Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach
Abstract. Causal inference has become a dominant research area in both theoretical and empirical statistics. One of the main drawbacks of conventional frameworks is the assumption of no causal interactions among individuals (i.e independent units). Violation of this assumption often yields biased es...
- Autores:
-
Cárdenas Hurtado, Camilo Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/59495
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/59495
http://bdigital.unal.edu.co/57011/
- Palabra clave:
- 31 Colecciones de estadística general / Statistics
51 Matemáticas / Mathematics
Causal inference
Bayesian estimation
Independence assumption violation
Causally connected units
Directed acyciclic graphs (DAG)
Structural equation models
Hierarchical linear models
Semiparametric models
Inferencia causal
Violación de supuesto de independencia
Dependencia entre observaciones
Grafos acíclicos direccionados (DAG)
Modelos de ecuaciones estructurales (SEM)
Modelos jerárquicos (HLM)
Modelos semiparamétricos
e Estimación Bayesiana
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_aa0708cc0fd22219bee19e7fc6b7cc48 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/59495 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
title |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
spellingShingle |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach 31 Colecciones de estadística general / Statistics 51 Matemáticas / Mathematics Causal inference Bayesian estimation Independence assumption violation Causally connected units Directed acyciclic graphs (DAG) Structural equation models Hierarchical linear models Semiparametric models Inferencia causal Violación de supuesto de independencia Dependencia entre observaciones Grafos acíclicos direccionados (DAG) Modelos de ecuaciones estructurales (SEM) Modelos jerárquicos (HLM) Modelos semiparamétricos e Estimación Bayesiana |
title_short |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
title_full |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
title_fullStr |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
title_full_unstemmed |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
title_sort |
Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach |
dc.creator.fl_str_mv |
Cárdenas Hurtado, Camilo Alberto |
dc.contributor.author.spa.fl_str_mv |
Cárdenas Hurtado, Camilo Alberto |
dc.contributor.spa.fl_str_mv |
Urdinola Contreras, B. Piedad |
dc.subject.ddc.spa.fl_str_mv |
31 Colecciones de estadística general / Statistics 51 Matemáticas / Mathematics |
topic |
31 Colecciones de estadística general / Statistics 51 Matemáticas / Mathematics Causal inference Bayesian estimation Independence assumption violation Causally connected units Directed acyciclic graphs (DAG) Structural equation models Hierarchical linear models Semiparametric models Inferencia causal Violación de supuesto de independencia Dependencia entre observaciones Grafos acíclicos direccionados (DAG) Modelos de ecuaciones estructurales (SEM) Modelos jerárquicos (HLM) Modelos semiparamétricos e Estimación Bayesiana |
dc.subject.proposal.spa.fl_str_mv |
Causal inference Bayesian estimation Independence assumption violation Causally connected units Directed acyciclic graphs (DAG) Structural equation models Hierarchical linear models Semiparametric models Inferencia causal Violación de supuesto de independencia Dependencia entre observaciones Grafos acíclicos direccionados (DAG) Modelos de ecuaciones estructurales (SEM) Modelos jerárquicos (HLM) Modelos semiparamétricos e Estimación Bayesiana |
description |
Abstract. Causal inference has become a dominant research area in both theoretical and empirical statistics. One of the main drawbacks of conventional frameworks is the assumption of no causal interactions among individuals (i.e independent units). Violation of this assumption often yields biased estimations of causal effects of an intervention in quantitative social, biomedical and epidemiological research. This document proposes a novel approach for modeling causal connections among units within the Structural Causal Model framework: a Semi-Parametric Hierarchical Structural Equation Model (SPHSEM). Estimation uses Bayesian techniques, and the empirical performance of the proposed model is evaluated through both simulation and applied studies. Results prove that the Bayesian SPHSEM recovers nonlinear (causal) relationships between latent variables belonging to different levels and yields unbiased estimates of the (causal) model parameters. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T16:11:47Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T16:11:47Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/59495 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/57011/ |
url |
https://repositorio.unal.edu.co/handle/unal/59495 http://bdigital.unal.edu.co/57011/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Cárdenas Hurtado, Camilo Alberto (2017) Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach. Maestría thesis, Universidad Nacional de Colombia, Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/59495/1/CamiloC%c3%a1rdenasHurtado.2016.pdf https://repositorio.unal.edu.co/bitstream/unal/59495/2/CamiloC%c3%a1rdenasHurtado.2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
9ef6935252773dea0d89f487d35f5281 bcaa163e94b238fb823ef136e3799518 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090221828964352 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urdinola Contreras, B. PiedadCárdenas Hurtado, Camilo Albertod82b39c4-8fa8-40aa-b762-d841b60a6f8f3002019-07-02T16:11:47Z2019-07-02T16:11:47Z2017https://repositorio.unal.edu.co/handle/unal/59495http://bdigital.unal.edu.co/57011/Abstract. Causal inference has become a dominant research area in both theoretical and empirical statistics. One of the main drawbacks of conventional frameworks is the assumption of no causal interactions among individuals (i.e independent units). Violation of this assumption often yields biased estimations of causal effects of an intervention in quantitative social, biomedical and epidemiological research. This document proposes a novel approach for modeling causal connections among units within the Structural Causal Model framework: a Semi-Parametric Hierarchical Structural Equation Model (SPHSEM). Estimation uses Bayesian techniques, and the empirical performance of the proposed model is evaluated through both simulation and applied studies. Results prove that the Bayesian SPHSEM recovers nonlinear (causal) relationships between latent variables belonging to different levels and yields unbiased estimates of the (causal) model parameters.La inferencia causal se ha convertido en un área activa de investigación en la estadística teórica y aplicada. Una falencia de las aproximaciones convencionales es el supuesto de ausencia de interacciones causales entre individuos (unidades independientes de estudio). La violación de este supuesto resulta en estimaciones sesgadas de los efectos causales en investigaciones sociales, biomédicas y epidemiológicas. En este documento se propone una nueva manera de modelar dichas conexiones causales bajo el Modelo Estructural de Causalidad: un modelo Semi-Paramétrico, Jerárquico de Ecuaciones Estructurales (SPHSEM). La estimación se hace mediante técnicas Bayesianas, y su capacidad empírica se evalúa a través tanto de un ejercicio de simulación como de una aplicación empírica. Los resultados confirman que el SPHSEM Bayesiana recupera las relaciones causales no lineales que existen entre variables latentes pertenecientes a distintos niveles de agrupamiento, y que las estimaciones de los parámetros causales son insesgadas.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaCárdenas Hurtado, Camilo Alberto (2017) Causal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approach. Maestría thesis, Universidad Nacional de Colombia, Sede Bogotá.31 Colecciones de estadística general / Statistics51 Matemáticas / MathematicsCausal inferenceBayesian estimationIndependence assumption violationCausally connected unitsDirected acyciclic graphs (DAG)Structural equation modelsHierarchical linear modelsSemiparametric modelsInferencia causalViolación de supuesto de independenciaDependencia entre observacionesGrafos acíclicos direccionados (DAG)Modelos de ecuaciones estructurales (SEM)Modelos jerárquicos (HLM)Modelos semiparamétricose Estimación BayesianaCausal Inference in the presence of causally connected units: a semi-parametric hierarchical structural equation model approachTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALCamiloCárdenasHurtado.2016.pdfapplication/pdf3340962https://repositorio.unal.edu.co/bitstream/unal/59495/1/CamiloC%c3%a1rdenasHurtado.2016.pdf9ef6935252773dea0d89f487d35f5281MD51THUMBNAILCamiloCárdenasHurtado.2016.pdf.jpgCamiloCárdenasHurtado.2016.pdf.jpgGenerated Thumbnailimage/jpeg4225https://repositorio.unal.edu.co/bitstream/unal/59495/2/CamiloC%c3%a1rdenasHurtado.2016.pdf.jpgbcaa163e94b238fb823ef136e3799518MD52unal/59495oai:repositorio.unal.edu.co:unal/594952023-04-02 23:05:14.68Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |