5940d5336edc88c3c4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81068/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1152703752_2022.pdf.jpg1152703752_2022.pdf.jpgGenerated Thumbnailimage/jpeg4758https://repositorio.unal.edu.co/bitstream/unal/81068/5/1152703752_2022.pdf.jpgc5b78ffe26a7b57fed7a48a0169e79a1MD55unal/81068oai:repositorio.unal.edu.co:unal/810682023-10-25 10:59:52.091Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |