Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos
Ilustraciones
- Autores:
-
Pisco Ortiz, Yeinny Carolina
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84504
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
Fusarium oxysporum f.sp. lycopersici
Tomate - Enfermedades y plagas
Control biológico
Severidad de la enfermedad
Quelantes de hierro
Respuesta de defensa
Biocontrol
Disease severity
iron chelators
Defense response
Sideróforo
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_aaf4254275661fed23682a7be57ff254 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84504 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
dc.title.translated.eng.fl_str_mv |
Control of Fusarium oxysporum f.sp. lycopersici by supernatants with siderophores of Acinetobacter sp. |
title |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
spellingShingle |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos 630 - Agricultura y tecnologías relacionadas Fusarium oxysporum f.sp. lycopersici Tomate - Enfermedades y plagas Control biológico Severidad de la enfermedad Quelantes de hierro Respuesta de defensa Biocontrol Disease severity iron chelators Defense response Sideróforo |
title_short |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
title_full |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
title_fullStr |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
title_full_unstemmed |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
title_sort |
Control de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos |
dc.creator.fl_str_mv |
Pisco Ortiz, Yeinny Carolina |
dc.contributor.advisor.none.fl_str_mv |
Amaya Gómez, Carol Viviana Gonzalez Almario, Adriana |
dc.contributor.author.none.fl_str_mv |
Pisco Ortiz, Yeinny Carolina |
dc.contributor.orcid.spa.fl_str_mv |
0000-0003-1742-5753 0000-0002-8423-8432 |
dc.contributor.cvlac.spa.fl_str_mv |
Pisco Ortiz, Yeinny |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas |
topic |
630 - Agricultura y tecnologías relacionadas Fusarium oxysporum f.sp. lycopersici Tomate - Enfermedades y plagas Control biológico Severidad de la enfermedad Quelantes de hierro Respuesta de defensa Biocontrol Disease severity iron chelators Defense response Sideróforo |
dc.subject.agrovoc.none.fl_str_mv |
Fusarium oxysporum f.sp. lycopersici Tomate - Enfermedades y plagas |
dc.subject.lemb.none.fl_str_mv |
Control biológico |
dc.subject.proposal.spa.fl_str_mv |
Severidad de la enfermedad Quelantes de hierro Respuesta de defensa Biocontrol |
dc.subject.proposal.eng.fl_str_mv |
Disease severity iron chelators Defense response |
dc.subject.wikidata.none.fl_str_mv |
Sideróforo |
description |
Ilustraciones |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-10 |
dc.date.accessioned.none.fl_str_mv |
2023-08-09T14:07:57Z |
dc.date.available.none.fl_str_mv |
2023-08-09T14:07:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84504 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84504 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agrios, G. N. (2005). Plant Pathology. Elsevier. Aguado-Santacruz, G., Moreno-Gómez, B., Jimenez, B., & Moya, E. (2012). Impacto de los sideróforos microbianos y fitosideróforos en la asimilación del hierro por las plantas: Una Síntesis. Revista Fitotecnia Mexicana, 35, 9-21. https://doi.org/10.35196/rfm.2012.1.9 Aguilar, M. O., Álvarez, F., Medeot, D., Jofré, E., Semorile, L., & Pistorio, M. (2021). Screening of epiphytic rhizosphere-associated bacteria in Argentinian Malbec and Cabernet-Sauvignon vineyards for potential use as biological fertilisers and pathogen-control agents. OENO One, 55(4), 145-157. https://doi.org/10.20870/oeno-one.2021.55.4.4655 Al Atrouni, A., Joly-Guillou, M.-L., Hamze, M., & Kempf, M. (2016). Reservoirs of Non-baumannii Acinetobacter Species. Frontiers in Microbiology, 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.00049 Al-Askar, A. A., Saber, W. I. A., Ghoneem, K. M., Hafez, E. E., & Ibrahim, A. A. (2021). Crude Citric Acid of Trichoderma asperellum: Tomato Growth Promotor and Suppressor of Fusarium oxysporum f. sp. lycopersici. Plants, 10(2), 222. https://doi.org/10.3390/plants10020222 Aleaghaee, S., Rezaee, S., Ebadi, M., & Zamanizadeh, H. (2019). Biological control of Fusarium oxysporum f. Sp. Lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. Journal of Microbial World, 12(2), 125-138. Alvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., Encinas-Basurto, D., Alvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., & Encinas-Basurto, D. (2020). Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia, 22(3), 73-80. https://doi.org/10.18633/biotecnia.v22i3.952 Alves-Júnior, M., de Sousa, F. O., Silva, T. F., Albino, U. B., Garcia, M. G., Moreira, S. M. C. de O., & Vieira, M. R. da S. (2021). Functional and morphological analysis of isolates of phylloplane and rhizoplane endophytic bacteria interacting in different cocoa production systems in the Amazon. Current Research in Microbial Sciences, 2, 100039. https://doi.org/10.1016/j.crmicr.2021.100039 Amaya-Gómez, C. V., Hirsch, A. M., & Soto, M. J. (2015). Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiology, 15, 58. https://doi.org/10.1186/s12866-015-0390-z Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2-3), 215-237. https://doi.org/10.1016/S0168-6445(03)00055-X Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75. https://doi.org/10.3354/ame01753 Argüello-Navarro, A. Z., & Moreno-Rozo, L. Y. (2014). Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas del cultivo de cacao (Theobroma cacao L.). Acta Agronómica, 63(3), 238-245. https://doi.org/10.15446/acag.v63n3.41033 Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3), 388-398. Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6), 673-677. Arya, N., Rana, A., Rajwar, A., Sahgal, M., & Sharma, A. (2018). Biocontrol Efficacy of Siderophore Producing Indigenous Pseudomonas Strains Against Fusarium Wilt in Tomato. National Academy Science Letters, 41. https://doi.org/10.1007/s40009-018-0630-5 Ascencio-Álvarez, A., López-Benítez, A., Borrego-Escalante, F., Rodríguez-Herrera, S. A., Flores-Olivas, A., Jiménez-Díaz, F., & Gámez-Vázquez, A. J. (2008). Marchitez Vascular del Tomate: I. Presencia de Razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista mexicana de fitopatología, 26(2), 114-120. Aznar, A., Chen, N., Rigault, M., Riache, N., Joseph, D., Desmaële, D., Mouille, G., Boutet, S., Soubigou-Taconnat, L., Renou, J.-P., Thomine, S., Expert, D., & Dellagi, A. (2014). Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W]. Plant physiology, 164. https://doi.org/10.1104/pp.113.233585 Aznar, A., Chen, N. W. G., Thomine, S., & Dellagi, A. (2015). Immunity to plant pathogens and iron homeostasis. Plant Science, 240, 90-97. https://doi.org/10.1016/j.plantsci.2015.08.022 Aznar, A., Patrit, O., Berger, A., & Dellagi, A. (2015). Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii. Molecular Plant Pathology, 16(5), 521-528. https://doi.org/10.1111/mpp.12208 Báez-Valdez, E. P., Carrillo-Fasio, J. A., Báez-Sañudo, M. A., García-Estrada, R. S., Valdez-Torres, J. B., & Contreras-Martínez, R. (2010). Uso de Portainjertos Resistentes para el Control de la Fusariosis (Fusarium oxysporum f. Sp. Lycopersici Snyder & Hansen raza 3) del Tomate (Lycopersicon esculentum Mill) en Condiciones de MallaSombra. Revista mexicana de fitopatología, 28(2), 111-123. Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., & Nicot, P. C. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 6, 566. https://doi.org/10.3389/fpls.2015.00566 Bardin, M., & Nicot, P. (2018). Is the development of resistance to biological control among plant pathogens possible? Baysal, Ö., Siragusa, M., İkten, H., Polat, İ., Gümrükcü, E., Yigit, F., Carimi, F., & Teixeira da Silva, J. A. (2009). Fusarium oxysporum f. Sp. Lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology, 74(1), 68-75. https://doi.org/10.1016/j.pmpp.2009.09.008 Betoudji, F., Abd El Rahman, T., Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A Siderophore Analog of Fimsbactin from Acinetobacter Hinders Growth of the Phytopathogen Pseudomonas syringae and Induces Systemic Priming of Immunity in Arabidopsis thaliana. Pathogens, 9(10), 806. https://doi.org/10.3390/pathogens9100806 Betoudji, F., Rahman, T. A. El, Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A siderophore analog of fimsbactin from acinetobacter hinders growth of the phytopathogen pseudomonas syringae and induces systemic priming of immunity in arabidopsis thaliana. Pathogens, 9(10), 1-12. https://doi.org/10.3390/pathogens9100806 Binh, P., Viet Tru, N., Dung, V., Thoa, N., Thao, P., Ha, T., & Thang, V. (2017). Bacteria in Wooden Box Fermentation of Cocoa in Daklak, Vietnam. Journal of Microbiology & Experimentation, 5. https://doi.org/10.15406/jmen.2017.05.00176 Bodah, E. (2017). Root Rot Diseases in Plants: A Review of Common Causal Agents and Management Strategies. Agricultural Research & Technology: Open Access Journal, 5. https://doi.org/10.19080/ARTOAJ.2017.05.555661 Bonneau, A., Roche, B., & Schalk, I. (2020). Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: An intricate interacting network including periplasmic and membrane proteins. Scientific Reports, 10, 120. https://doi.org/10.1038/s41598-019-56913-x Bourigault, Y., Rodrigues, S., Crépin, A., Chane, A., Taupin, L., Bouteiller, M., Dupont, C., Merieau, A., Konto-Ghiorghi, Y., Boukerb, A. M., Turner, M., Hamon, C., Dufour, A., Barbey, C., & Latour, X. (2021). Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. International Journal of Molecular Sciences, 22(15), 8241. https://doi.org/10.3390/ijms22158241 Burbano-Figueroa, Ó. (2020). Resistencia de plantas a patógenos: Una revisión sobre los conceptos de resistencia vertical y horizontal. Revista Argentina de Microbiología, 52(3), 245-255. https://doi.org/10.1016/j.ram.2020.04.006 Cáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086 Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765-779. https://doi.org/10.1046/j.1365-2958.2003.03465.x Cardona, G. I., Arcos, A. L., & Murcia, U. G. (2005). Abundancia de actinomicetes y micorrizas arbusculares en paisajes fragmentados de la Amazonia colombiana*. Agronomía Colombiana, 23(2), 317-326 Cardona-Piedrahita, L., & Zapata, J. (2019). Comparación de métodos de inoculación de Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Snyder & Hansen, causante del marchitamiento vascular del tomate. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 227. https://doi.org/10.18257/raccefyn.854 Carmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., & Soto-Suárez, M. (2020). Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens, 9(1), 70. https://doi.org/10.3390/pathogens9010070 Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. Sp. Lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3), e12822-e12822. https://doi.org/10.17584/rcch.2021v15i3.12822 Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy, 9(3), 121. https://doi.org/10.3390/agronomy9030121 Chaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 25, 1919-1928. https://doi.org/10.1007/s11274-009-0090-7 Chiang, K.-S., Liu, H. I., Tsai, J. W., Tsai, J. R., & Bock, C. (2017). A discussion on disease severity index values. Part II: Using the disease severity index for null hypothesis testing. Annals of Applied Biology, 171, 490-505. https://doi.org/10.1111/aab.12396 Constantin, M. E., de Lamo, F. J., Vlieger, B. V., Rep, M., & Takken, F. L. W. (2019). Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 10, 979. https://doi.org/10.3389/fpls.2019.00979 Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. Sp. Lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158. https://doi.org/10.1016/j.biocontrol.2019.104158 Cui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11. https://doi.org/10.1016/j.molp.2018.06.005 de Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.00037 De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in Immunology, 39(11), 937-950. https://doi.org/10.1016/j.it.2018.09.006 De Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International journal of molecular sciences, 16, 23970-23993. https://doi.org/10.3390/ijms161023970 Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x Delgado-Jarana, J., Martínez-Rocha, A. L., Roldán-Rodriguez, R., Roncero, M. I. G., & Di Pietro, A. (2005). Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genetics and Biology: FG & B, 42(1), 61-72. https://doi.org/10.1016/j.fgb.2004.10.001 Delgado-Ramírez, C. S., Hernández-Martínez, R., & Sepúlveda, E. (2021). Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 11(3), 579. https://doi.org/10.3390/agronomy11030579 Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., & Expert, D. (2009). Microbial Siderophores Exert a Subtle Role in Arabidopsis during Infection by Manipulating the Immune Response and the Iron Status. Plant Physiology, 150(4), 1687-1696. https://doi.org/10.1104/pp.109.138636 Di Pietro, A., García-MacEira, F. I., Méglecz, E., & Roncero, M. I. (2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 39(5), 1140-1152. Díaz-García, Huang, S., Spröer, C., Sierra-Ramírez, R., Bunk, B., Overmann, J., & Jiménez, D. J. (2021). Dilution-to-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Applied and Environmental Microbiology, 87(2), e02427-20. https://doi.org/10.1128/AEM.02427-20 Dimkpa, C., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 41, 154-162. https://doi.org/10.1016/j.soilbio.2008.10.010 Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10(1), 9-17. https://doi.org/10.1038/nchembio.1416 Duffy, B. K., & Défago, G. (1999). Environmental Factors Modulating Antibiotic and Siderophore Biosynthesis by Pseudomonas fluorescens Biocontrol Strains. Applied and Environmental Microbiology, 65(6), 2429-2438. Dumas, Z., Ross-Gillespie, A., & Kümmerli, R. (2013). Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proceedings. Biological Sciences, 280(1764), 20131055. https://doi.org/10.1098/rspb.2013.1055 Duyvesteijn, R., van Wijk, R., Boer, Y., Rep, M., Cornelissen, B., & Haring, M. (2005). Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular microbiology, 57, 1051-1063. https://doi.org/10.1111/j.1365-2958.2005.04751.x Ehlert, G., Taraz, K., & Budzikiewicz, H. (1994). Serratiochelin, a New Catecholate Siderophore from Serratia marcescens. Zeitschrift Für Naturforschung C, 49(1-2), 11-17. https://doi.org/10.1515/znc-1994-1-203 Elshahawy, I., Saied, N., Abd-El-Kareem, F., & Morsy, A. (2018). Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. Journal of Plant Pathology, 100. https://doi.org/10.1007/s42161-018-0113-z Esmeraldas García, G. A. (2019). Actividad antagonista de Rizobacterias Promotoras del Crecimiento Vegetal (PGPR) a Moniliophthora perniciosa (Escoba de bruja) en Cacao (Theobroma cacao L.). https://repositorio.uteq.edu.ec/handle/43000/3627 Essarioui, A., Mokrini, F., & Afechtal, M. (2016). Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. Sp. Lycopersici- a review. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 4, 66-74. Fang, Q., Fan, Z., Xie, Y., Wang, X., Li, K., & Liu, Y. (2016). Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Frontiers in Plant Science, 7. https://www.frontiersin.org/article/10.3389/fpls.2016.01487 Farag, H., Abdou, Z., Salama, D., Ibrahim, M., & Srour, H. (2011). Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences, 56, 1-7. https://doi.org/10.1016/j.aoas.2011.05.007 Fasio, J. A. C., Rodríguez, T. de J. M., Estrada, R. S. G., Ortega, J. E. C., Zequera, I. M., & Barajas, A. J. S. (2003). Razas de Fusarium oxysporum f. Sp. Lycopersici Snyder y Hansen, en Tomate (Lycopersicon esculentum Mill.) en el Valle de Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología, 21(2), 123-127. Felsenstein, J. (1985). Phylogenies and the Comparative Method. The American Naturalist, 125(1), 1-15. Filiz, E., & Kurt, F. (2019). FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: Genome-wide identification and bioinformatics analyses. Journal of Plant Biochemistry and Biotechnology, 28(2), 143-157. https://doi.org/10.1007/s13562-019-00497-0 Foughalia, A., Yousra, B., Chandeysson, C., Djedidi, M., Tahirine, M., Kamel, A., & Nicot, P. (2022). Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control, 32. https://doi.org/10.1186/s41938-022-00511-z Ganger, M. T., Dietz, G. D., & Ewing, S. J. (2017). A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics, 18(1), 534. https://doi.org/10.1186/s12859-017-1949-5 Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., Gong, X., Chang, H., Xie, S., Liu, J., Yue, J., Xu, J., Zhang, G., Deng, Y., Wang, E., … He, Z. (2021). Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 184(21), 5391-5404.e17. https://doi.org/10.1016/j.cell.2021.09.009 Garzón, L. P. (2016). Importancia de las micorrizas arbusculares (MA) para un uso sostenible del suelo en la amazonia Colombiana. Revista Luna Azul, 42, 217-234. Goel, V., Kapil, A., Das, B., & Rao, D. (1998). Influence of iron on growth and extracellular products of Acinetobacter baumannii. Japanese journal of medical science & biology, 51, 25-33. https://doi.org/10.7883/yoken1952.51.25 González Marquetti, I., Arias, Y., & Peteira, B. (2012). ASPECTOS GENERALES DE LA INTERACCIÓN Fusarium oxysporum f. Sp. Lycopersici-TOMATE. Revista de Protección Vegetal, 27, 1-7. González-Chávez, M. C. A. (2017). Fitorremediación asistida por microorganismos: Enfásis en bacterias promotoras del crecimiento de plantas. Agro Productividad, 10(4), Article 4. https://revistaagroproductividad.org/index.php/agroproductividad/article/view/1000 Guerinot, M. L. (1994). Microbial Iron Transport. Annual Review of Microbiology, 48(1), 743-772. https://doi.org/10.1146/annurev.mi.48.100194.003523 Gulati, A., Vyas, P., Rahi, P., & Kasana, R. (2009). Plant Growth-Promoting and Rhizosphere-Competent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current microbiology, 58, 371-377. https://doi.org/10.1007/s00284-008-9339-x Guo, L., Zhao, G., Xu, J., Kistler, H. C., Gao, L., & Ma, L. (2016). Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. The New Phytologist, 211(2), 527-541. https://doi.org/10.1111/nph.13912 Hamuel, J. D., Ndakidemi, P., Human, I., & Benade, S. (2011). The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes and environments / JSME, 26, 101-112. https://doi.org/10.1264/jsme2.ME10179 Heo, A. Y., Koo, Y. M., & Choi, H. W. (2022). Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. Biology, 11(4), 619. https://doi.org/10.3390/biology11040619 Herlihy, J. H., Long, T. A., & McDowell, J. M. (2020). Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 295(39), 13444-13457. https://doi.org/10.1074/jbc.REV120.010856 Hernandez-Montiel, L. G., Gutierrez-Perez, E. D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, R. G., & Rincon-Enriquez, G. (2018). Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biology and Technology, 139, 31-37. https://doi.org/10.1016/j.postharvbio.2018.01.015 Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. https://doi.org/10.1039/b906679a Hipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología, 49(4), 356-365. https://doi.org/10.1016/j.ram.2017.04.003 Hirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum ff. Sp. Lycopersici and radicis-lycopersici and races of F. oxysporum f. Sp. Lycopersici. Journal of General Plant Pathology, 72(5), 273-283. https://doi.org/10.1007/s10327-006-0287-7 Höfte, M., & Bakker, P. (2007). Competition for Iron and Induced Systemic Resistance by Siderophores of Plant Growth Promoting Rhizobacteria (pp. 121-133). https://doi.org/10.1007/978-3-540-71160-5_6 Holden, V. I., & Bachman, M. A. (2015). Diverging roles of bacterial siderophores during infection. Metallomics, 7(6), 986-995. https://doi.org/10.1039/c4mt00333k Houterman, P. M., Ma, L., van Ooijen, G., de Vroomen, M. J., Cornelissen, B. J. C., Takken, F. L. W., & Rep, M. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. The Plant Journal: For Cell and Molecular Biology, 58(6), 970-978. https://doi.org/10.1111/j.1365-313X.2009.03838.x Hsiao, P.-Y., Cheng, C.-P., Koh, K. W., & Chan, M.-T. (2017). The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. Carotovorum via an iron-withholding defence system. Scientific Reports, 7(1), 9175. https://doi.org/10.1038/s41598-017-08497-7 Huang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1-3), 110-116. https://doi.org/10.1016/j.febslet.2004.07.064 Huddedar, S. B., Shete, A. M., Tilekar, J. N., Gore, S. D., Dhavale, D. D., & Chopade, B. A. (2002). Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in acinetobacter strains from rhizosphere of wheat. Applied Biochemistry and Biotechnology, 102-103(1-6), 21-39. https://doi.org/10.1385/abab:102-103:1-6:021 Hurtado, E., González-Vallejos, F., Roper, C., Bastías, E., & Mazuela, P. (2017). Propuesta para la determinación del contenido de clorofila en hojas de tomate. Idesia (Arica), 35, 129-130. https://doi.org/10.4067/S0718-34292017000400129 Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. (2008). Characterization of Plant Growth–Promoting Traits of Bacteria Isolated from Larval Guts of Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Current microbiology, 56, 327-333. https://doi.org/10.1007/s00284-007-9086-4 Jaramillo Noreña, J., Rodríguez, V. P., Guzmán, M., & Zapata, M. (2006). El cultivo de tomate bajo invernadero. http://localhost:8080/handle/11348/3824 J.g, M., C, K., & F, S. (1990). Additions to the host range of Fusarium oxysporum f. Sp. Radicis-lycopersici. Plant Disease.https://scholar.google.com/scholar_lookup?title=Additions+to+the+host+range+of+Fusarium+oxysporum+f.+sp.+radicis-lycopersici.&author=Menzies+J.G.&publication_year=1990 Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286 Kang, S.-M., Khan, A., Hamayun, M., Shinwari, Z., Kim, Y.-H., Joo, G.-J., & Lee, I.-J. (2012). Acinetobacter Calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Abstracts of papers, 44, 365-372. Kang, Y.-S., Jung, J., Jeon, C. O., & Park, W. (2011). Acinetobacter oleivorans sp. Nov. Is capable of adhering to and growing on diesel-oil. Journal of Microbiology (Seoul, Korea), 49(1), 29-34. https://doi.org/10.1007/s12275-011-0315-y Karthika, S., Varghese, S., & Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10(7), 320. https://doi.org/10.1007/s13205-020-02306-1 Khalil, Md. M. R., Fierro-Coronado, R. A., Peñuelas-Rubio, O., Villa-Lerma, A. G., Plascencia-Jatomea, R., Félix-Gastélum, R., & Maldonado-Mendoza, I. E. (2021). Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi Journal of Biological Sciences, 28(12), 7460-7471. https://doi.org/10.1016/j.sjbs.2021.08.043 Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator – Siderophore: A review. Microbiological Research, 212-213, 103-111. https://doi.org/10.1016/j.micres.2017.10.012 Kieu, N. P., Aznar, A., Segond, D., Rigault, M., Simond-Côte, E., Kunz, C., Soulie, M.-C., Expert, D., & Dellagi, A. (2012). Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Molecular Plant Pathology, 13(8), 816-827. https://doi.org/10.1111/j.1364-3703.2012.00790.x Kim, K.-J., Jang, J.-H., & Yang, Y.-J. (2017). Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W. Korean Journal of Microbiology, 53(2), 97-102. https://doi.org/10.7845/kjm.2017.7023 Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10. https://www.frontiersin.org/article/10.3389/fpls.2019.00845 Kwon, H.-D., & Song, H.-G. (2014). Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant. The Korean Journal of Microbiology, 50, 302-307. https://doi.org/10.7845/kjm.2014.4050 Lairini, K., Perez-Espinosa, A., Pineda, M., & Ruiz-Rubio, M. (1996). Purification and characterization of tomatinase from Fusarium oxysporum f. Sp. Lycopersici. Applied and environmental microbiology, 62, 1604-1609. https://doi.org/10.1128/AEM.62.5.1604-1609.1996 Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I., & Vasil, M. L. (2002). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 99(10), 7072-7077. https://doi.org/10.1073/pnas.092016999 Leite, H. A. C., Silva, A. B., Gomes, F. P., Gramacho, K. P., Faria, J. C., de Souza, J. T., & Loguercio, L. L. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97(6), 2639-2651. https://doi.org/10.1007/s00253-012-4574-2 Leiva, E., Osorio García, M. A., & Ramírez, R. (2013). Microorganismos asociados a la rizosfera del cacao (Theobroma cacao) en condiciones de bosque húmedo premontano (Bh-PM). Suelos Ecuatoriales, 43, 35-45. Lievens, B., van Baarlen, P., Verreth, C., van Kerckhove, S., Rep, M., & Thomma, B. P. H. J. (2009). Evolutionary relationships between Fusarium oxysporum f. Sp. Lycopersici and F. oxysporum f. Sp. Radicis-lycopersici isolates inferred from mating type, elongation factor-1alpha and exopolygalacturonase sequences. Mycological Research, 113(Pt 10), 1181-1191. https://doi.org/10.1016/j.mycres.2009.07.019 Lin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30-39. https://doi.org/10.1016/j.micres.2018.08.004 Lin, J., Cheng, J., Wang, Y., & Shen, X. (2018). The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Frontiers in Cellular and Infection Microbiology, 8. https://www.frontiersin.org/article/10.3389/fcimb.2018.00230 López-Berges, M. S., Rispail, N., Prados-Rosales, R. C., & Di Pietro, A. (2010). A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. The Plant Cell, 22(7), 2459-2475. https://doi.org/10.1105/tpc.110.075937 López-Díaz, C. (2019). Mecanismos genéticos y moleculares implicados en la plasticidad genómica de Fusarium oxysporum. http://helvia.uco.es/xmlui/handle/10396/18865 Madrid, M. P., Di Pietro, A., & Roncero, M. I. G. (2003). Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology, 47(1), 257-266. https://doi.org/10.1046/j.1365-2958.2003.03299.x Maindad, D. V., Kasture, V. M., Chaudhari, H., Dhavale, D. D., Chopade, B. A., & Sachdev, D. P. (2014). Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32. Indian Journal of Microbiology, 54(3), 315-322. https://doi.org/10.1007/s12088-014-0446-z Mantilla-Paredes, A. J., Cardona, G. I., Peña-Venegas, C. P., Murcia, U., Rodríguez, M., & Zambrano, M. M. (2009). Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Revista de Biología Tropical, 57(4), 915-927. Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M. J., Jung, S. C., Pascual, J. A., & Pozo, M. J. (2013). Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4, 206. https://doi.org/10.3389/fpls.2013.00206 Martín-Urdíroz, M., Roncero, M. I. G., González-Reyes, J. A., & Ruiz-Roldán, C. (2008). ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryotic Cell, 7(1), 112-121. https://doi.org/10.1128/EC.00347-07 McRose, D., Baars, O., Seyedsayamdost, M., & Morel, F. (2018). Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proceedings of the National Academy of Sciences, 115, 201805791. https://doi.org/10.1073/pnas.1805791115 Mehnert, M., Retamal-Morales, G., Schwabe, R., Vater, S., Heine, T., Levicán, G. J., Schlömann, M., & Tischler, D. (2017). Revisiting the Chrome Azurol S Assay for Various Metal Ions. Solid State Phenomena, 262, 509-512. https://doi.org/10.4028/www.scientific.net/SSP.262.509 Meziane, H., Sluis, I. van der, Loon, L. C. van, Höfte, M., & Bakker, P. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular plant pathology. https://doi.org/10.1111/j.1364-3703.2005.00276.x Michavila, G., Adler, C., De Gregorio, P. R., Lami, M. J., Caram Di Santo, M. C., Zenoff, A. M., de Cristobal, R. E., & Vincent, P. A. (2017). Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biology (Stuttgart, Germany), 19(4), 608-617. https://doi.org/10.1111/plb.12556 Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. https://doi.org/10.1111/j.1364-3703.2009.00538.x Milagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6. https://doi.org/10.1016/s0167-7012(99)00028-7 Modarresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Mosadegh, E., & Mansouri, S. (2015). Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence, 6(2), 152-161. https://doi.org/10.1080/21505594.2014.1003001 Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., Cano Ríos, P., Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707 Müller, G., Matzanke, B. F., & Raymond, K. N. (1984). Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. Journal of Bacteriology, 160(1), 313-318. https://doi.org/10.1128/jb.160.1.313-318.1984 Muñoz Macías, B. I. (2019). Rizobacterias promotoras de crecimiento (PGPR) en el biocontrol del nematodo Meloidogyne incognita y Fusarium oxysporum f. Sp. Lycopersici en el cultivo de tomate (Lycopersicum esculentum). https://repositorio.uteq.edu.ec/handle/43000/3634 Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Clement Tsui, K. M., Srinivas, C., Niranjana, S. R., & Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. Sp. Lycopersici. Scientific Reports, 6(1), 21367. https://doi.org/10.1038/srep21367 Nishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11. https://www.frontiersin.org/article/10.3389/fmicb.2020.01298 Nogales, J., Domínguez-Ferreras, A., Amaya-Gómez, C. V., van Dillewijn, P., Cuéllar, V., Sanjuán, J., Olivares, J., & Soto, M. J. (2010). Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics, 11(1), 157. https://doi.org/10.1186/1471-2164-11-157 Nüsslein, K. (2012, enero 11). Amazon rainforest microbial observatory: Functional diversity, taxonomic diversity and response to ecosystem conversion. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403-1414. https://doi.org/10.1111/1462-2920.13023 Payne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329-344. https://doi.org/10.1016/0076-6879(94)35151-1 Pedroza-Sandoval, A., & Gaxiola, J. (2009). Análisis del área bajo la curva del progreso de las enfermedades (ABCPE) en patosistemas agrícolas (pp. 180-189). https://doi.org/10.13140/2.1.4475.7767 Pena, R. T., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T. K., & Tomás, M. (2019). Relationship Between Quorum Sensing and Secretion Systems. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.01100 Penwell, W. F., DeGrace, N., Tentarelli, S., Gauthier, L., Gilbert, C. M., Arivett, B. A., Miller, A. A., Durand-Reville, T. F., Joubran, C., & Actis, L. A. (2015). Discovery and Characterization of New Hydroxamate Siderophores, Baumannoferrin A and B, produced by Acinetobacter baumannii. Chembiochem: A European Journal of Chemical Biology, 16(13), 1896-1904. https://doi.org/10.1002/cbic.201500147 Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340 Pietro, A., Gonzalez-Roncero, M., & Roldán, M. (2009). From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection (Vols. 181-200, pp. 181-200). https://doi.org/10.1007/978-3-540-87407-2_10 Popat, R., Harrison, F., da Silva, A., Easton, S., Mcnally, L., Williams, P., & Diggle, S. (2017). Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. https://doi.org/10.1101/053918 Popovic, Z., Maier, V., Avramov, M., Uzelac, I., Gosic-Dondo, S., Blagojević, D., & Kostál, V. (2021). Acclimations to Cold and Warm Conditions Differently Affect the Energy Metabolism of Diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.). Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.768593 Prashant, D., Makarand, R. R., Bhushan, L., & Sudhir, B. (2009). Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. https://doi.org/10.21161/mjm.13508 Prathibha, K., & Sumathi, S. (2008). Biodegradation of mixture containing monohydroxybenzoate isomers by Acinetobacter calcoaceticus. World Journal of Microbiology and Biotechnology, 24(6), 813-823. https://doi.org/10.1007/s11274-007-9545-x Prihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, 9. https://www.frontiersin.org/article/10.3389/fmicb.2018.01226 Purkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLOS ONE, 13, e0191761. https://doi.org/10.1371/journal.pone.0191761 Rada Cuentas, J. (2016). Acinetobacter un patógeno actual. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48. Radó, J., Kaszab, E., Benedek, T., Kriszt, B., & Szoboszlay, S. (2019). First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiologica et Immunologica Hungarica, 66(1), 113-130. https://doi.org/10.1556/030.66.2019.004 Radzki, W., Gutierrez Mañero, F. J., Algar, E., Lucas García, J. A., García-Villaraco, A., & Ramos Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330. https://doi.org/10.1007/s10482-013-9954-9 Ranjan, K., Paula, F. S., Mueller, R. C., Jesus, E. da C., Cenciani, K., Bohannan, B. J. M., Nüsslein, K., & Rodrigues, J. L. M. (2015). Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Frontiers in Microbiology, 6. https://www.frontiersin.org/article/10.3389/fmicb.2015.00779 Rehman, R., Waheed, K., Nawaz, H., & Hanif, M. A. (2019). Medicinal Plants of South Asia, Chapter 46—Tomato (p. 768). https://doi.org/10.1016/B978-0-08-102659-5.00046-X Restrepo, S., Henao, C., Galvis, L., Pérez, J., Hoyos, R., & Granada, D. (2020). Siderophore containing extract from Serratia plymuthica AED38 as an efficient strategy against avocado root rot caused by Phytophthora cinnamomi. Biocontrol Science and Technology, 31, 1-15. https://doi.org/10.1080/09583157.2020.1846162 Ríos, A. G., Vidal, C. C. R., Montes, E. R., & López, A. S. (2017). Residuos de plaguicidas en tomate (Solanum lycopersicum) comercializado en Armenia, Colombia. Vitae, 24(2 (2)), 68-79. https://doi.org/10.17533/udea.vitae.v24n2(2)a08 Rispail, N., & Pietro, A. (2009). Fusarium oxysporum Ste12 Controls Invasive Growth and Virulence Downstream of the Fmk1 MAPK Cascade. Molecular plant-microbe interactions : MPMI, 22, 830-839. https://doi.org/10.1094/MPMI-22-7-0830 Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. da C., Paula, F. S., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., Tiedje, J. M., Bohannan, B. J. M., & Nüsslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 988-993. https://doi.org/10.1073/pnas.1220608110 Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566. Rongai, D., Pulcini, P., Pesce, B., & Milano, F. (2017). Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. European Journal of Plant Pathology, 147(1), 229-238. https://doi.org/10.1007/s10658-016-0994-7 Rooney, A. P., Dunlap, C. A., & Flor-Weiler, L. B. (2016). Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa). International Journal of Systematic and Evolutionary Microbiology, 66(9), 3566-3572. https://doi.org/10.1099/ijsem.0.001234 Rosconi, F., Davyt, D., Martínez, V., Martínez, M., Abin-Carriquiry, J. A., Zane, H., Butler, A., de Souza, E. M., & Fabiano, E. (2013). Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environmental Microbiology, 15(3), 916-927. https://doi.org/10.1111/1462-2920.12075 Sachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S., & Chopade, B. (2010). Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiological Research, 165(8), 627-638. https://doi.org/10.1016/j.micres.2009.12.002 Safdarpour, F., & Khodakaramian, G. (2019). Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. 7, 77-90. Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 23(5), 3984-3999. https://doi.org/10.1007/s11356-015-4294-0 Saijo, Y., Loo, E. P.-I., & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. The Plant Journal: For Cell and Molecular Biology, 93(4), 592-613. https://doi.org/10.1111/tpj.13808 Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 Sajeed Ali, S., & Vidhale, N. (2013). Bacterial Siderohore and their Application: A review. Int.J.Curr.Microbiol.App.Sci, 2, 303-312. Santos, S., Neto, I. F. F., Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2014). Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Applied Biochemistry and Biotechnology, 172(1), 549-560. https://doi.org/10.1007/s12010-013-0562-y Santoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, Ma. D. C., Peña Cabriales, J., & Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28, 53-60. Sayyed, Chincholkar, S., Reddy, M., Gangurde, Dr. N., Patel, P., & Maheshwari, D. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. En Bacteria in Agrobiology: Disease Management (pp. 449-471). https://doi.org/10.1007/978-3-642-33639-3_17 Sayyed, R., Badgujar, M., Sonawane, H., Mhaske, M., & Chincholkar, S. (2005). Production of microbial iron chelators (siderophores) by Fluorescent pseudomonads. Indian Journal of Biotechnology Vol, 4, 484-490. Sayyed, R., & Reddy, M. (2011). Siderophore based heavy metal resistant green fungicides for sustainable environment (pp. 443-445). Sayyed, R. Z., & Patel, P. R. (2011). Biocontrol Potential of Siderophore Producing Heavy Metal Resistant Alcaligenes sp. And Pseudomonas aeruginosa RZS3 vis-à-vis Organophosphorus Fungicide. Indian Journal of Microbiology, 51(3), 266-272. https://doi.org/10.1007/s12088-011-0170-x Schandry, N. (2017). A Practical Guide to Visualization and Statistical Analysis of R. solanacearum Infection Data Using R. Frontiers in Plant Science, 8. https://www.frontiersin.org/article/10.3389/fpls.2017.00623 Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14-119 Schmitt, S., Maréchaux, I., Chave, J., Fischer, F. J., Piponiot, C., Traissac, S., & Hérault, B. (2020). Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. Journal of Ecology, 108(3), 831-843. https://doi.org/10.1111/1365-2745.13320 Schwyn, B., & Neilands, J. B. (1987a). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9 Schwyn, B., & Neilands, J. B. (1987b). Universal CAS assay for the detection and determination of siderophores. Analytical biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9 Shapiro, J. A., & Wencewicz, T. (2016). Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping. ACS infectious diseases. https://doi.org/10.1021/acsinfecdis.5b00145 Sheldon, J. R., & Skaar, E. P. (2020). Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathogens, 16(10), e1008995. https://doi.org/10.1371/journal.ppat.1008995 Shi, Y., Lou, K., & Li, C. X. (2011). Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis. https://doi.org/10.1007/s13199-011-0139-x Shin, B., Park, C., Imlay, J. A., & Park, W. (2018). 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicols. Applied Microbiology and Biotechnology, 102(5), 2323-2335. https://doi.org/10.1007/s00253-018-8791-1 Silva, J. C. da, Santos, L. D. S., Faria, P. S. A., Silva, F. G., Rubio, A., Martins, P. F., & Selari, P. J. R. G. (2021). Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesquisa Agropecuária Tropical, 51. https://www.redalyc.org/journal/2530/253068585042/html/#B50 Singh, P., Singh, J., Ray, S., Rajput, R., Vaishnav, A., Singh, R., & Singh, H. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 126482. https://doi.org/10.1016/j.micres.2020.126482 Singh, R., Biswas, S., Nagar, D., Singh, J., Singh, M., & Mishra, Y. (2015). Sustainable Integrated Approach for Management of Fusarium Wilt of Tomato Caused by Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Synder and Hansen. Sustainable Agriculture Research, 4. https://doi.org/10.5539/sar.v4n1p138 Soares, E. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106. https://doi.org/10.1007/s00253-022-11995-y Solanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585-597. https://doi.org/10.1002/jobm.201200564 Sridevi, M., & Mallaiah, K. (2008). Production of Hydroxamate-Type of Siderophores by Rhizobium strains from Sesbania sesban (L.) Merr. International Journal of Soil Science, 3, 28-34. https://doi.org/10.3923/ijss.2008.28.34 Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26(7), 1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002 Srinivasan, R., Mohankumar, R., Kannappan, A., Karthick Raja, V., Archunan, G., Karutha Pandian, S., Ruckmani, K., & Veera Ravi, A. (2017). Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats. Frontiers in Cellular and Infection Microbiology, 7, 498. https://doi.org/10.3389/fcimb.2017.00498 Stintzi, A., Evans, K., Meyer, J., & Poole, K. (1998). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: LasRllasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiology Letters, 166(2), 341-345. https://doi.org/10.1111/j.1574-6968.1998.tb13910.x Suzuki, W., Sugawara, M., Miwa, K., & Morikawa, M. (2014). Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). Journal of Bioscience and Bioengineering, 118(1), 41-44. https://doi.org/10.1016/j.jbiosc.2013.12.007 Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T., & Ichinose, Y. (2010). The Siderophore Pyoverdine of Pseudomonas syringae pv. Tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection. Journal of Bacteriology, 192(1), 117-126. https://doi.org/10.1128/JB.00689-09 Tejman-Yarden, N., Robinson, A., Davidov, Y., Shulman, A., Varvak, A., Reyes, F., Rahav, G., & Nissan, I. (2019). Delftibactin-A, a Non-ribosomal Peptide With Broad Antimicrobial Activity. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.02377 Thapa, S., & Prasanna, R. (2018). Prospecting the characteristics and significance of the phyllosphere microbiome. Annals of Microbiology, 68(5), 229-245. https://doi.org/10.1007/s13213-018-1331-5 Tian, F., Ding, Y., Zhu, H., Liang-tong, Y., & Du, B. (2009). Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. https://doi.org/10.1590/S1517-83822009000200013 Tian, F., Ding, Y., Zhu, H., Yao, L., Jin, F., & Du, B. (2008). [Screening, identification and antagonistic activity of a siderophore-producing bacteria G-229-21T from rhizosphere of tobacco]. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 48(5), 631-637. Tiwari, V., Rajeswari, M. R., & Tiwari, M. (2019). Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. International Journal of Biological Macromolecules, 125, 1156-1167. https://doi.org/10.1016/j.ijbiomac.2018.12.173 Torres, M. A. (2009). ROS in biotic interactions. Physiologia plantarum, 138, 414-429. https://doi.org/10.1111/j.1399-3054.2009.01326.x Vallejo Cabrera, F. A. (1999). Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/51997 Vásquez-Ramírez, L., & Castaño-Zapata, J. (2017, julio). Manejo integrado de la marchitez vascular del tomate (Fusarium oxysporum f. Sp. Lycopersici (SACC.) W.C. Snyder & H.N. Hansen): Una Revisión. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000200014 Vélez, J. M. bedoya, Castaño, G., & Agudelo, S. O. (2019). Tolerancia al plomo de aislamientos nativos de Pseudomonas spp. De aguas residuales del Valle de Aburrá. Revista Colombiana de Biotecnología, 21(1), 135-143. https://doi.org/10.15446/rev.colomb.biote.v21n1.65146 Verbon, E., Trapet, P., Stringlis, I., Kruijs, S., Bakker, P., & Pieterse, C. (2017). Iron and Immunity. Annual review of phytopathology, 55, 355-375. https://doi.org/10.1146/annurev-phyto-080516-035537 Villa Martínez, A., Pérez-Leal, R., Morales-Morales, H., Basurto-Sotelo, M., Soto-Parra, J., & Martínez-Escudero, E. (2014). Situación actual en el control de Fusarium spp. Y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64, 194-205. https://doi.org/10.15446/acag.v64n2.43358 Villegas, M. E. D. de, Villa, P., & Frías, A. (2002). Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Revista Latinoamericana de Microbiología, 44(3-4), 112-117. Wang, H., & Ng, T. B. (1999). Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sciences, 65(9), 849-856. https://doi.org/10.1016/s0024-3205(99)00083-1 Weakland, D. R., Smith, S. N., Bell, B., Tripathi, A., & Mobley, H. L. T. (2020). The Serratia marcescens Siderophore Serratiochelin Is Necessary for Full Virulence during Bloodstream Infection. Infection and Immunity, 88(8), e00117-20. https://doi.org/10.1128/IAI.00117-20 Wen, Y., Kim, I. H., Son, J.-S., Lee, B., & Kim, K.-S. (2012). Iron and Quorum Sensing Coordinately Regulate the Expression of Vulnibactin Biosynthesis in Vibrio vulnificus. The Journal of biological chemistry, 287, 26727-26739. https://doi.org/10.1074/jbc.M112.374165 Wilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E. L., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 348(1), 320-325. https://doi.org/10.1016/j.bbrc.2006.07.055 Winkelmann, G. (2002). Microbial siderophore-mediated transport. Biochemical Society transactions, 30, 691-696. https://doi.org/10.1042/BST0300691 Wu, H., & Ling, H.-Q. (2019). FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis. Frontiers in Plant Science, 0. https://doi.org/10.3389/fpls.2019.00844 Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., & Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. https://doi.org/10.1016/j.biocontrol.2008.11.004 Yeole, G. J., Kotkar, H. M., Teli, N. P., & Mendki, P. S. (2016). Herbal fungicide to control Fusarium wilt in tomato plants. Biopesticides International, 12(1), 25-35. Yockteng, R., Almeida, A. M. R., Yee, S., Andre, T., Hill, C., & Specht, C. D. (2013). A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. Applications in Plant Sciences, 1(12), 1300070. https://doi.org/10.3732/apps.1300070 Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., & Qu, J. (2017). Optimization of Siderophore Production by Bacillus sp. PZ-1 and Its Potential Enhancement of Phytoextration of Pb from Soil. Journal of Microbiology and Biotechnology, 27(8), 1500-1512. https://doi.org/10.4014/jmb.1705.05021 Yu, Teng, C., Liang, J., Song, T., Dong, L., Bai, X., Jin, Y., & Qu, J. (2017). Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. Journal of Microbiology (Seoul, Korea), 55(11), 877-884. https://doi.org/10.1007/s12275-017-7191-z Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47(2), 138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001 Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 49(2), 269-278. https://doi.org/10.1016/j.bjm.2017.06.007 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
117 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84504/2/1121832933.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/84504/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84504/3/1121832933.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
38cdc97e739952a48f27882d3074582c eb34b1cf90b7e1103fc9dfd26be24b4a 870f5ed8fad69e4beb12753e5a56d3d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089738943987712 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Amaya Gómez, Carol Vivianaaa4c43533727362511d26c4bf058e610Gonzalez Almario, Adriana2095714a2ee0a49a87d2319bc2e287b4600Pisco Ortiz, Yeinny Carolina8a265659e8ebb127959744c252b1ec660000-0003-1742-57530000-0002-8423-8432Pisco Ortiz, Yeinny2023-08-09T14:07:57Z2023-08-09T14:07:57Z2022-10-10https://repositorio.unal.edu.co/handle/unal/84504Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEl marchitamiento vascular del tomate causado por Fusarium oxysporum f. sp. lycopersici (Fol) es una de las enfermedades más limitantes del cultivo. El uso de fungicidas sistémicos y variedades resistentes a ciertas razas del patógeno no ha sido suficiente para su manejo. En este estudio se aislaron microrganismos productores de sideróforos con potencial biocontrolador sobre la cepa Fol59. Los aislamientos fueron obtenidos de muestras provenientes de la rizósfera y filósfera de árboles de cacao silvestre de cinco zonas de la Amazonía Colombiana. Los quince aislamientos seleccionados por su eficiencia en la síntesis de sideróforos, fueron clasificados dentro de los géneros Acinetobacter sp. (9), Bacillus sp. (2), Delftia sp. (1), Serratia sp. (1), Pseudomonas sp. (1) y Herbaspirillum sp. (1). La aplicación previa a la infección con Fol59 de los sobrenadantes con alto contenido de sideróforos (SodSid), de cinco de los aislamientos de Acinetobacter sp., logró disminuir el AUDPC de la severidad de la enfermedad hasta en un 45 %, siendo el aislamiento CBIO117 el que mayor actividad biocontroladora generó. Finalmente, se observó que los SodSid de Acinetobacter CBIO117 indujeron la expresión de los genes PR1 y ERF1 marcadores de las vías hormonales del Ácido Salicílico y Etileno en la planta respectivamente, pero no del gen (MYC2), factor de transcripción de los genes de defensa dependientes del Ácido Jasmónico. Sin embargo, en las plantas estimuladas con los SodSid CBIO117 e infectadas con Fol59 se indujo la expresión de manera diferencial del gen MYC2, destacando la activación de la defensa dependiente del ácido Jasmónico. Estos resultados demuestran el potencial biocontrolador que tienen los sobrenadantes con sideróforos secretados por aislamientos del género Acinetobacter sp. en la disminución del marchitamiento vascular del tomate, actuando como posibles elicitores de la respuesta de defensa de la planta. (texto tomado de la fuente)The vascular wilt disease of tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of systemic fungicides and varieties resistant to certain races of the pathogen have not provided an adequate control. In this study, siderophore-producing microorganisms with biocontrol potential against Fol were isolated from rhizosphere and phyllosphere samples taken from wild cocoa trees in five different locations of the Colombian Amazon. The fifteen isolates selected for being representative of the sampling zones and showing greater production of siderophores were classified within the genera Acinetobacter sp. (9), Bacillus sp. (2), Delftia sp. (1), Serratia sp. (1), Pseudomonas sp. (1) y Herbaspirillum sp. (1). The application before infection with Fol59 of supernatants with a high content of siderophores (SodSid) from five Acinetobacter sp. isolates caused a reduction in the AUDPC of the disease severity of up to 45%, being CBIO117 the isolate which showed greater biocontrol activity. Finally, it was confirmed that SodSid Acinetobacter CBIO117 generated an induction in the expression of PR1 and ERF1 genes, markers of the Salicylic Acid and Ethylene hormonal pathways in the plant, respectively. In contrast the gene (MYC2), a transcription factor of the Jasmonic Acid-dependent defense genes was not expressed. However, in plants stimulated with SodSid CBIO117 and infected with Fol59, MYC2 gene expression was differentially induced, highlighting the activation of the Jasmonic acid-dependent defense that possibly led to counteracting the infection process of the pathogen and reducing the severity of the disease. Our results demonstrate the biotechnological potential of siderophore-producing isolates of the genus Acinetobacter sp. for the control of plant pathogens, eliciting the defensive response in the plant.MaestríaMagíster en Ciencias AgrariasÁrea Curricular en Producción Agraria Sostenible117 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadasFusarium oxysporum f.sp. lycopersiciTomate - Enfermedades y plagasControl biológicoSeveridad de la enfermedadQuelantes de hierroRespuesta de defensaBiocontrolDisease severityiron chelatorsDefense responseSideróforoControl de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforosControl of Fusarium oxysporum f.sp. lycopersici by supernatants with siderophores of Acinetobacter sp.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrios, G. N. (2005). Plant Pathology. Elsevier.Aguado-Santacruz, G., Moreno-Gómez, B., Jimenez, B., & Moya, E. (2012). Impacto de los sideróforos microbianos y fitosideróforos en la asimilación del hierro por las plantas: Una Síntesis. Revista Fitotecnia Mexicana, 35, 9-21. https://doi.org/10.35196/rfm.2012.1.9Aguilar, M. O., Álvarez, F., Medeot, D., Jofré, E., Semorile, L., & Pistorio, M. (2021). Screening of epiphytic rhizosphere-associated bacteria in Argentinian Malbec and Cabernet-Sauvignon vineyards for potential use as biological fertilisers and pathogen-control agents. OENO One, 55(4), 145-157. https://doi.org/10.20870/oeno-one.2021.55.4.4655Al Atrouni, A., Joly-Guillou, M.-L., Hamze, M., & Kempf, M. (2016). Reservoirs of Non-baumannii Acinetobacter Species. Frontiers in Microbiology, 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.00049Al-Askar, A. A., Saber, W. I. A., Ghoneem, K. M., Hafez, E. E., & Ibrahim, A. A. (2021). Crude Citric Acid of Trichoderma asperellum: Tomato Growth Promotor and Suppressor of Fusarium oxysporum f. sp. lycopersici. Plants, 10(2), 222. https://doi.org/10.3390/plants10020222Aleaghaee, S., Rezaee, S., Ebadi, M., & Zamanizadeh, H. (2019). Biological control of Fusarium oxysporum f. Sp. Lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. Journal of Microbial World, 12(2), 125-138.Alvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., Encinas-Basurto, D., Alvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., & Encinas-Basurto, D. (2020). Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia, 22(3), 73-80. https://doi.org/10.18633/biotecnia.v22i3.952Alves-Júnior, M., de Sousa, F. O., Silva, T. F., Albino, U. B., Garcia, M. G., Moreira, S. M. C. de O., & Vieira, M. R. da S. (2021). Functional and morphological analysis of isolates of phylloplane and rhizoplane endophytic bacteria interacting in different cocoa production systems in the Amazon. Current Research in Microbial Sciences, 2, 100039. https://doi.org/10.1016/j.crmicr.2021.100039Amaya-Gómez, C. V., Hirsch, A. M., & Soto, M. J. (2015). Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiology, 15, 58. https://doi.org/10.1186/s12866-015-0390-zAndrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2-3), 215-237. https://doi.org/10.1016/S0168-6445(03)00055-XApprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75. https://doi.org/10.3354/ame01753Argüello-Navarro, A. Z., & Moreno-Rozo, L. Y. (2014). Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas del cultivo de cacao (Theobroma cacao L.). Acta Agronómica, 63(3), 238-245. https://doi.org/10.15446/acag.v63n3.41033Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3), 388-398.Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6), 673-677.Arya, N., Rana, A., Rajwar, A., Sahgal, M., & Sharma, A. (2018). Biocontrol Efficacy of Siderophore Producing Indigenous Pseudomonas Strains Against Fusarium Wilt in Tomato. National Academy Science Letters, 41. https://doi.org/10.1007/s40009-018-0630-5Ascencio-Álvarez, A., López-Benítez, A., Borrego-Escalante, F., Rodríguez-Herrera, S. A., Flores-Olivas, A., Jiménez-Díaz, F., & Gámez-Vázquez, A. J. (2008). Marchitez Vascular del Tomate: I. Presencia de Razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista mexicana de fitopatología, 26(2), 114-120.Aznar, A., Chen, N., Rigault, M., Riache, N., Joseph, D., Desmaële, D., Mouille, G., Boutet, S., Soubigou-Taconnat, L., Renou, J.-P., Thomine, S., Expert, D., & Dellagi, A. (2014). Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W]. Plant physiology, 164. https://doi.org/10.1104/pp.113.233585Aznar, A., Chen, N. W. G., Thomine, S., & Dellagi, A. (2015). Immunity to plant pathogens and iron homeostasis. Plant Science, 240, 90-97. https://doi.org/10.1016/j.plantsci.2015.08.022Aznar, A., Patrit, O., Berger, A., & Dellagi, A. (2015). Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii. Molecular Plant Pathology, 16(5), 521-528. https://doi.org/10.1111/mpp.12208Báez-Valdez, E. P., Carrillo-Fasio, J. A., Báez-Sañudo, M. A., García-Estrada, R. S., Valdez-Torres, J. B., & Contreras-Martínez, R. (2010). Uso de Portainjertos Resistentes para el Control de la Fusariosis (Fusarium oxysporum f. Sp. Lycopersici Snyder & Hansen raza 3) del Tomate (Lycopersicon esculentum Mill) en Condiciones de MallaSombra. Revista mexicana de fitopatología, 28(2), 111-123.Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., & Nicot, P. C. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 6, 566. https://doi.org/10.3389/fpls.2015.00566Bardin, M., & Nicot, P. (2018). Is the development of resistance to biological control among plant pathogens possible?Baysal, Ö., Siragusa, M., İkten, H., Polat, İ., Gümrükcü, E., Yigit, F., Carimi, F., & Teixeira da Silva, J. A. (2009). Fusarium oxysporum f. Sp. Lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology, 74(1), 68-75. https://doi.org/10.1016/j.pmpp.2009.09.008Betoudji, F., Abd El Rahman, T., Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A Siderophore Analog of Fimsbactin from Acinetobacter Hinders Growth of the Phytopathogen Pseudomonas syringae and Induces Systemic Priming of Immunity in Arabidopsis thaliana. Pathogens, 9(10), 806. https://doi.org/10.3390/pathogens9100806Betoudji, F., Rahman, T. A. El, Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A siderophore analog of fimsbactin from acinetobacter hinders growth of the phytopathogen pseudomonas syringae and induces systemic priming of immunity in arabidopsis thaliana. Pathogens, 9(10), 1-12. https://doi.org/10.3390/pathogens9100806Binh, P., Viet Tru, N., Dung, V., Thoa, N., Thao, P., Ha, T., & Thang, V. (2017). Bacteria in Wooden Box Fermentation of Cocoa in Daklak, Vietnam. Journal of Microbiology & Experimentation, 5. https://doi.org/10.15406/jmen.2017.05.00176Bodah, E. (2017). Root Rot Diseases in Plants: A Review of Common Causal Agents and Management Strategies. Agricultural Research & Technology: Open Access Journal, 5. https://doi.org/10.19080/ARTOAJ.2017.05.555661Bonneau, A., Roche, B., & Schalk, I. (2020). Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: An intricate interacting network including periplasmic and membrane proteins. Scientific Reports, 10, 120. https://doi.org/10.1038/s41598-019-56913-xBourigault, Y., Rodrigues, S., Crépin, A., Chane, A., Taupin, L., Bouteiller, M., Dupont, C., Merieau, A., Konto-Ghiorghi, Y., Boukerb, A. M., Turner, M., Hamon, C., Dufour, A., Barbey, C., & Latour, X. (2021). Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. International Journal of Molecular Sciences, 22(15), 8241. https://doi.org/10.3390/ijms22158241Burbano-Figueroa, Ó. (2020). Resistencia de plantas a patógenos: Una revisión sobre los conceptos de resistencia vertical y horizontal. Revista Argentina de Microbiología, 52(3), 245-255. https://doi.org/10.1016/j.ram.2020.04.006Cáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765-779. https://doi.org/10.1046/j.1365-2958.2003.03465.xCardona, G. I., Arcos, A. L., & Murcia, U. G. (2005). Abundancia de actinomicetes y micorrizas arbusculares en paisajes fragmentados de la Amazonia colombiana*. Agronomía Colombiana, 23(2), 317-326Cardona-Piedrahita, L., & Zapata, J. (2019). Comparación de métodos de inoculación de Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Snyder & Hansen, causante del marchitamiento vascular del tomate. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 227. https://doi.org/10.18257/raccefyn.854Carmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., & Soto-Suárez, M. (2020). Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens, 9(1), 70. https://doi.org/10.3390/pathogens9010070Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. Sp. Lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3), e12822-e12822. https://doi.org/10.17584/rcch.2021v15i3.12822Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy, 9(3), 121. https://doi.org/10.3390/agronomy9030121Chaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 25, 1919-1928. https://doi.org/10.1007/s11274-009-0090-7Chiang, K.-S., Liu, H. I., Tsai, J. W., Tsai, J. R., & Bock, C. (2017). A discussion on disease severity index values. Part II: Using the disease severity index for null hypothesis testing. Annals of Applied Biology, 171, 490-505. https://doi.org/10.1111/aab.12396Constantin, M. E., de Lamo, F. J., Vlieger, B. V., Rep, M., & Takken, F. L. W. (2019). Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 10, 979. https://doi.org/10.3389/fpls.2019.00979Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. Sp. Lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158. https://doi.org/10.1016/j.biocontrol.2019.104158Cui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11. https://doi.org/10.1016/j.molp.2018.06.005de Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.00037De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in Immunology, 39(11), 937-950. https://doi.org/10.1016/j.it.2018.09.006De Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International journal of molecular sciences, 16, 23970-23993. https://doi.org/10.3390/ijms161023970Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.xDelgado-Jarana, J., Martínez-Rocha, A. L., Roldán-Rodriguez, R., Roncero, M. I. G., & Di Pietro, A. (2005). Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genetics and Biology: FG & B, 42(1), 61-72. https://doi.org/10.1016/j.fgb.2004.10.001Delgado-Ramírez, C. S., Hernández-Martínez, R., & Sepúlveda, E. (2021). Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 11(3), 579. https://doi.org/10.3390/agronomy11030579Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., & Expert, D. (2009). Microbial Siderophores Exert a Subtle Role in Arabidopsis during Infection by Manipulating the Immune Response and the Iron Status. Plant Physiology, 150(4), 1687-1696. https://doi.org/10.1104/pp.109.138636Di Pietro, A., García-MacEira, F. I., Méglecz, E., & Roncero, M. I. (2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 39(5), 1140-1152.Díaz-García, Huang, S., Spröer, C., Sierra-Ramírez, R., Bunk, B., Overmann, J., & Jiménez, D. J. (2021). Dilution-to-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Applied and Environmental Microbiology, 87(2), e02427-20. https://doi.org/10.1128/AEM.02427-20Dimkpa, C., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 41, 154-162. https://doi.org/10.1016/j.soilbio.2008.10.010Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10(1), 9-17. https://doi.org/10.1038/nchembio.1416Duffy, B. K., & Défago, G. (1999). Environmental Factors Modulating Antibiotic and Siderophore Biosynthesis by Pseudomonas fluorescens Biocontrol Strains. Applied and Environmental Microbiology, 65(6), 2429-2438.Dumas, Z., Ross-Gillespie, A., & Kümmerli, R. (2013). Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proceedings. Biological Sciences, 280(1764), 20131055. https://doi.org/10.1098/rspb.2013.1055Duyvesteijn, R., van Wijk, R., Boer, Y., Rep, M., Cornelissen, B., & Haring, M. (2005). Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular microbiology, 57, 1051-1063. https://doi.org/10.1111/j.1365-2958.2005.04751.xEhlert, G., Taraz, K., & Budzikiewicz, H. (1994). Serratiochelin, a New Catecholate Siderophore from Serratia marcescens. Zeitschrift Für Naturforschung C, 49(1-2), 11-17. https://doi.org/10.1515/znc-1994-1-203Elshahawy, I., Saied, N., Abd-El-Kareem, F., & Morsy, A. (2018). Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. Journal of Plant Pathology, 100. https://doi.org/10.1007/s42161-018-0113-zEsmeraldas García, G. A. (2019). Actividad antagonista de Rizobacterias Promotoras del Crecimiento Vegetal (PGPR) a Moniliophthora perniciosa (Escoba de bruja) en Cacao (Theobroma cacao L.). https://repositorio.uteq.edu.ec/handle/43000/3627Essarioui, A., Mokrini, F., & Afechtal, M. (2016). Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. Sp. Lycopersici- a review. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 4, 66-74.Fang, Q., Fan, Z., Xie, Y., Wang, X., Li, K., & Liu, Y. (2016). Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Frontiers in Plant Science, 7. https://www.frontiersin.org/article/10.3389/fpls.2016.01487Farag, H., Abdou, Z., Salama, D., Ibrahim, M., & Srour, H. (2011). Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences, 56, 1-7. https://doi.org/10.1016/j.aoas.2011.05.007Fasio, J. A. C., Rodríguez, T. de J. M., Estrada, R. S. G., Ortega, J. E. C., Zequera, I. M., & Barajas, A. J. S. (2003). Razas de Fusarium oxysporum f. Sp. Lycopersici Snyder y Hansen, en Tomate (Lycopersicon esculentum Mill.) en el Valle de Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología, 21(2), 123-127.Felsenstein, J. (1985). Phylogenies and the Comparative Method. The American Naturalist, 125(1), 1-15. Filiz, E., & Kurt, F. (2019). FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: Genome-wide identification and bioinformatics analyses. Journal of Plant Biochemistry and Biotechnology, 28(2), 143-157. https://doi.org/10.1007/s13562-019-00497-0Foughalia, A., Yousra, B., Chandeysson, C., Djedidi, M., Tahirine, M., Kamel, A., & Nicot, P. (2022). Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control, 32. https://doi.org/10.1186/s41938-022-00511-zGanger, M. T., Dietz, G. D., & Ewing, S. J. (2017). A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics, 18(1), 534. https://doi.org/10.1186/s12859-017-1949-5Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., Gong, X., Chang, H., Xie, S., Liu, J., Yue, J., Xu, J., Zhang, G., Deng, Y., Wang, E., … He, Z. (2021). Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 184(21), 5391-5404.e17. https://doi.org/10.1016/j.cell.2021.09.009Garzón, L. P. (2016). Importancia de las micorrizas arbusculares (MA) para un uso sostenible del suelo en la amazonia Colombiana. Revista Luna Azul, 42, 217-234.Goel, V., Kapil, A., Das, B., & Rao, D. (1998). Influence of iron on growth and extracellular products of Acinetobacter baumannii. Japanese journal of medical science & biology, 51, 25-33. https://doi.org/10.7883/yoken1952.51.25González Marquetti, I., Arias, Y., & Peteira, B. (2012). ASPECTOS GENERALES DE LA INTERACCIÓN Fusarium oxysporum f. Sp. Lycopersici-TOMATE. Revista de Protección Vegetal, 27, 1-7.González-Chávez, M. C. A. (2017). Fitorremediación asistida por microorganismos: Enfásis en bacterias promotoras del crecimiento de plantas. Agro Productividad, 10(4), Article 4. https://revistaagroproductividad.org/index.php/agroproductividad/article/view/1000Guerinot, M. L. (1994). Microbial Iron Transport. Annual Review of Microbiology, 48(1), 743-772. https://doi.org/10.1146/annurev.mi.48.100194.003523Gulati, A., Vyas, P., Rahi, P., & Kasana, R. (2009). Plant Growth-Promoting and Rhizosphere-Competent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current microbiology, 58, 371-377. https://doi.org/10.1007/s00284-008-9339-xGuo, L., Zhao, G., Xu, J., Kistler, H. C., Gao, L., & Ma, L. (2016). Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. The New Phytologist, 211(2), 527-541. https://doi.org/10.1111/nph.13912Hamuel, J. D., Ndakidemi, P., Human, I., & Benade, S. (2011). The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes and environments / JSME, 26, 101-112. https://doi.org/10.1264/jsme2.ME10179Heo, A. Y., Koo, Y. M., & Choi, H. W. (2022). Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. Biology, 11(4), 619. https://doi.org/10.3390/biology11040619Herlihy, J. H., Long, T. A., & McDowell, J. M. (2020). Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 295(39), 13444-13457. https://doi.org/10.1074/jbc.REV120.010856Hernandez-Montiel, L. G., Gutierrez-Perez, E. D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, R. G., & Rincon-Enriquez, G. (2018). Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biology and Technology, 139, 31-37. https://doi.org/10.1016/j.postharvbio.2018.01.015Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. https://doi.org/10.1039/b906679aHipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología, 49(4), 356-365. https://doi.org/10.1016/j.ram.2017.04.003Hirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum ff. Sp. Lycopersici and radicis-lycopersici and races of F. oxysporum f. Sp. Lycopersici. Journal of General Plant Pathology, 72(5), 273-283. https://doi.org/10.1007/s10327-006-0287-7Höfte, M., & Bakker, P. (2007). Competition for Iron and Induced Systemic Resistance by Siderophores of Plant Growth Promoting Rhizobacteria (pp. 121-133). https://doi.org/10.1007/978-3-540-71160-5_6Holden, V. I., & Bachman, M. A. (2015). Diverging roles of bacterial siderophores during infection. Metallomics, 7(6), 986-995. https://doi.org/10.1039/c4mt00333kHouterman, P. M., Ma, L., van Ooijen, G., de Vroomen, M. J., Cornelissen, B. J. C., Takken, F. L. W., & Rep, M. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. The Plant Journal: For Cell and Molecular Biology, 58(6), 970-978. https://doi.org/10.1111/j.1365-313X.2009.03838.xHsiao, P.-Y., Cheng, C.-P., Koh, K. W., & Chan, M.-T. (2017). The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. Carotovorum via an iron-withholding defence system. Scientific Reports, 7(1), 9175. https://doi.org/10.1038/s41598-017-08497-7Huang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1-3), 110-116. https://doi.org/10.1016/j.febslet.2004.07.064Huddedar, S. B., Shete, A. M., Tilekar, J. N., Gore, S. D., Dhavale, D. D., & Chopade, B. A. (2002). Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in acinetobacter strains from rhizosphere of wheat. Applied Biochemistry and Biotechnology, 102-103(1-6), 21-39. https://doi.org/10.1385/abab:102-103:1-6:021Hurtado, E., González-Vallejos, F., Roper, C., Bastías, E., & Mazuela, P. (2017). Propuesta para la determinación del contenido de clorofila en hojas de tomate. Idesia (Arica), 35, 129-130. https://doi.org/10.4067/S0718-34292017000400129Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. (2008). Characterization of Plant Growth–Promoting Traits of Bacteria Isolated from Larval Guts of Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Current microbiology, 56, 327-333. https://doi.org/10.1007/s00284-007-9086-4Jaramillo Noreña, J., Rodríguez, V. P., Guzmán, M., & Zapata, M. (2006). El cultivo de tomate bajo invernadero. http://localhost:8080/handle/11348/3824J.g, M., C, K., & F, S. (1990). Additions to the host range of Fusarium oxysporum f. Sp. Radicis-lycopersici. Plant Disease.https://scholar.google.com/scholar_lookup?title=Additions+to+the+host+range+of+Fusarium+oxysporum+f.+sp.+radicis-lycopersici.&author=Menzies+J.G.&publication_year=1990Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286Kang, S.-M., Khan, A., Hamayun, M., Shinwari, Z., Kim, Y.-H., Joo, G.-J., & Lee, I.-J. (2012). Acinetobacter Calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Abstracts of papers, 44, 365-372.Kang, Y.-S., Jung, J., Jeon, C. O., & Park, W. (2011). Acinetobacter oleivorans sp. Nov. Is capable of adhering to and growing on diesel-oil. Journal of Microbiology (Seoul, Korea), 49(1), 29-34. https://doi.org/10.1007/s12275-011-0315-yKarthika, S., Varghese, S., & Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10(7), 320. https://doi.org/10.1007/s13205-020-02306-1Khalil, Md. M. R., Fierro-Coronado, R. A., Peñuelas-Rubio, O., Villa-Lerma, A. G., Plascencia-Jatomea, R., Félix-Gastélum, R., & Maldonado-Mendoza, I. E. (2021). Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi Journal of Biological Sciences, 28(12), 7460-7471. https://doi.org/10.1016/j.sjbs.2021.08.043Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator – Siderophore: A review. Microbiological Research, 212-213, 103-111. https://doi.org/10.1016/j.micres.2017.10.012Kieu, N. P., Aznar, A., Segond, D., Rigault, M., Simond-Côte, E., Kunz, C., Soulie, M.-C., Expert, D., & Dellagi, A. (2012). Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Molecular Plant Pathology, 13(8), 816-827. https://doi.org/10.1111/j.1364-3703.2012.00790.xKim, K.-J., Jang, J.-H., & Yang, Y.-J. (2017). Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W. Korean Journal of Microbiology, 53(2), 97-102. https://doi.org/10.7845/kjm.2017.7023Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10. https://www.frontiersin.org/article/10.3389/fpls.2019.00845Kwon, H.-D., & Song, H.-G. (2014). Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant. The Korean Journal of Microbiology, 50, 302-307. https://doi.org/10.7845/kjm.2014.4050Lairini, K., Perez-Espinosa, A., Pineda, M., & Ruiz-Rubio, M. (1996). Purification and characterization of tomatinase from Fusarium oxysporum f. Sp. Lycopersici. Applied and environmental microbiology, 62, 1604-1609. https://doi.org/10.1128/AEM.62.5.1604-1609.1996Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I., & Vasil, M. L. (2002). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 99(10), 7072-7077. https://doi.org/10.1073/pnas.092016999Leite, H. A. C., Silva, A. B., Gomes, F. P., Gramacho, K. P., Faria, J. C., de Souza, J. T., & Loguercio, L. L. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97(6), 2639-2651. https://doi.org/10.1007/s00253-012-4574-2Leiva, E., Osorio García, M. A., & Ramírez, R. (2013). Microorganismos asociados a la rizosfera del cacao (Theobroma cacao) en condiciones de bosque húmedo premontano (Bh-PM). Suelos Ecuatoriales, 43, 35-45.Lievens, B., van Baarlen, P., Verreth, C., van Kerckhove, S., Rep, M., & Thomma, B. P. H. J. (2009). Evolutionary relationships between Fusarium oxysporum f. Sp. Lycopersici and F. oxysporum f. Sp. Radicis-lycopersici isolates inferred from mating type, elongation factor-1alpha and exopolygalacturonase sequences. Mycological Research, 113(Pt 10), 1181-1191. https://doi.org/10.1016/j.mycres.2009.07.019Lin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30-39. https://doi.org/10.1016/j.micres.2018.08.004Lin, J., Cheng, J., Wang, Y., & Shen, X. (2018). The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Frontiers in Cellular and Infection Microbiology, 8. https://www.frontiersin.org/article/10.3389/fcimb.2018.00230López-Berges, M. S., Rispail, N., Prados-Rosales, R. C., & Di Pietro, A. (2010). A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. The Plant Cell, 22(7), 2459-2475. https://doi.org/10.1105/tpc.110.075937López-Díaz, C. (2019). Mecanismos genéticos y moleculares implicados en la plasticidad genómica de Fusarium oxysporum. http://helvia.uco.es/xmlui/handle/10396/18865Madrid, M. P., Di Pietro, A., & Roncero, M. I. G. (2003). Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology, 47(1), 257-266. https://doi.org/10.1046/j.1365-2958.2003.03299.xMaindad, D. V., Kasture, V. M., Chaudhari, H., Dhavale, D. D., Chopade, B. A., & Sachdev, D. P. (2014). Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32. Indian Journal of Microbiology, 54(3), 315-322. https://doi.org/10.1007/s12088-014-0446-zMantilla-Paredes, A. J., Cardona, G. I., Peña-Venegas, C. P., Murcia, U., Rodríguez, M., & Zambrano, M. M. (2009). Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Revista de Biología Tropical, 57(4), 915-927.Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M. J., Jung, S. C., Pascual, J. A., & Pozo, M. J. (2013). Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4, 206. https://doi.org/10.3389/fpls.2013.00206Martín-Urdíroz, M., Roncero, M. I. G., González-Reyes, J. A., & Ruiz-Roldán, C. (2008). ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryotic Cell, 7(1), 112-121. https://doi.org/10.1128/EC.00347-07McRose, D., Baars, O., Seyedsayamdost, M., & Morel, F. (2018). Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proceedings of the National Academy of Sciences, 115, 201805791. https://doi.org/10.1073/pnas.1805791115Mehnert, M., Retamal-Morales, G., Schwabe, R., Vater, S., Heine, T., Levicán, G. J., Schlömann, M., & Tischler, D. (2017). Revisiting the Chrome Azurol S Assay for Various Metal Ions. Solid State Phenomena, 262, 509-512. https://doi.org/10.4028/www.scientific.net/SSP.262.509Meziane, H., Sluis, I. van der, Loon, L. C. van, Höfte, M., & Bakker, P. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular plant pathology. https://doi.org/10.1111/j.1364-3703.2005.00276.xMichavila, G., Adler, C., De Gregorio, P. R., Lami, M. J., Caram Di Santo, M. C., Zenoff, A. M., de Cristobal, R. E., & Vincent, P. A. (2017). Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biology (Stuttgart, Germany), 19(4), 608-617. https://doi.org/10.1111/plb.12556Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. https://doi.org/10.1111/j.1364-3703.2009.00538.xMilagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6. https://doi.org/10.1016/s0167-7012(99)00028-7Modarresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Mosadegh, E., & Mansouri, S. (2015). Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence, 6(2), 152-161. https://doi.org/10.1080/21505594.2014.1003001Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., Cano Ríos, P., Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707Müller, G., Matzanke, B. F., & Raymond, K. N. (1984). Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. Journal of Bacteriology, 160(1), 313-318. https://doi.org/10.1128/jb.160.1.313-318.1984Muñoz Macías, B. I. (2019). Rizobacterias promotoras de crecimiento (PGPR) en el biocontrol del nematodo Meloidogyne incognita y Fusarium oxysporum f. Sp. Lycopersici en el cultivo de tomate (Lycopersicum esculentum). https://repositorio.uteq.edu.ec/handle/43000/3634Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Clement Tsui, K. M., Srinivas, C., Niranjana, S. R., & Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. Sp. Lycopersici. Scientific Reports, 6(1), 21367. https://doi.org/10.1038/srep21367Nishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11. https://www.frontiersin.org/article/10.3389/fmicb.2020.01298Nogales, J., Domínguez-Ferreras, A., Amaya-Gómez, C. V., van Dillewijn, P., Cuéllar, V., Sanjuán, J., Olivares, J., & Soto, M. J. (2010). Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics, 11(1), 157. https://doi.org/10.1186/1471-2164-11-157Nüsslein, K. (2012, enero 11). Amazon rainforest microbial observatory: Functional diversity, taxonomic diversity and response to ecosystem conversion.Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403-1414. https://doi.org/10.1111/1462-2920.13023Payne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329-344. https://doi.org/10.1016/0076-6879(94)35151-1Pedroza-Sandoval, A., & Gaxiola, J. (2009). Análisis del área bajo la curva del progreso de las enfermedades (ABCPE) en patosistemas agrícolas (pp. 180-189). https://doi.org/10.13140/2.1.4475.7767Pena, R. T., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T. K., & Tomás, M. (2019). Relationship Between Quorum Sensing and Secretion Systems. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.01100Penwell, W. F., DeGrace, N., Tentarelli, S., Gauthier, L., Gilbert, C. M., Arivett, B. A., Miller, A. A., Durand-Reville, T. F., Joubran, C., & Actis, L. A. (2015). Discovery and Characterization of New Hydroxamate Siderophores, Baumannoferrin A and B, produced by Acinetobacter baumannii. Chembiochem: A European Journal of Chemical Biology, 16(13), 1896-1904. https://doi.org/10.1002/cbic.201500147Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340Pietro, A., Gonzalez-Roncero, M., & Roldán, M. (2009). From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection (Vols. 181-200, pp. 181-200). https://doi.org/10.1007/978-3-540-87407-2_10Popat, R., Harrison, F., da Silva, A., Easton, S., Mcnally, L., Williams, P., & Diggle, S. (2017). Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. https://doi.org/10.1101/053918Popovic, Z., Maier, V., Avramov, M., Uzelac, I., Gosic-Dondo, S., Blagojević, D., & Kostál, V. (2021). Acclimations to Cold and Warm Conditions Differently Affect the Energy Metabolism of Diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.). Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.768593Prashant, D., Makarand, R. R., Bhushan, L., & Sudhir, B. (2009). Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. https://doi.org/10.21161/mjm.13508Prathibha, K., & Sumathi, S. (2008). Biodegradation of mixture containing monohydroxybenzoate isomers by Acinetobacter calcoaceticus. World Journal of Microbiology and Biotechnology, 24(6), 813-823. https://doi.org/10.1007/s11274-007-9545-xPrihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, 9. https://www.frontiersin.org/article/10.3389/fmicb.2018.01226Purkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLOS ONE, 13, e0191761. https://doi.org/10.1371/journal.pone.0191761Rada Cuentas, J. (2016). Acinetobacter un patógeno actual. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48.Radó, J., Kaszab, E., Benedek, T., Kriszt, B., & Szoboszlay, S. (2019). First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiologica et Immunologica Hungarica, 66(1), 113-130. https://doi.org/10.1556/030.66.2019.004Radzki, W., Gutierrez Mañero, F. J., Algar, E., Lucas García, J. A., García-Villaraco, A., & Ramos Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330. https://doi.org/10.1007/s10482-013-9954-9Ranjan, K., Paula, F. S., Mueller, R. C., Jesus, E. da C., Cenciani, K., Bohannan, B. J. M., Nüsslein, K., & Rodrigues, J. L. M. (2015). Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Frontiers in Microbiology, 6. https://www.frontiersin.org/article/10.3389/fmicb.2015.00779Rehman, R., Waheed, K., Nawaz, H., & Hanif, M. A. (2019). Medicinal Plants of South Asia, Chapter 46—Tomato (p. 768). https://doi.org/10.1016/B978-0-08-102659-5.00046-XRestrepo, S., Henao, C., Galvis, L., Pérez, J., Hoyos, R., & Granada, D. (2020). Siderophore containing extract from Serratia plymuthica AED38 as an efficient strategy against avocado root rot caused by Phytophthora cinnamomi. Biocontrol Science and Technology, 31, 1-15. https://doi.org/10.1080/09583157.2020.1846162Ríos, A. G., Vidal, C. C. R., Montes, E. R., & López, A. S. (2017). Residuos de plaguicidas en tomate (Solanum lycopersicum) comercializado en Armenia, Colombia. Vitae, 24(2 (2)), 68-79. https://doi.org/10.17533/udea.vitae.v24n2(2)a08Rispail, N., & Pietro, A. (2009). Fusarium oxysporum Ste12 Controls Invasive Growth and Virulence Downstream of the Fmk1 MAPK Cascade. Molecular plant-microbe interactions : MPMI, 22, 830-839. https://doi.org/10.1094/MPMI-22-7-0830Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. da C., Paula, F. S., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., Tiedje, J. M., Bohannan, B. J. M., & Nüsslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 988-993. https://doi.org/10.1073/pnas.1220608110Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566.Rongai, D., Pulcini, P., Pesce, B., & Milano, F. (2017). Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. European Journal of Plant Pathology, 147(1), 229-238. https://doi.org/10.1007/s10658-016-0994-7Rooney, A. P., Dunlap, C. A., & Flor-Weiler, L. B. (2016). Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa). International Journal of Systematic and Evolutionary Microbiology, 66(9), 3566-3572. https://doi.org/10.1099/ijsem.0.001234Rosconi, F., Davyt, D., Martínez, V., Martínez, M., Abin-Carriquiry, J. A., Zane, H., Butler, A., de Souza, E. M., & Fabiano, E. (2013). Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environmental Microbiology, 15(3), 916-927. https://doi.org/10.1111/1462-2920.12075Sachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S., & Chopade, B. (2010). Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiological Research, 165(8), 627-638. https://doi.org/10.1016/j.micres.2009.12.002Safdarpour, F., & Khodakaramian, G. (2019). Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. 7, 77-90.Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 23(5), 3984-3999. https://doi.org/10.1007/s11356-015-4294-0Saijo, Y., Loo, E. P.-I., & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. The Plant Journal: For Cell and Molecular Biology, 93(4), 592-613. https://doi.org/10.1111/tpj.13808Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Sajeed Ali, S., & Vidhale, N. (2013). Bacterial Siderohore and their Application: A review. Int.J.Curr.Microbiol.App.Sci, 2, 303-312.Santos, S., Neto, I. F. F., Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2014). Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Applied Biochemistry and Biotechnology, 172(1), 549-560. https://doi.org/10.1007/s12010-013-0562-ySantoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, Ma. D. C., Peña Cabriales, J., & Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28, 53-60.Sayyed, Chincholkar, S., Reddy, M., Gangurde, Dr. N., Patel, P., & Maheshwari, D. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. En Bacteria in Agrobiology: Disease Management (pp. 449-471). https://doi.org/10.1007/978-3-642-33639-3_17Sayyed, R., Badgujar, M., Sonawane, H., Mhaske, M., & Chincholkar, S. (2005). Production of microbial iron chelators (siderophores) by Fluorescent pseudomonads. Indian Journal of Biotechnology Vol, 4, 484-490.Sayyed, R., & Reddy, M. (2011). Siderophore based heavy metal resistant green fungicides for sustainable environment (pp. 443-445).Sayyed, R. Z., & Patel, P. R. (2011). Biocontrol Potential of Siderophore Producing Heavy Metal Resistant Alcaligenes sp. And Pseudomonas aeruginosa RZS3 vis-à-vis Organophosphorus Fungicide. Indian Journal of Microbiology, 51(3), 266-272. https://doi.org/10.1007/s12088-011-0170-xSchandry, N. (2017). A Practical Guide to Visualization and Statistical Analysis of R. solanacearum Infection Data Using R. Frontiers in Plant Science, 8. https://www.frontiersin.org/article/10.3389/fpls.2017.00623Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14-119Schmitt, S., Maréchaux, I., Chave, J., Fischer, F. J., Piponiot, C., Traissac, S., & Hérault, B. (2020). Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. Journal of Ecology, 108(3), 831-843. https://doi.org/10.1111/1365-2745.13320Schwyn, B., & Neilands, J. B. (1987a). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9Schwyn, B., & Neilands, J. B. (1987b). Universal CAS assay for the detection and determination of siderophores. Analytical biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9Shapiro, J. A., & Wencewicz, T. (2016). Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping. ACS infectious diseases. https://doi.org/10.1021/acsinfecdis.5b00145Sheldon, J. R., & Skaar, E. P. (2020). Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathogens, 16(10), e1008995. https://doi.org/10.1371/journal.ppat.1008995Shi, Y., Lou, K., & Li, C. X. (2011). Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis. https://doi.org/10.1007/s13199-011-0139-xShin, B., Park, C., Imlay, J. A., & Park, W. (2018). 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicols. Applied Microbiology and Biotechnology, 102(5), 2323-2335. https://doi.org/10.1007/s00253-018-8791-1Silva, J. C. da, Santos, L. D. S., Faria, P. S. A., Silva, F. G., Rubio, A., Martins, P. F., & Selari, P. J. R. G. (2021). Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesquisa Agropecuária Tropical, 51. https://www.redalyc.org/journal/2530/253068585042/html/#B50Singh, P., Singh, J., Ray, S., Rajput, R., Vaishnav, A., Singh, R., & Singh, H. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 126482. https://doi.org/10.1016/j.micres.2020.126482Singh, R., Biswas, S., Nagar, D., Singh, J., Singh, M., & Mishra, Y. (2015). Sustainable Integrated Approach for Management of Fusarium Wilt of Tomato Caused by Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Synder and Hansen. Sustainable Agriculture Research, 4. https://doi.org/10.5539/sar.v4n1p138Soares, E. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106. https://doi.org/10.1007/s00253-022-11995-ySolanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585-597. https://doi.org/10.1002/jobm.201200564Sridevi, M., & Mallaiah, K. (2008). Production of Hydroxamate-Type of Siderophores by Rhizobium strains from Sesbania sesban (L.) Merr. International Journal of Soil Science, 3, 28-34. https://doi.org/10.3923/ijss.2008.28.34Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26(7), 1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002Srinivasan, R., Mohankumar, R., Kannappan, A., Karthick Raja, V., Archunan, G., Karutha Pandian, S., Ruckmani, K., & Veera Ravi, A. (2017). Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats. Frontiers in Cellular and Infection Microbiology, 7, 498. https://doi.org/10.3389/fcimb.2017.00498Stintzi, A., Evans, K., Meyer, J., & Poole, K. (1998). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: LasRllasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiology Letters, 166(2), 341-345. https://doi.org/10.1111/j.1574-6968.1998.tb13910.xSuzuki, W., Sugawara, M., Miwa, K., & Morikawa, M. (2014). Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). Journal of Bioscience and Bioengineering, 118(1), 41-44. https://doi.org/10.1016/j.jbiosc.2013.12.007Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T., & Ichinose, Y. (2010). The Siderophore Pyoverdine of Pseudomonas syringae pv. Tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection. Journal of Bacteriology, 192(1), 117-126. https://doi.org/10.1128/JB.00689-09Tejman-Yarden, N., Robinson, A., Davidov, Y., Shulman, A., Varvak, A., Reyes, F., Rahav, G., & Nissan, I. (2019). Delftibactin-A, a Non-ribosomal Peptide With Broad Antimicrobial Activity. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.02377Thapa, S., & Prasanna, R. (2018). Prospecting the characteristics and significance of the phyllosphere microbiome. Annals of Microbiology, 68(5), 229-245. https://doi.org/10.1007/s13213-018-1331-5Tian, F., Ding, Y., Zhu, H., Liang-tong, Y., & Du, B. (2009). Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. https://doi.org/10.1590/S1517-83822009000200013Tian, F., Ding, Y., Zhu, H., Yao, L., Jin, F., & Du, B. (2008). [Screening, identification and antagonistic activity of a siderophore-producing bacteria G-229-21T from rhizosphere of tobacco]. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 48(5), 631-637.Tiwari, V., Rajeswari, M. R., & Tiwari, M. (2019). Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. International Journal of Biological Macromolecules, 125, 1156-1167. https://doi.org/10.1016/j.ijbiomac.2018.12.173Torres, M. A. (2009). ROS in biotic interactions. Physiologia plantarum, 138, 414-429. https://doi.org/10.1111/j.1399-3054.2009.01326.xVallejo Cabrera, F. A. (1999). Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/51997Vásquez-Ramírez, L., & Castaño-Zapata, J. (2017, julio). Manejo integrado de la marchitez vascular del tomate (Fusarium oxysporum f. Sp. Lycopersici (SACC.) W.C. Snyder & H.N. Hansen): Una Revisión. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000200014Vélez, J. M. bedoya, Castaño, G., & Agudelo, S. O. (2019). Tolerancia al plomo de aislamientos nativos de Pseudomonas spp. De aguas residuales del Valle de Aburrá. Revista Colombiana de Biotecnología, 21(1), 135-143. https://doi.org/10.15446/rev.colomb.biote.v21n1.65146Verbon, E., Trapet, P., Stringlis, I., Kruijs, S., Bakker, P., & Pieterse, C. (2017). Iron and Immunity. Annual review of phytopathology, 55, 355-375. https://doi.org/10.1146/annurev-phyto-080516-035537Villa Martínez, A., Pérez-Leal, R., Morales-Morales, H., Basurto-Sotelo, M., Soto-Parra, J., & Martínez-Escudero, E. (2014). Situación actual en el control de Fusarium spp. Y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64, 194-205. https://doi.org/10.15446/acag.v64n2.43358Villegas, M. E. D. de, Villa, P., & Frías, A. (2002). Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Revista Latinoamericana de Microbiología, 44(3-4), 112-117.Wang, H., & Ng, T. B. (1999). Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sciences, 65(9), 849-856. https://doi.org/10.1016/s0024-3205(99)00083-1Weakland, D. R., Smith, S. N., Bell, B., Tripathi, A., & Mobley, H. L. T. (2020). The Serratia marcescens Siderophore Serratiochelin Is Necessary for Full Virulence during Bloodstream Infection. Infection and Immunity, 88(8), e00117-20. https://doi.org/10.1128/IAI.00117-20Wen, Y., Kim, I. H., Son, J.-S., Lee, B., & Kim, K.-S. (2012). Iron and Quorum Sensing Coordinately Regulate the Expression of Vulnibactin Biosynthesis in Vibrio vulnificus. The Journal of biological chemistry, 287, 26727-26739. https://doi.org/10.1074/jbc.M112.374165Wilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E. L., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 348(1), 320-325. https://doi.org/10.1016/j.bbrc.2006.07.055Winkelmann, G. (2002). Microbial siderophore-mediated transport. Biochemical Society transactions, 30, 691-696. https://doi.org/10.1042/BST0300691Wu, H., & Ling, H.-Q. (2019). FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis. Frontiers in Plant Science, 0. https://doi.org/10.3389/fpls.2019.00844Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., & Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. https://doi.org/10.1016/j.biocontrol.2008.11.004Yeole, G. J., Kotkar, H. M., Teli, N. P., & Mendki, P. S. (2016). Herbal fungicide to control Fusarium wilt in tomato plants. Biopesticides International, 12(1), 25-35.Yockteng, R., Almeida, A. M. R., Yee, S., Andre, T., Hill, C., & Specht, C. D. (2013). A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. Applications in Plant Sciences, 1(12), 1300070. https://doi.org/10.3732/apps.1300070Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., & Qu, J. (2017). Optimization of Siderophore Production by Bacillus sp. PZ-1 and Its Potential Enhancement of Phytoextration of Pb from Soil. Journal of Microbiology and Biotechnology, 27(8), 1500-1512. https://doi.org/10.4014/jmb.1705.05021Yu, Teng, C., Liang, J., Song, T., Dong, L., Bai, X., Jin, Y., & Qu, J. (2017). Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. Journal of Microbiology (Seoul, Korea), 55(11), 877-884. https://doi.org/10.1007/s12275-017-7191-zYu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47(2), 138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 49(2), 269-278. https://doi.org/10.1016/j.bjm.2017.06.007Recomendaciones para el manejo integrado de gota y marchitez por Fusarium, dos enfermedades prevalentes en el cultivo de tomate bajo condiciones protegidasMinisterio de Agricultura y Desarrollo Rural de Colombia (Tv18)BibliotecariosEstudiantesInvestigadoresMaestrosORIGINAL1121832933.2022.pdf1121832933.2022.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2235601https://repositorio.unal.edu.co/bitstream/unal/84504/2/1121832933.2022.pdf38cdc97e739952a48f27882d3074582cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84504/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1121832933.2022.pdf.jpg1121832933.2022.pdf.jpgGenerated Thumbnailimage/jpeg4506https://repositorio.unal.edu.co/bitstream/unal/84504/3/1121832933.2022.pdf.jpg870f5ed8fad69e4beb12753e5a56d3d5MD53unal/84504oai:repositorio.unal.edu.co:unal/845042024-07-19 23:32:18.499Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |