Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass
ilustraciones, diagramas, fotografías, mapas, tablas
- Autores:
-
Sánchez Vivas, Diego Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86890
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
AGUACATE-CONSERVACION
CLIMATOLOGIA AGRICOLA
METEOROLOGIA AGRICOLA
RECOPILACION DE DATOS
CAMBIOS CLIMATICOS
VARIABILIDAD DE PRECIPITACION
ZONAS CLIMATICAS
Avocado - preservation
Crops and climate
Meteorology, agricultural
Data collecting
Climatic changes
Precipitation variability
Climatic zones
Variabilidad y cambio climático
Series de tiempo
Redes neuronales profundas
Índices de vegetación
Teledetección
Climate variability and change
Time series
Deep neural networks
Vegetation indices
Remote sensing
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_a90a440a4a72d7c407875313cc75723f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86890 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
dc.title.translated.eng.fl_str_mv |
Space-time analysis tools for climatic and spectral data as a basis for the characterization and climatic modeling and indirect estimation of productive parameters in Hass avocado |
title |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
spellingShingle |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura AGUACATE-CONSERVACION CLIMATOLOGIA AGRICOLA METEOROLOGIA AGRICOLA RECOPILACION DE DATOS CAMBIOS CLIMATICOS VARIABILIDAD DE PRECIPITACION ZONAS CLIMATICAS Avocado - preservation Crops and climate Meteorology, agricultural Data collecting Climatic changes Precipitation variability Climatic zones Variabilidad y cambio climático Series de tiempo Redes neuronales profundas Índices de vegetación Teledetección Climate variability and change Time series Deep neural networks Vegetation indices Remote sensing |
title_short |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
title_full |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
title_fullStr |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
title_full_unstemmed |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
title_sort |
Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass |
dc.creator.fl_str_mv |
Sánchez Vivas, Diego Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Ramírez Gil, Joaquín Guillermo Terán Chaves, Cesar Augusto |
dc.contributor.author.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Biogénesis |
dc.contributor.orcid.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando [0000000163130871] |
dc.contributor.cvlac.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando [0000092231] |
dc.contributor.scopus.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando [58159513500] |
dc.contributor.researchgate.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando [https://www.researchgate.net/profile/Diego-Sanchez-Vivas] |
dc.contributor.googlescholar.spa.fl_str_mv |
Sánchez Vivas, Diego Fernando [https://scholar.google.se/citations?user=7KTTn5UAAAAJ] |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura |
topic |
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura AGUACATE-CONSERVACION CLIMATOLOGIA AGRICOLA METEOROLOGIA AGRICOLA RECOPILACION DE DATOS CAMBIOS CLIMATICOS VARIABILIDAD DE PRECIPITACION ZONAS CLIMATICAS Avocado - preservation Crops and climate Meteorology, agricultural Data collecting Climatic changes Precipitation variability Climatic zones Variabilidad y cambio climático Series de tiempo Redes neuronales profundas Índices de vegetación Teledetección Climate variability and change Time series Deep neural networks Vegetation indices Remote sensing |
dc.subject.lemb.spa.fl_str_mv |
AGUACATE-CONSERVACION CLIMATOLOGIA AGRICOLA METEOROLOGIA AGRICOLA RECOPILACION DE DATOS CAMBIOS CLIMATICOS VARIABILIDAD DE PRECIPITACION ZONAS CLIMATICAS |
dc.subject.lemb.eng.fl_str_mv |
Avocado - preservation Crops and climate Meteorology, agricultural Data collecting Climatic changes Precipitation variability Climatic zones |
dc.subject.proposal.spa.fl_str_mv |
Variabilidad y cambio climático Series de tiempo Redes neuronales profundas Índices de vegetación Teledetección |
dc.subject.proposal.eng.fl_str_mv |
Climate variability and change Time series Deep neural networks Vegetation indices Remote sensing |
description |
ilustraciones, diagramas, fotografías, mapas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-03T17:41:03Z |
dc.date.available.none.fl_str_mv |
2024-10-03T17:41:03Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86890 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86890 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Agrosavia Agrovoc |
dc.relation.references.spa.fl_str_mv |
Abadi, A.M., Rowe, C.M., Andrade, M. (2020). Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology. 40, 4408–4421. https://doi.org/10.1002/joc.6464 Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch. (2018). Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data https://www.nature.com/articles/sdata2017191 Abbas, F., Afzaal, H., Farooque, A. A., & Tang, S. (2020). Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7). https://doi.org/10.3390/AGRONOMY10071046 Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Computers and Electronics in Agriculture, 156, 549–557. https://doi.org/10.1016/j.compag.2018.12.018 Acosta-Rangel, A., Li, R., Mauk, P., Santiago, L., & Lovatt, C. J. (2021). Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Scientia Horticulturae, 280, 109940. https://doi.org/10.1016/j.scienta.2021.109940 Agisoft. (2023). DJI Phantom 4 Multispectral data processing. https://agisoft.freshdesk.com/support/solutions/articles/31000159853-dji-phantom-4-multispectral-data-processing Ahmed, K., Sachindra, D. A., Shahid, S., Iqbal, Z., Nawaz, N., & Khan, N. (2020). Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236 (December 2019), 104806. https://doi.org/10.1016/j.atmosres.2019.104806 Ahmed, M., Stöckle, C. O., Nelson, R., Higgins, S., Ahmad, S., & Raza, M. A. (2019). Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44251-x Aiello, S., Click, C., Roark, H., & Rehak, L. (2015). Machine Learning with Python and H2O: First Edition Machine Learning with Python and H2O. H2O. Ai, November. http://h2o.ai/resources/ Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023 Aldino, A. A., Darwis, D., Prastowo, A. T., & Sujana, C. (2021). Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012038 Althoff, D., Dias, S. H. B., Filgueiras, R., & Rodrigues, L. N. (2020). ETo‐Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018). Water Resources Research, 56(7). https://doi.org/10.1029/2020WR027562 Álvarez Bravo, A., Salazar García, S., Ruiz Corral, J. A., & Medina García, G. (2017). Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘hass’ en Michoacán. Revista Mexicana de Ciencias Agrícolas, 19, 4035–4048. https://doi.org/10.29312/remexca.v0i19.671 Anacona Mopan, Y.E., Solis Pino, A.F., Rubiano-Ovalle, O., Paz, H. & I. Ramirez Mejia. (2023). Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo-Inf. 2023, 12, 136. https://doi.org/10.3390/ijgi12040136 Analdex. (2022). Informe exportaciones de aguacate Hass septiembre 2022. 6 pp. https://www.analdex.org/2022/12/13/informe-exportaciones-de-aguacate-hass-septiembre-2022/ APHIS. (2021). Report Name: Avocado Annual. Country: México. 5 pp. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Avocado%20Annual_Mexico%20City_Mexico_12-01-2021.pdf Apolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Frontiers in Plant Science, 11(July), 1–15. https://doi.org/10.3389/fpls.2020.01086 Arias - García, J.S., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Ciência Rural, Santa Maria, v.51:8, e20200903. http://doi.org/10.1590/0103-8478cr20200903 Arima, S., & Models, L. (2023). JOURNAL OF ENGINEERING SCIENCES Time Series Prediction of Temperature Using. 9(3), 574–584. https://doi.org/10.30855/gmbd.0705088 Arnell, N. W., Lowe, J. A., Bernie, D., Nicholls, R. J., Brown, S., Challinor, A. J., & Osborn, T. J. (2019). The global and regional impacts of climate change under representative concentration pathway forcings and shared socioeconomic pathway socioeconomic scenarios. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab35a6 Arpaia, M. L., & Heath, R. L. (2004). Avocado Tree Physiology - Understanding the basis of Productivity. Proceedings of the California Avocado Research Symposium, October 30, 2004, 65–88. https://www.californiaavocadogrowers.com/sites/default/files/Avocado-Tree-Physiology–Understanding-the-Basis-of-Productivity-2006.pdf Ashraf, F. Bin, Kabir, M. R., Shafi, M. S. R., & Rifat, J. I. M. (2020). Finding Homogeneous Climate Zones in Bangladesh from Statistical Analysis of Climate Data Using Machine Learning Technique. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392689 Ashraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere, 8(5). https://doi.org/10.1002/ecs2.1825 Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916 Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75. https://doi.org/10.1139/juvs-2018-0018 Balaji, E., Brindha, D., Vinodh Kumar, E., & Vikrama, R. (2021). Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Applied Soft Computing, 108, 107463. https://doi.org/10.1016/j.asoc.2021.107463 Balaji, N., Bhandary, S. B., Dsouza, R. F., & Karthik Pai, B. (2022). ANN Based Weather Analysis and Prediction. 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings, 7–11. https://doi.org/10.1109/DISCOVER55800.2022.9974773 Ballesteros, R., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2018). Onion biomass monitoring using UAV-based RGB imaging. Precision Agriculture, 19(5), 840–857. https://doi.org/10.1007/s11119-018-9560-y Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298 Barboza, T. O. C., Ferraz, M. A. J., Pilon, C., Vellidis, G., Valeriano, T. T. B., & dos Santos, A. F. (2024). Advanced Farming Strategies Using NASA POWER Data in Peanut-Producing Regions without Surface Meteorological Stations. AgriEngineering, 6(1), 438–454. https://doi.org/10.3390/agriengineering6010027 Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281-305. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf Berio Fortini, L., Kaiser, L. R., Frazier, A. G., & Giambelluca, T. W. (2023). Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies. Climatic Change, 176(12), 1–21. https://doi.org/10.1007/s10584-023-03623-z Bernal-Estrada, J. A., Tamayo-Vélez, A. D. J., & Díaz-Diez, C. A. (2020). Dynamics of leaf, flower and fruit abscission in avocado cv. Hass in Antioquia, Colombia. Revista Colombiana de Ciencias Hortícolas, 14(3), 324–333. https://doi.org/10.17584/rcch.2020v14i3.10850 Bilgili, A., Bilgili, A. V., Tenekeci, M. E., & Karadağ, K. (2023). Spectral characterization and classification of two different crown root rot and vascular wilt diseases (Fusarium oxysporum f.sp. radicis lycopersici and fusarium solani) in tomato plants using different machine learning algorithms. European Journal of Plant Pathology, 165(2), 271–286. https://doi.org/10.1007/s10658-022-02605-8 Biotico, S. F., & Clima, E. L. (2000). Plan básico de ordenamiento territorial. Bony, S., Srinivasan, J., & Ronald, S. (2007). Climate Models and Their Evaluation. Solar potential assessment over India View project PROGRAMM AMMA. Disponible en: https://www.researchgate.net/publication/233421523. (Último acceso: junio de 2023). Box, G. (2013). Box and Jenkins: Time Series Analysis, Forecasting and Control BT - A Very British Affair: Six Britons and the Development of Time Series Analysis During the 20th Century (T. C. Mills (ed.); pp. 161–215). Palgrave Macmillan UK. https://doi.org/10.1057/9781137291264_6 Breiman, L. (2001). Random forests. Machine Learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12343 LNCS, 503–515. https://doi.org/10.1007/978-3-030-62008-0_35 Burn, D. H., & Goel, N. K. (2000). La formation de groupes pour l’estimation régionale de la fréquence des crues. Hydrological Sciences Journal, 45(1), 97–112. https://doi.org/10.1080/02626660009492308 Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/s11119-021-09861-4 Cáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2022). Validating Technologies and Evaluating the Technological Level in Avocado Production Systems: A Value Chain Approach. Agronomy, 12(12). https://doi.org/10.3390/agronomy12123130 Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010 Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026 Cao, Y., Li, G. L., Luo, Y. K., Pan, Q., & Zhang, S. Y. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Computers and Electronics in Agriculture, 171, 105331. https://doi.org/https://doi.org/10.1016/j.compag.2020.105331 Carbajal-Morán, H., Márquez-Camarena, J. F., Galván-Maldonado, C. A., Zárate-Quiñones, R. H., Galván-Maldonado, A. C., & Muñoz-De la Torre, R. J. (2023). Evaluation of Normalized Difference Vegetation Index by Remote Sensing with Landsat Satellites in the Tayacaja Valley in the Central Andes of Peru. Ecological Engineering and Environmental Technology, 24(7), 208–215. https://doi.org/10.12912/27197050/169530 Cárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., Cuadros Tavira, S., Sacristan, P. C., & García-Tejero, I. F. (2023). Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture (Switzerland), 13(5). https://doi.org/10.3390/agriculture13051049 Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001 Castillo-Guevara, M. A., Palomino-Quisne, F., Alvarez, A. B., & Coaquira-Castillo, R. J. (2020). Water stress analysis using aerial multispectral images of an avocado crop. Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020. https://doi.org/10.1109/EIRCON51178.2020.9254011 Caswell, T. A., Droettboom, M., Hunter, J., Firing, E., Lee, A., Klymak, J., Stansby, D., Varoquaux, N., Nielsen, J. E., Root, B., May, R., Elson, P., Seppänen, J., Dale, D., Lee, D., Straw, A., Hobson, P., Gohlke, C., Yu, T. S., others. (2021). matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python. Journal of Open Source Software, 6(60), 3021. Cavalcanti, V. P., dos Santos, A. F., Rodrigues, F. A., Terra, W. C., Araújo, R. C., Ribeiro, C. R., Campos, V. P., Rigobelo, E. C., Medeiros, F. H. V., & Dória, J. (2023). Use of RGB images from unmanned aerial vehicle to estimate lettuce growth in root-knot nematode infested soil. Smart Agricultural Technology, 3, 100100. https://doi.org/10.1016/j.atech.2022.100100 Chang, X., Meng, G., Wang, Y., Hou, X. (2012). Seasonal autoregressive integrated moving average model for precipitation time series. Journal of Mathematics and Statistics, 8(4), 500–505. https://doi.org/10.3844/jmssp.2012.500.505 Chang, Y. L., Tan, T. H., Chen, T. H., Chuah, J. H., Chang, L., Wu, M. C., Tatini, N. B., Ma, S. C., & Alkhaleefah, M. (2022). Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081929 Charre-Medellín, J. F., Mas, J.-F., & Chang-Martínez, L. A. (2021). Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop and Pasture Science, 72(4), 291–301. https://doi.org/10.1071/CP20458 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785 Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras Chong-Hai, X., & Ying, X. (2012). The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmospheric and Oceanic Science Letters, 5(6), 527–533. https://doi.org/10.1080/16742834.2012.11447042 Choury, A., Bruinsma, S., & Schaeffer, P. (2013). Neural networks to predict exosphere temperature corrections. Space Weather, 11(10), 592–602. https://doi.org/10.1002/2013SW000969 Chung, S. W., Rho, H., Lim, C. K., Jeon, M. K., Kim, S., Jang, Y. J., & An, H. J. (2022). Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15821-3 CIPF. (2018). Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al., eds.) Geneva, Switzerland, IPCC. 630 págs. https://www.ipcc.ch/sr15/ CIPF. (2021). Revisión científica del impacto del cambio climático en las plagas de las plantas. Un desafío mundial en la prevención y la mitigación de los riesgos de plagas en la agricultura, la silvicultura y los ecosistemas. Roma. FAO en nombre de la Secretaría de la CIPF. https://doi.org/10.4060/cb4769es Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219(August), 145–161. https://doi.org/10.1016/j.rse.2018.09.002 Colectivo, M., & American, L. (2023). The Avocados of Wrath. April. https://grain.org/e/6985. (Último acceso: junio de 2023). Copernicus Open Access Hub by ESA (2020). https:// scihub. copernicus. Cortés, D., Silva, H., Baginsky, C., & Morales, L. (2017). Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model. Spanish Journal of Agricultural Research, 15(3). https://doi.org/10.5424/sjar/2017153-9935 Crane, T. A., Roncoli, C., & Hoogenboom, G. (2011). Adaptation to climate change and climate variability: The importance of understanding agriculture as performance. NJAS: Wageningen Journal of Life Sciences, 57(3–4), 179–185. https://doi.org/10.1016/j.njas.2010.11.002 Cruz-Cárdenas, G., Villaseñor, J. L., López-Mata, L., Martínez-Meyer, E., & Ortiz, E. (2014). Selection of environmental predictors for species distribution modeling in Maxent. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(2), 187–201. https://doi.org/10.5154/r.rchscfa.2013.09.034 da Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405 Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., & Maes, W. H. (2023). Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sensing, 15(11), 1–22. https://doi.org/10.3390/rs15112909 Dash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing - INT J REMOTE SENS, 25. https://doi.org/10.1080/0143116042000274015 De Castro, A. I., Ehsani, R., Ploetz, R., Crane, J. H., & Abdulridha, J. (2015). Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment, 171, 33–44. https://doi.org/10.1016/j.rse.2015.09.011 De La Fuente, S. (2014). Series Temporales, Modelo Arima y Metodología de Box - Jenkins. En: https://www.estadistica.net/ECONOMETRIA/SERIES-TEMPORALES/modelo-arima.pdf De, D., & Alpes, G. (2022). Clustering non paramétrique pour les extrêmes spatiaux. Nonparametric clustering for spatial extremes. https://www.theses.fr/2022GRALU008.pdf Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/10.1016/j.isprsjprs.2018.09.008 Dikbas, F., Firat, M., Koc, A. C., & Gungor, M. (2013). Defining Homogeneous Regions for Streamflow Processes in Turkey Using a K-Means Clustering Method. Arabian Journal for Science and Engineering, 38(6), 1313–1319. https://doi.org/10.1007/s13369-013-0542-0 Dilmurat, K., Sagan, V., Maimaitijiang, M., & Moose, S. (2022). from Multisensory UAV Data. Ding, C., & He, X. (2004). K-means Clustering via Principal Component Analysis. DJI. (2023). DJI GS Pro en App Store. DJI GS Pro En App Store. https://apps.apple.com/es/app/dji-gs-pro/id1183717144 Doan, Q. Van, Amagasa, T., Pham, T. H., Sato, T., Chen, F., & Kusaka, H. (2023). Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data. Geoscientific Model Development, 16(8), 2215–2233. https://doi.org/10.5194/gmd-16-2215-2023 Dong, T. Y., Dong, W. J., Guo, Y., Chou, J. M., Yang, S. L., Tian, D., & Yan, D. D. (2018). Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in Climate Change Research, 9(1), 57–65. https://doi.org/10.1016/j.accre.2018.01.003 Doughty, R., Xiao, X., Köhler, P., Frankenberg, C., Qin, Y., Wu, X., Ma, S., & Moore III, B. (2021). Global-Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research: Biogeosciences, 126(6), e2020JG006136. https://doi.org/https://doi.org/10.1029/2020JG006136 Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J. L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40(August 2021). https://doi.org/10.1016/j.ejrh.2022.101037 Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x Elsayed, N., ElSayed, Z., & Maida, A. S. (2023). LiteLSTM Architecture Based on Weights Sharing for Recurrent Neural Networks. http://arxiv.org/abs/2301.04794 Erazo-Mesa, E., Echeverri-Sánchez, A., & Ramírez-Gil, J. G. (2022). Advances in Hass avocado irrigation scheduling under digital agriculture approach. Revista Colombiana de Ciencias Horticolas, 16(1). https://doi.org/10.17584/rcch.2022v16i1.13456 Erazo-Mesa, E., Ramírez-Gil, J. G., & Echeverri Sánchez, A. (2021). Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia. Water, 13(3), 358. https://doi.org/10.3390/w13030358 Erdil, A., & Arcaklioglu, E. (2013). The prediction of meteorological variables using artificial neural network. Neural Computing and Applications, 22(7–8), 1677–1683. https://doi.org/10.1007/s00521-012-1210-0 ESA. (2023). Sentinel-2: Descripción de la misión. Recuperado de: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi Escoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demográficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Fan, H., Si, Q., Dong, W., Lu, G., & Liu, X. (2023). Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914214 FAO. (2023). Listos para el cambio: Adaptando la producción de aguacate al cambio climático. Informe Técnico. FAOSTAT. (2023). Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (ultimo acceso: 16 de abril de 2023). Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A., & Zhang, M. (2020). Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering, 193, 101–114. https://doi.org/10.1016/j.biosystemseng.2020.02.014 Feng, S., Hao, Z., Zhang, X., & Hao, F. (2021). Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304–305. https://doi.org/10.1016/j.agrformet.2021.108401 Feng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., & Li, X. (2017). Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8(July), 1–12. https://doi.org/10.3389/fpls.2017.01219 Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382–1395. https://doi.org/10.1038/s41559-019-0972-5 Ferro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001 Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086 Figueroa-Figueroa, D. K., Francisco Ramírez-Dávila, J., Antonio-Némiga, X., & González Huerta, A. (2020). Mapping of avocado in the south of the state of Mexico by digital image processing sentinel-2. Revista Mexicana Ciencias Agrícolas, 11(4), 865–879. https://www.scielo.org.mx/pdf/remexca/v11n4/2007-0934-remexca-11-04-865-en.pdf Filgueiras, R., Neto, F., Pereira, S. B., Lima, A. A., & Santos, J. A. (2022). Evaluating the accuracy of global climate datasets for agricultural studies. Environmental Research, 202, 111704. DOI: 10.1016/j.envres.2022.111704 Filgueiras, R., Venancio, L. P., Aleman, C. C., & da Cunha, F. F. (2022). Comparison and calibration of terraclimate climatological variables over the Brazilian territory. Journal of South American Earth Sciences Volume 117. https://doi.org/10.1016/j.jsames.2022.103882 Flynn KC., Frazier AE., Admas S. (2020). Performance of chlorophyllprediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions. Precis Agric:1–15. https://doi. org/ 10. 1007/ s11119- 020- 09708-4 Forman, R. T. T. & Godron, M. (1986): Landscape Ecology, John Wiley and Sons, Nueva York. Franco, M., Leos, J., Salas, J., Acosta, M., & García, A. (2018). Análisis de costos y competitividad en la producción de aguacate en Michoacán, México. Revista Mexicana de Ciencias Agrícolas, 9(2), 391–403. http://www.scielo.org.mx/pdf/remexca/v9n2/2007-0934-remexca-9-02-391.pdf Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451 Gaitan, S. B., & Ríos, M. D. (2020). Socio-economic and technological typology of avocado cv. Hass farms from Antioquia (Colombia). Ciência Rural, 50(7). https://doi.org/10.1590/0103-8478cr20190188 Gallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144 Gao, Y., Marpu, P., & Morales Manila, L. M. (2014). Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, 9263, 92630P. https://doi.org/10.1117/12.2068966 García, J. S. A., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of hass avocado in Colombia. Challenges and opportunities: A review. Ciencia Rural, 51(8). https://doi.org/10.1590/0103-8478cr20200903 García-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040655 Gazoni, E., & Clark, C. (2024). openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files. Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015 Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2 Gitelson, A. A., Vina, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 2–7. Gómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. Ingeniería y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.10973 Gong, L., Li, X., Wu, S., & Jiang, L. (2022). Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecological Informatics, 72(April), 101834. https://doi.org/10.1016/j.ecoinf.2022.101834 Goyal, M.K., Shivam, G., Sarma, A.K. (2019). Spatial homogeneity of extreme precipitation indices using fuzzy clustering over northeast India. Natural Hazards. 98, 559–574. https://doi.org/10.1007/s11069-019-03715-z Grüter, R., Trachsel, T., Laube, P., & Jaisli, I. (2022). Expected global suitability of coffee, cashew and avocado due to climate change. PLOS ONE, 17(1), e0261976. https://doi.org/10.1371/journal.pone.0261976 H. Q. Liu and A. Huete, “A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, 1995, pp. 457-465. http://dx.doi.org/10.1109/36.377946 H2O.ai. (2020). H2O AutoML: Scalable Automatic Machine Learning. https://www.h2o.ai/products/h2o-automl/ Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013 Han, Y., Bai, S.H., Trueman, S.J., Khoshelham, K., Kämper, W. (2023). Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging. Precis Agric. https://doi.org/10.1007/s11119-023-10022-y Hanberry, B. B. (2023). Global Climate Classification and Comparison to Mid-Holocene and Last Glacial Maximum Climates, with Added Aridity Information and a Hypertropical Class. 552–569. https://doi.org/10.3390/earth4030029 Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2 Hastie, T., Tibshirani, R. & Friedman, J.H. (2009) The elementsof statistical learning: data mining, inference, and prediction,2nd edn. Springer-Verlag, New York. Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562–578. Hausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3 Hebbar, K. B., Abhin, P. S., Jose, V. S., Neethu, P., Santhosh, A., Shil, S., & Vara Prasad, P. V. (2022). Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants, 11(6). https://doi.org/10.3390/plants11060731 Hegyi, B., Stackhouse, P. W., Taylor, P., & Patadia, F. (2024). NASA POWER: Providing Present and Future Climate Services Based on NASA Data for the Energy, Agricultural, and Sustainable Buildings Communities. NASA Technical Reports Server. Hernández, C. M., Faye, A., Ly, M. O., Stewart, Z. P., Vara Prasad, P. V., Bastos, L. M., Nieto, L., Carcedo, A. J. P., & Ciampitti, I. A. (2021). Soil and climate characterization to define environments for summer crops in Senegal. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/su132111739 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J. & Dee, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803 Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343–366. https://doi.org/10.1007/s10044-020-00898-1 Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. http://dx.doi.org/10.1002/joc.1276 Holden, N. M., & Brereton, A. J. (2004). Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agricultural and Forest Meteorology, 122(3–4), 175–191. https://doi.org/10.1016/j.agrformet.2003.09.010 Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. www.pnas.orgcgidoi10.1073pnas.0701890104 Hribar, J. & Vidrih, R. (2015). Impacts of climate change on fruit physiology and quality. In: Proceedings. 50th Croatian and 10th International Symposium on Agriculture. Opatija. Croatia. 42- 45. Hughes, D. A., Kingston, D. G., & Todd, M. C. (2011). Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrology and Earth System Sciences, 15(3), 931–941. https://doi.org/10.5194/hess-15-931-2011 Hunt ML., Blackburn GA., Carrasco L., Redhead JW., Rowland CS. (2019). High-resolution wheat yield mapping using Sentinel-2. Remote Sens Environ 233:11410. https://doi. org/ 10. 1016/j. rse. 2019. 111410 Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agronomy Journal, 103(4), 1090–1099. https://doi.org/10.2134/agronj2010.0395 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. ICA. (2023). Instituto Colombiano Agropecuario – ICA. Consulta realizada al Programa de Registros Vegetales de Exportación. Dirección Técnica de Epidemiología y Vigilancia Fitosanitaria. ICONTEC. (2018). Frutas frescas. Aguacate variedad Hass. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación, 571, 15. IDEAM - UNAL. (2018). Variabilidad Climática y el cambio climático en Colombia. Bogotá, D.C., 1–53. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf. (último acceso: junio de 2023). IFAD. (2024). Republic of Colombia: Country strategic opportunities programme. September, 44–45. https://webapps.ifad.org/members/eb/141/docs/EB-2024-OR-3.pdf IGAC. (2017). Manual de procedimientos - Generación de Ortofotomosaico. Grupo interno de trabajo generación de datos y productos cartográficos. 11 pp. Imran, A. B., Khan, K., Ali, N., Ahmad, N., Ali, A., & Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6(1), 97–108. https://doi.org/10.22034/gjesm.2020.01.08 Iniyan, S., Akhil Varma, V., & Teja Naidu, C. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175(September 2022), 103326. https://doi.org/10.1016/j.advengsoft.2022.103326 Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming–a review. In Soil Science and Plant Nutrition (Vol. 66, Issue 6, pp. 798–810). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1738899 IPCC. (2013). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.html Iyigun, C., Türkeş, M., Batmaz, I., Yozgatligil, C., Purutçuoǧlu, V., Koç, E. K., & Öztürk, M. Z. (2013). Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology, 114(1–2), 95–106. https://doi.org/10.1007/s00704-012-0823-7 Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., … Rosenzweig, C. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873–885. https://doi.org/10.1038/s43016-021-00400-y Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004 Jeong, H., Bhattarai, R., & Hwang, S. (2019). How climate scenarios alter future predictions of field-scale water and nitrogen dynamics and crop yields. Journal of Environmental Management, 252. https://doi.org/10.1016/j.jenvman.2019.109623 Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. In Current Opinion in Biotechnology (Vol. 70, pp. 15–22). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2020.09.003 Jurišić, M., Radočaj, D., Plaščak, I., Galić, S. D., & Petrović, D. (2022). the Evaluation of the Rgb and Multispectral Camera on the Unmanned Aerial Vehicle (Uav) for the Machine Learning Classification of Maize. Poljoprivreda, 28(2), 74–80. https://doi.org/10.18047/poljo.28.2.10 K. Boitt, M., N. Mundia, harles, & Pellikka, P. (2014). Modelling the Impacts of Climate Change on Agro-Ecological Zones – a Case Study of Taita Hills, Kenya. Universal Journal of Geoscience, 2(6), 172–179. https://doi.org/10.13189/ujg.2014.020602 Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V. S., Malachy, N., Tanny, J., & Rozenstein, O. (2021). Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061046 Karger, D. N., Schmatz, D. R., Dettling, G., & Zimmermann, N. E. (2020). High resolution monthly precipitation and temperature timeseries for the period 2006–2100, Sci. Data, 7, 248. https://doi.org/10.1038/s41597-020-00587-y Kasimati, A., Espejo-García, B., Darra, N., & Fountas, S. (2022). Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Sensors, 22(9). https://doi.org/10.3390/s22093249 Kganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Computers and Electronics in Agriculture, 218, 108730. https://doi.org/10.1016/j.compag.2024.108730 Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., & Onwude, D. I. (2018). Early detection of diseases in plant tissue using spectroscopy–applications and limitations. In Applied Spectroscopy Reviews (Vol. 53, Issue 1, pp. 36–64). Taylor and Francis Inc. https://doi.org/10.1080/05704928.2017.1352510 Khalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., Kropp, J. P., Pradhan, P., & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6(2), 663–676. https://doi.org/10.3934/AGRFOOD.2021039 Kiil, L., Houmøller, M., & Hesselberg, T. (2023). General Circulation Models (GCMs). Https://www.Climate-Encyclopedia.Com/Opslag/Liste. Kiilu, S. N. (2021). Time Series Analysis of Rainfall and Temperature in Rwanda using ARIMA Model Ha wnmmmn. June. https://library.nexteinstein.org/wp-content/uploads/2023/03/AIMSRW21_stephen_kiilu_essay.pdf Kim, S., Hong, S., Joh, M., & Song, S.-K. (2017).Deeprain: convLstm network for precipitation. Kior, A., Sukhov, V., & Sukhova, E. (2021). Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics, 8(12). Klakotskaya, N., Laurson, P., Libek, A. V., & Kikas, A. (2023). Assessment of the Aim Characteristics of Strawberry (Fragaria × Ananassa) Cultivars in Estonia by Using the K-Means Clustering Method. Horticulturae, 9(1). https://doi.org/10.3390/horticulturae9010104 Kong, Z., Cui, Y., Xia, Z., & Lv, H. (2019). Convolution and Long Short-Term Memory Hybrid Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9(19), 4156. https://doi.org/10.3390/app9194156 Kottaridi, K., Milionis, A., Demopoulos, V., Nikolaidis, V., Tsalgatidou, P. C., Tsafouros, A., Kotsiras, A., & Vithoulkas, A. (2024). Comparative analysis of machine learning classification algorithms for predicting olive anthracnose disease. Journal of Autonomous Intelligence, 7(5), 1466. https://doi.org/10.32629/jai.v7i5.1466 Kozjek, K., Dolinar, M., & Skok, G. (2017). Objective climate classification of Slovenia. International Journal of Climatology, 37(March), 848–860. https://doi.org/10.1002/joc.5042 Kożuch, A., Cywicka, D., & Adamowicz, K. (2023). A Comparison of Artificial Neural Network and Time Series Models for Timber Price Forecasting. Forests, 14(2). https://doi.org/10.3390/f14020177 Krishna, M. V., Swaroopa, K., SwarnaLatha, G., & Yasaswani, V. (2023). Crop yield prediction in India based on mayfly optimization empowered attention-bi-directional long short-term memory (LSTM). Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16807-7 Kuska, M. T., & Mahlein, A.-K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1 Kyratzis, A. C., Skarlatos, D. P., Menexes, G. C., Vamvakousis, V. F., & Katsiotis, A. (2017). Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01114 Lahav, E., & Trochoulias, T. (1982). The Effect of Temperature on Growth and Dry Matter Production of Avocado Plants. In Aust. J. Agric. Res (Vol. 33). Lai, Y., & Dzombak, D. A. (2020). Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather and Forecasting, 35, 959–976. https://doi.org/10.1175/WAF-D-19 Lang, S., Blaschke, T., 2007. Landschaftsanalyse mit GIS. Ulmer, Stuttgart, 404 pp. Ledell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning, 1–16. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf Lee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540 Lee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540 Leng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01599-2 Leng, G., Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep. 7. https://doi.org/10.1038/s41598-017-01599-2 León, R., Díaz, M., & Rodríguez, L. (2020). Management of an artificial vision system for the detection of damage caused by pests in avocado crop using a drone. Revista Ciencia y Tecnología, 16(4), 145–151. https://doi.org/10.17268/rev.cyt.2020.04.14 León-Rueda, W. A., León, C., Caro, S. G.-, & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2 Li, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019). Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China. Journal of Agricultural Science, 157(5), 375–381. https://doi.org/10.1017/S0021859619000686 Li, M., Shamshiri, R. R., Weltzien, C., & Schirrmann, M. (2022). Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174426 Liang, S., & Wang Jindi. (2020). Chapter 15 - Estimate of vegetation production of terrestrial ecosystem. In Liang Shunlin & Wang Jindi (Eds.), Advanced Remote Sensing (2nd ed., pp. 581–620). Lipovac, A., Bezdan, A., Moravčević, D., Djurović, N., Ćosić, M., Benka, P., & Stričević, R. (2022). Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223786 Liu, S., Peng, Y., Xia, Z., Hu, Y., Wang, G., Zhu, A. X., & Liu, Z. (2019). The Ga-BPNN-based evaluation of cultivated land quality in the PSR framework using Gaofen-1 satellite data. Sensors (Switzerland), 19(23), 1–14. https://doi.org/10.3390/s19235127 Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298 Lobell, D.B., Thau, D., Seifert, C., Engle, E. & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sens Environ. 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.021 Lopes, A.R., Marcolin, J., Johann, J.A., Vilas Boas & M.A., Schuelter, A.R. (2019). Identification of homogeneous rainfall zones during grain crops in Paraná, Brazil. Engenharia Agrícola. 39, 707–714. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n6p707-714/2019 López, D. (2020). El aguacate continúa ocupando el primer lugar de las exportaciones hortofrutícolas colombianas. Frutas y hortalizas. Revistas de la Asociación Hortifrutícola de Colombia. Asohofrucol. Enero – Febrero 2021. Pp 20 -21. https://www.asohofrucol.com.co/img/pdfrevistas/48Balance%20del.pdf Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3), 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018 Ma, C., Liu, M., Ding, F., Li, C., Cui, Y., Chen, W., Wang, Y. (2022). Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model. Sci Rep. 12. https://doi.org/10.1038/s41598-022-09535-9 Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Chen, L., Flynn, K. C., & Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68–79. https://doi.org/10.1016/j.ecolind.2018.10.049 Madonsela, S., Cho, M. A., Naidoo, L., Main, R., & Majozi, N. (2023). Exploring the utility of Sentinel-2 for estimating maize chlorophyll content and leaf area index across different growth stages. Journal of Spatial Science, 68(2), 339–351. https://doi.org/10.1080/14498596.2021.2000898 MADR. (2019). Comienza el ordenamiento de la producción de aguacate Hass. Disponible en: https://www.minagricultura.gov.co/noticias/Paginas/Comienza-el-ordenamiento-de-la-producci%C3%B3n-de-aguacate-hass.aspx. (Último acceso: abril de 2023). Mahmud, S., Sumana, F. M., Mohsin, M., & Khan, Md. H. R. (2022). Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches. Natural Hazards, 111(2), 1863–1884. https://doi.org/10.1007/s11069-021-05120-x Mahsin, M., Akhter, Y., & Begum, M. (2012a). Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mathematical Modelling and Application, 1(5), 67–73. Malachy, N., Zadak, I., & Rozenstein, O. (2022). Comparing Methods to Extract Crop Height and Estimate Crop Coefficient from UAV Imagery Using Structure from Motion. In Remote Sensing (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/rs14040810 Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. In Sustainability (Switzerland) (Vol. 13, Issue 3, pp. 1–21). MDPI. https://doi.org/10.3390/su13031318 Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production (pp. 23–46). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63661-4.00002-5 Manideep, A. P. S., & Kharb, S. (2022). A Comparative Analysis of Machine Learning Prediction Techniques for Crop Yield Prediction in India. Turkish Journal of Computer and Mathematics Education, 13(02), 120–133. Manochandar, S., Punniyamoorthy, M., & Jeyachitra, R. K. (2020). Development of new seed with modified validity measures for k-means clustering. Computers and Industrial Engineering, 141. https://doi.org/10.1016/j.cie.2020.106290 Marino, S., Cocozza, C., Tognetti, R., Alvino, A. (2015). Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precision Agriculture (2015) 16:613–629. Springer Science+Business Media New York. http://dx.doi.org/10.1007/s11119-015-9396-7 Martinez, A. & J. Serna. (2018). Validación de las estimaciones de precipitación con CHIRPS e IRE/ IDEAM. Nota Técnica del Ideam. IDEAM – METEO.002. 25 pp. http://bart.ideam.gov.co/wrfideam/new_modelo/DOCUMENTOS/2018/NT_IDEAM-002-2018.pdf Martínez-Acosta, L., Medrano-Barboza, J. P., López-Ramos, Á., López, J. F. R., & López-Lambraño, Á. A. (2020). SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere, 11(6), 1–16. https://doi.org/10.3390/atmos11060602 McKinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, December, 1–9. Mejiá-Cabrera, H. I., Flores, J. N., Sigueñas, J., Tuesta-Monteza, V., & Forero, M. G. (2020). Identification of Lasiodiplodia Theobromae in avocado trees through image processing and machine learning. Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115102F. https://doi.org/10.1117/12.2567322 Mercado Polo, D., Pedraza Caballero, L., & Martínez Gómez, E. (2015). Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo. Prospectiva, 13(2), 88. https://doi.org/10.15665/rp.v13i2.491 Mesa Sánchez, Ó. J., & Peñaranda Vélez, V. M. (2015). Complejidad de la estructura espacio-temporal de la precipitación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 304. https://doi.org/10.18257/raccefyn.196 Michel, J., Vinasco-salinas, J., Inglada, J., Hagolle, O., Michel, J., Vinasco-salinas, J., Inglada, J., & S, O. H. S. (2022). SEN2VEN µ S , a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms To cite this version : HAL Id : hal-03904203. 0–17. Milagro-Pérez, J. and. (2020). Copernicus: the European Earth Observation programme. 1–7. Miranda, C. (2021). Modelización de Series Temporales modelos clásicos y SARIMA. Universidad de Granada. https://masteres.ugr.es/estadistica-aplicada/sites/master/moea/public/inline-files/TFM_MIRANDA_CHINLLI_CARLOS.pdf Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using sentinel-2 data: A review. Remote Sensing, 12(17), 10–14. https://doi.org/10.3390/RS12172760 Mokria, M., Gebrekirstos, A., Said, H., Hadgu, K., Hagazi, N., Dubale, W., & Bräuning, A. (2022). Fruit weight and yield estimation models for five avocado cultivars in Ethiopia. Environmental Research Communications, 4(7). https://doi.org/10.1088/2515-7620/ac81a4 Moriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Honkavaara, E., & Rosalen, D. L. (2023). Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy, 13(6). Muñoz Herrera, W., Bedoya, O. F., & Rincón, M. E. (2020). Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34). https://doi.org/10.24050/reia.v17i34.1292 Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245. https://doi.org/10.1016/j.agwat.2020.106584 Naeem, M. B., & Jahan, S. (2023). Unveiling the Thirst: Revealing the Water Requirements of Gujrat’s Thriving Crops using CROPWAT 8.0. Journal of Plant and Environment, 5(2), 123–134. https://doi.org/10.33687/jpe.005.02.4983 Narkhede, U. P., & Adhiya, K. P. (2014). Evaluation of Modified K-Means Clustering Algorithm in Crop Prediction. In International Journal of Advanced Computer Research. Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe, H. A. S., & Kulasekara, B. R. (2022). Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051140 Narvekar, M., Fargose, P., & Mukhopadhyay, D. (2017). Weather forecasting using ANN with error backpropagation algorithm. Advances in Intelligent Systems and Computing, 468, 629–639. https://doi.org/10.1007/978-981-10-1675-2_62 NASA Applied Sciences. (2021). NASA Agriculture 2020 Annual Summary. Applied Sciences Program. Navrozidis, I., Pantazi, X. E., Lagopodi, A., Bochtis, D., & Alexandridis, T. K. (2023). Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote Sensing, 15(24). https://doi.org/10.3390/rs15245683 Nedkov, R. (2017). Normalized differential greenness index for vegetation dynamics assessment. Comptes Rendus de L’Academie Bulgare Des Sciences, 70(8), 1143–1146. Nketiah EA, Chenlong L, Yingchuan J, Aram SA. (2023). Recurrent neural network modeling of multivariate time series and its application in temperature forecasting. PLoS ONE 18(5): e0285713. https://doi.org/10.1371/journal.pone.0285713 NOAA. (2022). National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022, published online January 2023, retrieved on May 8, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213. Último acceso: diciembre de 2023. Nusrat, A., Gabriel, H. F., Haider, S., Ahmad, S., Shahid, M., & Jamal, S. A. (2020). Application of machine learning techniques to delineate homogeneous climate zones in river basins of Pakistan for hydro-climatic change impact studies. Applied Sciences (Switzerland), 10(19), 1–26. https://doi.org/10.3390/app10196878 O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016 Olaniyi, O. E. ., Adegbola, O. O. ., & Adefurin, O. M. (2020). Performance of Landsat 8 and Sentinel 2A in vegetation cover mapping of Ise Forest Reserve , Southwest Nigeria. Pandas Documentation. (2024). pandas.DataFrame.to_excel. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html Panek, E., Gozdowski, D., Stępień, M., Samborski, S., Ruciński, D., & Buszke, B. (2020). Within-field relationships between satellite-derived vegetation indices, grain yield and spike number of winter wheat and triticale. Agronomy, 10(11), 1–18. https://doi.org/10.3390/agronomy10111842 Pansera, W., Gomes, B., Vilas – Boas, M., Queiroz., Mello & E.L, Sampaio. (2015). Regionalization of monthly precipitation values in the state of Paraná (Brazil) by using multivariate clustering algorithms. Irriga 20(3):473-489. http://dx.doi.org/10.15809/irriga.2015v20n3p473 Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411(May). https://doi.org/10.1016/j.ecolmodel.2019.108817 Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830. Peña, L., Rentería, V., Velásquez, C., Ojeda, M. L., & Barrera, E. (2019). Absorbancia y reflectancia de hojas de Ficus contaminadas con nanopartículas de plata. In Revista Mexicana de Física (Vol. 65). Pérez-Bueno, M. L., Pineda, M., Vida, C., Fernández-Ortuño, D., Torés, J. A., de Vicente, A., Cazorla, F. M., & Barón, M. (2019). Detection of white root rot in avocado trees by remote sensing. Plant Disease, 103(6), 1119–1125. https://doi.org/10.1094/PDIS-10-18-1778-RE Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/https://doi.org/10.1016/j.tree.2005.05.011 Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026 Pinto, J., Rueda-Chacón, H., & Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22(45), 109–128. https://doi.org/10.22430/22565337.1232 Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/https://doi.org/10.1016/0034-4257(94)90134-1 Radočaj, D., Šiljeg, A., Plaščak, I., Marić, I., & Jurišić, M. (2023). A Micro-Scale Approach for Cropland Suitability Assessment of Permanent Crops Using Machine Learning and a Low-Cost UAV. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020362 Rahman, M. M., Robson, A., & Brinkhoff, J. (2022). Potential of Time-Series Sentinel 2 Data for Monitoring Avocado Crop Phenology. Remote Sensing, 14(23). https://doi.org/10.3390/rs14235942 Rahman, M., Robson, A., Salgadoe, S., Walsh, K., & Bristow, M. (2020). Exploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Crops. 3, 154. https://doi.org/10.3390/proceedings2019036154 Raju, K. S., & Kumar, D. N. (2020). Review of approaches for selection and ensembling of GCMS. Journal of Water and Climate Change, 11(3), 577–599. https://doi.org/10.2166/wcc.2020.128 Ramírez, J., Castañeda, D. & J. Morales J. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres, Viçosa, 64(1): 050-061. Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2018). Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae, 240, 273–280. https://doi.org/10.1016/j.scienta.2018.06.047 Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2021). Diseases and disorders associated with different stages of crop development and factors that determine the incidence in Hass avocado crops. Revista Ceres, 68(1), 071–082. https://doi.org/10.1590/0034-737X202168010009 Ramírez-Gil, J. G., & Peterson, A. T. (2019). Current and potential distributions of the most important diseases affecting Hass avocado in Antioquia Colombia. Journal of Plant Protection Research, 59(2). https://doi.org/10.24425/jppr.2019.129288 Ramírez-Gil, J. G., Gilchrist Ramelli, E., & Morales Osorio, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101, 103–115. https://doi.org/10.1016/j.cropro.2017.07.023 Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). https://doi.org/10.3390/plants9060790 Ramírez-Gil, J. G., Henao-Rojas, J. C., Diaz-Diez, C. A., Peña-Quiñones, A. J., León, N., Parra-Coronado, A., & Bernal-Estrada, J. A. (2023). Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon, 9(9), e19642. https://doi.org/10.1016/j.heliyon.2023.e19642 Ramirez-Gil, J. G., Lopera, A. A., & Garcia, C. (2023b). Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18658 Ramírez-Gil, J. G., López, J. H., & Henao-Rojas, J. C. (2019). Causes of Hass Avocado Fruit Rejection in Preharvest, Harvest, and Packinghouse: Economic Losses and Associated Variables. Agronomy, 10(1), 8. https://doi.org/10.3390/agronomy10010008 Ramírez-Gil, J. G., Morales, J. G., & Peterson, A. T. (2018). Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 237, 287–295. https://doi.org/10.1016/j.scienta.2018.04.021 Ramírez-Gil, J.G., Castañeda, D.A., Morales, J.G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres 61 (1), 050 -061. https://www.scielo.br/j/rceres/a/8VYhGtYxRcr4GHqtTLWdmjP/ Ramírez-Gil, J.G., Cobos, M.E., Jiménez-García, D., Morales-Osorio, J.G., Peterson, A.T., (2019). Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop Pasture Sci. 70, 694–708. https://doi.org/10.1071/CP19094 Ramirez-Guerrero, T., Hernandez-Perez, M. I., Tabares, M. S., Marulanda-Tobon, A., Villanueva, E., & Peña, A. (2023). Agroclimatic and Phytosanitary Events and Emerging Technologies for Their Identification in Avocado Crops: A Systematic Literature Review. Agronomy, 13(8), 1976. https://doi.org/10.3390/agronomy13081976 Rasheed, S. U., Muhammad, W., Qaiser, I., & Irshad, M. J. (2021). A Multispectral Pest-Detection Algorithm for Precision Agriculture. Engineering Proceedings, 12(1). https://doi.org/10.3390/engproc2021012046 Reints, J. (2019). Water Management Practices in California ‘Hass’ Avocado: Technologies Adoption and Impact of Soil Water Relations on Leaf Nutrient Concentrations and Yield [UC Riverside]. https://doi.org/10.1111/oik.05768 Ren, H., Zhou, G., & Zhang, F. (2018). Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209(79), 439–445. https://doi.org/10.1016/j.rse.2018.02.068 Reyes, J., Mesa, N. C., & Kondo, T. (2011). Biology of Oligonychus yothersi (McGregor) (Acari: Tetranychidae) on avocado Persea americana Mill. cv. Lorena (Lauraceae). In Caldasia (Vol. 33, Issue 1). http://www.icn.unal.edu.co/ Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 Robson, A. J., Petty, J., Joyce, D. C., Marques, J. R., & Hofman, P. J. (2016). High resolution remote sensing, GIS and Google Earth for avocado fruit quality mapping and tree number auditing. Acta Horticulturae, 1130, 589–595. https://doi.org/10.17660/ActaHortic.2016.1130.88 Robson, A., Rahman, M. M., & Muir, J. (2017). Using worldview satellite imagery to map yield in avocado (Persea americana): A case study in Bundaberg, Australia. Remote Sensing, 9(12), 1–18. https://doi.org/10.3390/rs9121223 Robson, A., Rahman, M. M., Muir, J., Saint, A., Simpson, C., & Searle, C. (2017). Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Advances in Animal Biosciences, 8(2), 498–504. https://doi.org/10.1017/s2040470017000954 Robson, A., Rahman, M., & Muir, J. (2017). Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sensing, 9(12), 1223. https://doi.org/10.3390/rs9121223 Rocha-Arroyo, J. L., Salazar-García, S., Bárcenas, A., González-Durán, I., & Cossio-Vargas, L. (2011). Fenología del aguacate “Hass” en Michoacán. Revista Mexicana de Ciencias Agrícolas. Revista Mexicana de Ciencias Agrícolas, 2(3), 303–316. Rodríguez, P., Soto, I., Villamizar, J., & Rebolledo, A. (2023). Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality. Horticulturae, 9(4). https://doi.org/10.3390/horticulturae9040460 Rodríguez-Almonacid, D. V., Ramírez-Gil, J. G., Higuera, O. L., Hernández, F., & Díaz-Almanza, E. (2023). A Comprehensive Step-by-Step Guide to Using Data Science Tools in the Gestion of Epidemiological and Climatological Data in Rice Production Systems. Agronomy, 13(11), 2844. https://doi.org/10.3390/agronomy13112844 Rogers, C. A., Chen, J. M., Zheng, T., Croft, H., Gonsamo, A., Luo, X., & Staebler, R. M. (2020). The Response of Spectral Vegetation Indices and Solar-Induced Fluorescence to Changes in Illumination Intensity and Geometry in the Days Surrounding the 2017 North American Solar Eclipse. Journal of Geophysical Research: Biogeosciences, 125(10). https://doi.org/10.1029/2020JG005774 Romero - Sánchez, M. (2012). Comportamiento fisiológico del aguacate (Persea americana mill.) Variedad Lorena en la zona de Mariquita, Tolima. Tesis de investigación presentada como requisito parcial para optar al título de Magister en Ciencias Agrarias, Área Fisiología de Cultivos. Universidad Nacional de Colombia. 135 pp. https://repositorio.unal.edu.co/handle/unal/9437 Rosentrater, L. D. (2010). Representing and using scenarios for responding to climate change. Wiley Interdisciplinary Reviews: Climate Change, 1(2), 253–259. https://doi.org/10.1002/wcc.32 Roy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478. https://doi.org/10.1016/j.heliyon.2019.e01478 Ruiz, P., Monterroso, A., Conde, A., & Sánchez, G. (2022). Breve guía para la selección descarga y aplicación de escenarios de cambio climático para México de acuerdo con los últimos escenarios del IPCC-2022. UACh-UNAMBUAP-UAT-ISF-México, A.C. http://dx.doi.org/10.13140/RG.2.2.20064.15369 Saha, P. P., Zeleke, K., & Hafeez, M. (2019). Impacts of land use and climate change on streamflow and water balance of two sub-catchments of the Murrumbidgee River in South Eastern Australia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (pp. 175–190). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00015-4 Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), 1–21. https://doi.org/10.1371/journal.pone.0118432 Salazar-García, S., Isidro, ¶ ;, Luis González-Durán, J., Luis, ;, & Tapia-Vargas, M. (2011). Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate “hass” en Michoacán, México. In Revista Revista Chapingo Serie Horticultura 17(2): 183-194, 2011. Salazar-García, s.; Cossio-Vargas, l. E.; Lovatt, C. J.; González-Durán, I. J. L.; Pérez-Barraza, m. H. 2006. Crop load affects vegetative growth flushes and shoot age influences irreversible commitment to flowering of 'Hass' avocado. HortScience 41:1541-1546. Salazar-Reque, I., Arteaga, D., Mendoza, F., Elena Rojas, M., Soto, J., Huaman, S., & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213. https://doi.org/10.1016/j.compag.2023.108246 Salehnia, N., Salehnia, N., Ansari, H., Kolsoumi, S., & Bannayan, M. (2019). Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and K-means approaches. International Journal of Biometeorology, 63(7), 861–872. https://doi.org/10.1007/s00484-019-01699-w Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. In Computers and Electronics in Agriculture (Vol. 72, Issue 1, pp. 1–13). https://doi.org/10.1016/j.compag.2010.02.007 Schepen, A., Everingham, Y., & Wang, Q. J. (2020). An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.107991 Scikit-learn. (2024). Train/test split and cross-validation. https://scikit-learn.org/stable/modules/cross_validation.html Selvaratnam, S. (2023). Applications of Robust Methods in Spatial Analysis. Journal of Probability and Statistics, 2023, 1–10. https://doi.org/10.1155/2023/1328265 Serrano, A. & Brooks, A. (2019). Who is left behind in global food systems? Local farmers failed by Colombia’s avocado boom. Global Food History, 5(2), 172-190. https://doi.org/10.1177/2514848619838195 Shapira, O., Chernoivanov, S., Neuberger, I., Levy, S., & Rubinovich, L. (2021). Physiological Characterization of Young ‘Hass’ Avocado Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants, 10(8), 1562. https://doi.org/10.3390/plants10081562 Sharifi, A. (2020), Remotely sensed vegetation indices for crop nutrition mapping. J. Sci. Food Agric., 100: 5191-5196. https://doi.org/10.1002/jsfa.10568 Sheridan, S. C. (2002). The redevelopment of a weather-type classification scheme for North America. International Journal of Climatology, 22(1), 51–68. https://doi.org/10.1002/joc.709 Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. https://doi.org/10.1016/j.physd.2019.132306 Sigurdsson, J., Armannsson, S. E., Ulfarsson, M. O., & Sveinsson, J. R. (2022). Fusing Sentinel-2 and Landsat 8 Satellite Images Using a Model-Based Method. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133224 Siji George, C. G., & Sumathi, B. (2020). Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction. International Journal of Advanced Computer Science and Applications, 11(9), 173–178. https://doi.org/10.14569/IJACSA.2020.0110920 Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399 Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456. https://doi.org/10.1016/j.ecolmodel.2021.109671 Simoes, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & E. Cobos, M. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/bi.v15i2.13376 Soltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., & Mahdavian, A. (2022). Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 200, 107130. https://doi.org/https://doi.org/10.1016/j.compag.2022.107130 Sommaruga, R., & Eldridge, H. M. (2021). Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices, 20(2), 48–53. https://doi.org/10.1111/1746-692X.12289 Sparks A. (2018). “nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R.” The Journal of Open Source Software, 3(30), 1035. http://dx.doi.org/10.21105/joss.01035 Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/s10658-020-01961-7 Stöckle, C. O., Marsal, J., & Villar, J. M. (2011). Impact of climate change on irrigated tree fruit production. In Acta Horticulturae (Vol. 889, pp. 41–52). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2011.889.2 Stroppiana, D., Migliazzi, M., Chiarabini, V., Crema, A., Musanti, M., Franchino, C., & Villa, P. (2015). Rice yeld estimation using multispectral data from UAV: A preliminary experiment in northen Italy. 46664–4667. Su, P., Zhang, A., Wang, J., & Xu, W. (2023). Plausible maize planting distribution under future global change scenarios. Field Crops Research, 302(July), 109079. https://doi.org/10.1016/j.fcr.2023.109079 Tan, P.N., Steinbach, M., Kumar & V. A. Karpatne. (2019). Introduction to Data Mining EBook: Global Edition. Pearson Education. ISBN=9780273775324, Disponible en: https://books.google.com.co/books?id=i8AoEAAAQBAJ. (Último acceso: junio de 2023) Tao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041231 Technology Transfer Program. (2021). NASA Brings Space Technology to Agricultural Applications. NASA. Tektaş, M. (2010). Weather Forecasting Using ANFIS and ARIMA MODELS. A Case Study for Istanbul. 1, 5–10. http://dx.doi.org/10.5755/j01.erem.51.1.58 Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4 Timsina, J., & Humphreys, E. (2006). Applications of CERES-Rice and CERES-wheat in research, policy and climate change studies in Asia: A review. International Journal of Agricultural Research, 1(3), 202–225. https://doi.org/10.3923/ijar.2006.202.225 Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291–307. https://doi.org/https://doi.org/10.1111/ecog.02880 Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. https://doi.org/10.1016/j.jhydrol.2018.07.004 Torres-Madronero, M. C., Rondón, T., Franco, R., Casamitjana, M., & Trochez González, J. (2023). Spectral Characterization of Avocado Persea Americana Mill. Cv. Hass Using Spectrometry and Imagery from the Visible to Near-Infrared Range. TecnoLógicas, 26(56), e2567. https://doi.org/10.22430/22565337.2567 Tu, Y. H., Phinn, S., Johansen, K., & Robson, A. (2018). Assessing radiometric correction approaches for multi-spectral UAS imagery for horticultural applications. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111684 Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0 Tzatzani, T. T., Morianou, G., Tül, S., & Kourgialas, N. N. (2023). Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece. Agriculture (Switzerland), 13(7). https://doi.org/10.3390/agriculture13071342 UPRA. (2019). Zonificación de aptitud para el cultivo comercial de aguacate (Persea americana Mill.) variedad Hass en Colombia, escala 1:100.000. Disponible en: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Zonificaci-n-de-aptitud-para-el-cultivo-comercial-/tx7u-frn2/data. (Último acceso: abril de 2023). Valencia-García Gema Alcaraz-Mármol Javier Del Cioppo-Morstadt Néstor Vera-Lucio Martha Bucaram-Leverone, R. (2018). Technologies and Innovation Communications in Computer and Information Science 883. In Citi. http://www.springer.com/series/7899 Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1 Van Loi. (2008). Use of GIS Modelling in Assessment of Forestry Land's Potential in Thua Thien Hue Province of Central Vietnam. Disponible en: https://d-nb.info/990716163/34 (Último acceso: diciembre de 2023). van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., KC, S., Kriegler, E., & O’Neill, B. (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. In Global Environmental Change (Vol. 42, pp. 148–152). Elsevier Ltd. https://doi.org/10.1016/j.gloenvcha.2016.10.009 Viera, W., Gaona, P., Samaniego, I., Sotomayor, A., Viteri, P., Noboa, M., Merino, J., Mejía, P., & Park, C. H. (2023). Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants, 12(9). https://doi.org/10.3390/plants12091791 Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-020-00368-0 Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2014). Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 9(7), e106552. DOI: 10.1371/journal.pone.0106552 Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods in Ecology and Evolution. 5. 1033-1042. https://doi.org/10.1111/2041-210X.12264 Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., & He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.108096 Wang, D., Liu, J., Shao, W., Mei, C., Su, X., & Wang, H. (2021). Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere, 12(7), 867. https://doi.org/10.3390/atmos12070867 Wang, N., Guo, Y., Wei, X., Zhou, M., Wang, H., & Bai, Y. (2022). UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109155 Wang, X., Ouyang, Y. Y., Liu, J., Zhao, G. (2019). Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition, 121(5), 474-484. https://doi.org/10.1017/S0007114518003628 Wang, Y., Zhao, W., Tang, X., Liu, Y., Tang, H., Guo, J., Lin, Z., & Huang, F. (2023). Plasma rice yield prediction based on Bi-LSTM model. In X. Kong (Ed.), Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2023) (p. 68). SPIE. https://doi.org/10.1117/12.2674801 Warren, T. (2005). Clustering of time series data - A survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025 Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021 Waskom, M., Botvinnik, O., Gelbart, M., Ostblom, J., Lukauskas, S., Hobson, P., Halchenko, Y., Warmenhoven, J., Cole, J. B., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, T., Quintero, E., Bachant, P., Martin, M., Meyer, K., Augspurger, T., Yarkoni, T., … Subramanian, S. (2020). Waskom Seaborn: v0.10.1. Zenodo. https://doi.org/10.5281/zenodo.3767070 Weil, A., Rubinovich, L., Tchernov, D., & Liran, O. (2022). Comparative Study between the Photosynthetic Parameters of Two Avocado (Persea americana) Cultivars Reveals Natural Variation in Light Reactions in Response to Frost Stress. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051129 Wilkie, J. D., Conway, J., Griffin, J., & Toegel, H. (2019). Relationships between canopy size, light interception and productivity in conventional avocado planting systems. Journal of Horticultural Science and Biotechnology, 94(4), 481–487. https://doi.org/10.1080/14620316.2018.1544469 Wójtowicz M., Wójtowicz A., Piekarczyk J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science 11, 31–50. http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_11_1_3.pdf Wolstenholme, B. N. (2013). Ecology: climate and soils. In The avocado: botany, production and uses (pp. 86–117). CABI. https://doi.org/10.1079/9781845937010.0086 Wolstenholme, B. y A. Whiley. (1995). Strategies for maximising avocado productivity: An overview. pp 61-70. En: Proceedings III World Avocado Congress. Israel. https://www.avocadosource.com/WAC3/wac3_p061.pdf WorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/cmip6/cmip6climate.html Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., Yan, N., Chang, S., Zhao, Y., Dong, Q., Boken, V., Plotnikov, D., Guo, H., Wu, F., Zhao, H., Deronde, B., Tits, L., & Loupian, E. (2022). Challenges and opportunities in remote sensing-based crop monitoring: a review. December. https://academic.oup.com/nsr/article/10/4/nwac290/6939854 Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005 Wu, D., Johansen, K., Phinn, S., Robson, A., & Tu, Y.-H. (2020). Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns Xiao, C., Ye, J., Esteves, R. M., and Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, Vol. 28, No. 14, pp. 3866-3878 Yadav, D., Gupta, A. K., & Badhai, S. (2020). Effects of Climate Change on Agriculture Effects of Climate Change on Agriculture View project Training and achivement. View project. https://www.researchgate.net/publication/344064949 Yahya, B. M., & Seker, D. Z. (2019). Designing Weather Forecasting Model Using Computational Intelligence Tools. Applied Artificial Intelligence, 33(2), 137–151. https://doi.org/10.1080/08839514.2018.1530858 Yan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., Mu, X., & Yan, G. (2022). Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493 Yohannes, H. (2015). A Review on Relationship between Climate Change and Agriculture. J Earth Sci Clim Change 07. https://doi.org/10.4172/2157-7617.1000335 Yue, Y., Zhang, P., & Shang, Y. (2019). The potential global distribution and dynamics of wheat under multiple climate change scenarios. Science of the Total Environment, 688(19), 1308–1318. https://doi.org/10.1016/j.scitotenv.2019.06.153 Zambon, I., Cecchini, M., Egidi, G., Saporito, M.G., Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 7, 36. https://doi.org/10.3390/pr7010036 Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally 2 3. https://doi.org/10.1038/s43017-022-00298-5 Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943 Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112 Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240(June 2019). https://doi.org/10.1016/j.rse.2020.111686 Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., Cheng, T., Zhu, Y., Cao, W. X., & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003 Zhu, L., Liu, X., Wang, Z., & Tian, L. (2023). High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. European Journal of Agronomy, 149, 126889. https://doi.org/https://doi.org/10.1016/j.eja.2023.126889 Zuazo, V. H. D., Lipan, L., Rodríguez, B. C., Sendra, E., Tarifa, D. F., Nemś, A., Ruiz, B. G., Carbonell-Barrachina, Á. A., & García-Tejero, I. F. (2021). Impact of deficit irrigation on fruit yield and lipid profile of terraced avocado orchards. Agronomy for Sustainable Development, 41(5), 1–16. https://doi.org/10.1007/s13593-021-00731-x |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
248 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86890/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86890/2/79951349_2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86890/3/79951349_2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 1b3de5d66a0b26af20194405c0930b5b 437b1bad6b1376333b5ead498b830367 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089862272253952 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Gil, Joaquín Guillermo057a48c561d6f5700e30039433833652Terán Chaves, Cesar Augusto35ae929efd039578284d7f55f12eef9dSánchez Vivas, Diego Fernandof60620d7f6dd4551832b0069498febfeBiogénesisSánchez Vivas, Diego Fernando [0000000163130871]Sánchez Vivas, Diego Fernando [0000092231]Sánchez Vivas, Diego Fernando [58159513500]Sánchez Vivas, Diego Fernando [https://www.researchgate.net/profile/Diego-Sanchez-Vivas]Sánchez Vivas, Diego Fernando [https://scholar.google.se/citations?user=7KTTn5UAAAAJ]2024-10-03T17:41:03Z2024-10-03T17:41:03Z2024https://repositorio.unal.edu.co/handle/unal/86890Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, mapas, tablasEl aguacate cv. Hass ha experimentado un crecimiento en la demanda a nivel mundial, lo que ha generado un aumento en los últimos años de las áreas cultivadas. Este frutal proveniente de Colombia cuenta con admisibilidad en 18 países del mundo, por lo que el área cosechada se ha incrementado en los últimos años. Sin embargo, fenómenos como la escasez de agua, la variabilidad y el cambio climático y la presencia y dispersión de plagas han planteado desafíos para el establecimiento de una agroindustria del aguacate sostenible en nuestro país. En este contexto, el objetivo principal de este trabajo de investigación fue implementar herramientas de análisis de datos espaciotemporales para la caracterización climática y espectral de las áreas productoras de aguacate cv. Hass. El estudio se dividió en dos etapas: en la primera, se realizó la caracterización y modelación climática bajo escenarios de variabilidad y cambio climático a nivel espacial en las regiones con aptitud para el cultivo de aguacate en Colombia. Por su parte, en la segunda etapa, utilizando imágenes multiespectrales obtenidas de sensores remotos y proximales, y bases de datos de clima de libre acceso se validaron índices de vegetación y variables de clima para determinar su capacidad para discriminar entre plantas visualmente afectadas por distintas fuentes de estrés (bióticos y abióticos) y plantas sanas, así como su potencial uso para predecir componentes de rendimiento del cultivo. De acuerdo con nuestros resultados, las zonas productoras de aguacate cv. Hass en Colombia se agrupan en cinco zonas climáticas homogéneas. Las herramientas de predicción climática, a partir de redes neuronales (ConvLSTM y Bi-LSTM), así como el modelo Sarima representaron adecuadamente los patrones de temperatura y precipitación para cada uno de los cinco clústeres establecidos. Además, el modelo Maxent implementado, permitió estimar el riesgo asociado al cambio climático, en términos de modificación de áreas idóneas para la producción en dos escenarios de cambio climático y tres períodos de tiempo. Así mismo, se presentan resultados sobre la validación de herramientas de teledetección para la identificación de afectaciones y la estimación de productividad en parcelas comerciales de aguacate cv. Hass, en uno de los principales municipios productores de Colombia (Texto tomado de la fuente).The Hass avocado cv. has experienced a worldwide growth in demand, which has generated an increase in cultivated areas in recent years. This fruit tree from Colombia has admissibility in 18 countries of the world, so the harvested area has increased in recent years. However, phenomena such as water scarcity, variability and climate change, and the presence and dispersion of pests have posed challenges to the establishment of a sustainable avocado agroindustry in our country. In this context, the main objective of this research work was to implement spatio-temporal data analysis tools for the climatic and spectral characterization of Hass avocado producing areas. The study was divided into two stages: in the first, the climatic characterization and modeling under scenarios of variability and climate change at the spatial level in the regions with aptitude for avocado cultivation in Colombia was carried out. For its part, in the second stage, using multispectral images obtained from remote and proximal sensors, and open access climate databases, vegetation indices and climate variables were validated to determine their capacity to discriminate between plants visually affected by different sources of stress (biotic and abiotic) and healthy plants, as well as their potential use to predict crop yield components. According to our results, the Hass avocado producing areas in Colombia are grouped into five homogeneous climatic zones. Climate prediction tools, based on neural networks (ConvLSTM and Bi-LSTM), as well as the Sarima model, adequately represented the temperature and precipitation patterns for each of the five established clusters. In addition, the implemented Maxent model allowed estimating the risk associated with climate change, in terms of modification of suitable areas for production in two climate change scenarios and three time periods. Likewise, results are presented on the validation of remote sensing tools for the identification of affectations and the estimation of productivity in commercial Hass avocado plots, in one of the main producing municipalities in Colombia.MaestríaMagister en GeomáticaLínea Agricultura 4.0 y Gestión Tecnológica248 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaAGUACATE-CONSERVACIONCLIMATOLOGIA AGRICOLAMETEOROLOGIA AGRICOLARECOPILACION DE DATOSCAMBIOS CLIMATICOSVARIABILIDAD DE PRECIPITACIONZONAS CLIMATICASAvocado - preservationCrops and climateMeteorology, agriculturalData collectingClimatic changesPrecipitation variabilityClimatic zonesVariabilidad y cambio climáticoSeries de tiempoRedes neuronales profundasÍndices de vegetaciónTeledetecciónClimate variability and changeTime seriesDeep neural networksVegetation indicesRemote sensingHerramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. HassSpace-time analysis tools for climatic and spectral data as a basis for the characterization and climatic modeling and indirect estimation of productive parameters in Hass avocadoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAgrosaviaAgrovocAbadi, A.M., Rowe, C.M., Andrade, M. (2020). Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology. 40, 4408–4421. https://doi.org/10.1002/joc.6464Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch. (2018). Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data https://www.nature.com/articles/sdata2017191Abbas, F., Afzaal, H., Farooque, A. A., & Tang, S. (2020). Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7). https://doi.org/10.3390/AGRONOMY10071046Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Computers and Electronics in Agriculture, 156, 549–557. https://doi.org/10.1016/j.compag.2018.12.018Acosta-Rangel, A., Li, R., Mauk, P., Santiago, L., & Lovatt, C. J. (2021). Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Scientia Horticulturae, 280, 109940. https://doi.org/10.1016/j.scienta.2021.109940Agisoft. (2023). DJI Phantom 4 Multispectral data processing. https://agisoft.freshdesk.com/support/solutions/articles/31000159853-dji-phantom-4-multispectral-data-processingAhmed, K., Sachindra, D. A., Shahid, S., Iqbal, Z., Nawaz, N., & Khan, N. (2020). Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236 (December 2019), 104806. https://doi.org/10.1016/j.atmosres.2019.104806Ahmed, M., Stöckle, C. O., Nelson, R., Higgins, S., Ahmad, S., & Raza, M. A. (2019). Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44251-xAiello, S., Click, C., Roark, H., & Rehak, L. (2015). Machine Learning with Python and H2O: First Edition Machine Learning with Python and H2O. H2O. Ai, November. http://h2o.ai/resources/Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023Aldino, A. A., Darwis, D., Prastowo, A. T., & Sujana, C. (2021). Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012038Althoff, D., Dias, S. H. B., Filgueiras, R., & Rodrigues, L. N. (2020). ETo‐Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018). Water Resources Research, 56(7). https://doi.org/10.1029/2020WR027562Álvarez Bravo, A., Salazar García, S., Ruiz Corral, J. A., & Medina García, G. (2017). Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘hass’ en Michoacán. Revista Mexicana de Ciencias Agrícolas, 19, 4035–4048. https://doi.org/10.29312/remexca.v0i19.671Anacona Mopan, Y.E., Solis Pino, A.F., Rubiano-Ovalle, O., Paz, H. & I. Ramirez Mejia. (2023). Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo-Inf. 2023, 12, 136. https://doi.org/10.3390/ijgi12040136Analdex. (2022). Informe exportaciones de aguacate Hass septiembre 2022. 6 pp. https://www.analdex.org/2022/12/13/informe-exportaciones-de-aguacate-hass-septiembre-2022/APHIS. (2021). Report Name: Avocado Annual. Country: México. 5 pp. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Avocado%20Annual_Mexico%20City_Mexico_12-01-2021.pdfApolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Frontiers in Plant Science, 11(July), 1–15. https://doi.org/10.3389/fpls.2020.01086Arias - García, J.S., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Ciência Rural, Santa Maria, v.51:8, e20200903. http://doi.org/10.1590/0103-8478cr20200903Arima, S., & Models, L. (2023). JOURNAL OF ENGINEERING SCIENCES Time Series Prediction of Temperature Using. 9(3), 574–584. https://doi.org/10.30855/gmbd.0705088Arnell, N. W., Lowe, J. A., Bernie, D., Nicholls, R. J., Brown, S., Challinor, A. J., & Osborn, T. J. (2019). The global and regional impacts of climate change under representative concentration pathway forcings and shared socioeconomic pathway socioeconomic scenarios. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab35a6Arpaia, M. L., & Heath, R. L. (2004). Avocado Tree Physiology - Understanding the basis of Productivity. Proceedings of the California Avocado Research Symposium, October 30, 2004, 65–88. https://www.californiaavocadogrowers.com/sites/default/files/Avocado-Tree-Physiology–Understanding-the-Basis-of-Productivity-2006.pdfAshraf, F. Bin, Kabir, M. R., Shafi, M. S. R., & Rifat, J. I. M. (2020). Finding Homogeneous Climate Zones in Bangladesh from Statistical Analysis of Climate Data Using Machine Learning Technique. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392689Ashraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere, 8(5). https://doi.org/10.1002/ecs2.1825Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75. https://doi.org/10.1139/juvs-2018-0018Balaji, E., Brindha, D., Vinodh Kumar, E., & Vikrama, R. (2021). Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Applied Soft Computing, 108, 107463. https://doi.org/10.1016/j.asoc.2021.107463Balaji, N., Bhandary, S. B., Dsouza, R. F., & Karthik Pai, B. (2022). ANN Based Weather Analysis and Prediction. 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings, 7–11. https://doi.org/10.1109/DISCOVER55800.2022.9974773Ballesteros, R., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2018). Onion biomass monitoring using UAV-based RGB imaging. Precision Agriculture, 19(5), 840–857. https://doi.org/10.1007/s11119-018-9560-yBannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298Barboza, T. O. C., Ferraz, M. A. J., Pilon, C., Vellidis, G., Valeriano, T. T. B., & dos Santos, A. F. (2024). Advanced Farming Strategies Using NASA POWER Data in Peanut-Producing Regions without Surface Meteorological Stations. AgriEngineering, 6(1), 438–454. https://doi.org/10.3390/agriengineering6010027Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281-305. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdfBerio Fortini, L., Kaiser, L. R., Frazier, A. G., & Giambelluca, T. W. (2023). Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies. Climatic Change, 176(12), 1–21. https://doi.org/10.1007/s10584-023-03623-zBernal-Estrada, J. A., Tamayo-Vélez, A. D. J., & Díaz-Diez, C. A. (2020). Dynamics of leaf, flower and fruit abscission in avocado cv. Hass in Antioquia, Colombia. Revista Colombiana de Ciencias Hortícolas, 14(3), 324–333. https://doi.org/10.17584/rcch.2020v14i3.10850Bilgili, A., Bilgili, A. V., Tenekeci, M. E., & Karadağ, K. (2023). Spectral characterization and classification of two different crown root rot and vascular wilt diseases (Fusarium oxysporum f.sp. radicis lycopersici and fusarium solani) in tomato plants using different machine learning algorithms. European Journal of Plant Pathology, 165(2), 271–286. https://doi.org/10.1007/s10658-022-02605-8Biotico, S. F., & Clima, E. L. (2000). Plan básico de ordenamiento territorial.Bony, S., Srinivasan, J., & Ronald, S. (2007). Climate Models and Their Evaluation. Solar potential assessment over India View project PROGRAMM AMMA. Disponible en: https://www.researchgate.net/publication/233421523. (Último acceso: junio de 2023).Box, G. (2013). Box and Jenkins: Time Series Analysis, Forecasting and Control BT - A Very British Affair: Six Britons and the Development of Time Series Analysis During the 20th Century (T. C. Mills (ed.); pp. 161–215). Palgrave Macmillan UK. https://doi.org/10.1057/9781137291264_6Breiman, L. (2001). Random forests. Machine Learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12343 LNCS, 503–515. https://doi.org/10.1007/978-3-030-62008-0_35Burn, D. H., & Goel, N. K. (2000). La formation de groupes pour l’estimation régionale de la fréquence des crues. Hydrological Sciences Journal, 45(1), 97–112. https://doi.org/10.1080/02626660009492308Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/s11119-021-09861-4Cáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2022). Validating Technologies and Evaluating the Technological Level in Avocado Production Systems: A Value Chain Approach. Agronomy, 12(12). https://doi.org/10.3390/agronomy12123130Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026Cao, Y., Li, G. L., Luo, Y. K., Pan, Q., & Zhang, S. Y. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Computers and Electronics in Agriculture, 171, 105331. https://doi.org/https://doi.org/10.1016/j.compag.2020.105331Carbajal-Morán, H., Márquez-Camarena, J. F., Galván-Maldonado, C. A., Zárate-Quiñones, R. H., Galván-Maldonado, A. C., & Muñoz-De la Torre, R. J. (2023). Evaluation of Normalized Difference Vegetation Index by Remote Sensing with Landsat Satellites in the Tayacaja Valley in the Central Andes of Peru. Ecological Engineering and Environmental Technology, 24(7), 208–215. https://doi.org/10.12912/27197050/169530Cárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., Cuadros Tavira, S., Sacristan, P. C., & García-Tejero, I. F. (2023). Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture (Switzerland), 13(5). https://doi.org/10.3390/agriculture13051049Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001Castillo-Guevara, M. A., Palomino-Quisne, F., Alvarez, A. B., & Coaquira-Castillo, R. J. (2020). Water stress analysis using aerial multispectral images of an avocado crop. Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020. https://doi.org/10.1109/EIRCON51178.2020.9254011Caswell, T. A., Droettboom, M., Hunter, J., Firing, E., Lee, A., Klymak, J., Stansby, D., Varoquaux, N., Nielsen, J. E., Root, B., May, R., Elson, P., Seppänen, J., Dale, D., Lee, D., Straw, A., Hobson, P., Gohlke, C., Yu, T. S., others. (2021). matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python. Journal of Open Source Software, 6(60), 3021.Cavalcanti, V. P., dos Santos, A. F., Rodrigues, F. A., Terra, W. C., Araújo, R. C., Ribeiro, C. R., Campos, V. P., Rigobelo, E. C., Medeiros, F. H. V., & Dória, J. (2023). Use of RGB images from unmanned aerial vehicle to estimate lettuce growth in root-knot nematode infested soil. Smart Agricultural Technology, 3, 100100. https://doi.org/10.1016/j.atech.2022.100100Chang, X., Meng, G., Wang, Y., Hou, X. (2012). Seasonal autoregressive integrated moving average model for precipitation time series. Journal of Mathematics and Statistics, 8(4), 500–505. https://doi.org/10.3844/jmssp.2012.500.505Chang, Y. L., Tan, T. H., Chen, T. H., Chuah, J. H., Chang, L., Wu, M. C., Tatini, N. B., Ma, S. C., & Alkhaleefah, M. (2022). Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081929Charre-Medellín, J. F., Mas, J.-F., & Chang-Martínez, L. A. (2021). Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop and Pasture Science, 72(4), 291–301. https://doi.org/10.1071/CP20458Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/kerasChong-Hai, X., & Ying, X. (2012). The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmospheric and Oceanic Science Letters, 5(6), 527–533. https://doi.org/10.1080/16742834.2012.11447042Choury, A., Bruinsma, S., & Schaeffer, P. (2013). Neural networks to predict exosphere temperature corrections. Space Weather, 11(10), 592–602. https://doi.org/10.1002/2013SW000969Chung, S. W., Rho, H., Lim, C. K., Jeon, M. K., Kim, S., Jang, Y. J., & An, H. J. (2022). Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15821-3CIPF. (2018). Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al., eds.) Geneva, Switzerland, IPCC. 630 págs. https://www.ipcc.ch/sr15/CIPF. (2021). Revisión científica del impacto del cambio climático en las plagas de las plantas. Un desafío mundial en la prevención y la mitigación de los riesgos de plagas en la agricultura, la silvicultura y los ecosistemas. Roma. FAO en nombre de la Secretaría de la CIPF. https://doi.org/10.4060/cb4769esClaverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219(August), 145–161. https://doi.org/10.1016/j.rse.2018.09.002Colectivo, M., & American, L. (2023). The Avocados of Wrath. April. https://grain.org/e/6985. (Último acceso: junio de 2023).Copernicus Open Access Hub by ESA (2020). https:// scihub. copernicus.Cortés, D., Silva, H., Baginsky, C., & Morales, L. (2017). Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model. Spanish Journal of Agricultural Research, 15(3). https://doi.org/10.5424/sjar/2017153-9935Crane, T. A., Roncoli, C., & Hoogenboom, G. (2011). Adaptation to climate change and climate variability: The importance of understanding agriculture as performance. NJAS: Wageningen Journal of Life Sciences, 57(3–4), 179–185. https://doi.org/10.1016/j.njas.2010.11.002Cruz-Cárdenas, G., Villaseñor, J. L., López-Mata, L., Martínez-Meyer, E., & Ortiz, E. (2014). Selection of environmental predictors for species distribution modeling in Maxent. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(2), 187–201. https://doi.org/10.5154/r.rchscfa.2013.09.034da Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., & Maes, W. H. (2023). Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sensing, 15(11), 1–22. https://doi.org/10.3390/rs15112909Dash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing - INT J REMOTE SENS, 25. https://doi.org/10.1080/0143116042000274015De Castro, A. I., Ehsani, R., Ploetz, R., Crane, J. H., & Abdulridha, J. (2015). Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment, 171, 33–44. https://doi.org/10.1016/j.rse.2015.09.011De La Fuente, S. (2014). Series Temporales, Modelo Arima y Metodología de Box - Jenkins. En: https://www.estadistica.net/ECONOMETRIA/SERIES-TEMPORALES/modelo-arima.pdfDe, D., & Alpes, G. (2022). Clustering non paramétrique pour les extrêmes spatiaux. Nonparametric clustering for spatial extremes. https://www.theses.fr/2022GRALU008.pdfDeng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/10.1016/j.isprsjprs.2018.09.008Dikbas, F., Firat, M., Koc, A. C., & Gungor, M. (2013). Defining Homogeneous Regions for Streamflow Processes in Turkey Using a K-Means Clustering Method. Arabian Journal for Science and Engineering, 38(6), 1313–1319. https://doi.org/10.1007/s13369-013-0542-0Dilmurat, K., Sagan, V., Maimaitijiang, M., & Moose, S. (2022). from Multisensory UAV Data.Ding, C., & He, X. (2004). K-means Clustering via Principal Component Analysis.DJI. (2023). DJI GS Pro en App Store. DJI GS Pro En App Store. https://apps.apple.com/es/app/dji-gs-pro/id1183717144Doan, Q. Van, Amagasa, T., Pham, T. H., Sato, T., Chen, F., & Kusaka, H. (2023). Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data. Geoscientific Model Development, 16(8), 2215–2233. https://doi.org/10.5194/gmd-16-2215-2023Dong, T. Y., Dong, W. J., Guo, Y., Chou, J. M., Yang, S. L., Tian, D., & Yan, D. D. (2018). Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in Climate Change Research, 9(1), 57–65. https://doi.org/10.1016/j.accre.2018.01.003Doughty, R., Xiao, X., Köhler, P., Frankenberg, C., Qin, Y., Wu, X., Ma, S., & Moore III, B. (2021). Global-Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research: Biogeosciences, 126(6), e2020JG006136. https://doi.org/https://doi.org/10.1029/2020JG006136Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J. L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40(August 2021). https://doi.org/10.1016/j.ejrh.2022.101037Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.xElsayed, N., ElSayed, Z., & Maida, A. S. (2023). LiteLSTM Architecture Based on Weights Sharing for Recurrent Neural Networks. http://arxiv.org/abs/2301.04794Erazo-Mesa, E., Echeverri-Sánchez, A., & Ramírez-Gil, J. G. (2022). Advances in Hass avocado irrigation scheduling under digital agriculture approach. Revista Colombiana de Ciencias Horticolas, 16(1). https://doi.org/10.17584/rcch.2022v16i1.13456Erazo-Mesa, E., Ramírez-Gil, J. G., & Echeverri Sánchez, A. (2021). Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia. Water, 13(3), 358. https://doi.org/10.3390/w13030358Erdil, A., & Arcaklioglu, E. (2013). The prediction of meteorological variables using artificial neural network. Neural Computing and Applications, 22(7–8), 1677–1683. https://doi.org/10.1007/s00521-012-1210-0ESA. (2023). Sentinel-2: Descripción de la misión. Recuperado de: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msiEscoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demográficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016Fan, H., Si, Q., Dong, W., Lu, G., & Liu, X. (2023). Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914214FAO. (2023). Listos para el cambio: Adaptando la producción de aguacate al cambio climático. Informe Técnico.FAOSTAT. (2023). Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (ultimo acceso: 16 de abril de 2023).Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A., & Zhang, M. (2020). Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering, 193, 101–114. https://doi.org/10.1016/j.biosystemseng.2020.02.014Feng, S., Hao, Z., Zhang, X., & Hao, F. (2021). Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304–305. https://doi.org/10.1016/j.agrformet.2021.108401Feng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., & Li, X. (2017). Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8(July), 1–12. https://doi.org/10.3389/fpls.2017.01219Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382–1395. https://doi.org/10.1038/s41559-019-0972-5Ferro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086Figueroa-Figueroa, D. K., Francisco Ramírez-Dávila, J., Antonio-Némiga, X., & González Huerta, A. (2020). Mapping of avocado in the south of the state of Mexico by digital image processing sentinel-2. Revista Mexicana Ciencias Agrícolas, 11(4), 865–879. https://www.scielo.org.mx/pdf/remexca/v11n4/2007-0934-remexca-11-04-865-en.pdfFilgueiras, R., Neto, F., Pereira, S. B., Lima, A. A., & Santos, J. A. (2022). Evaluating the accuracy of global climate datasets for agricultural studies. Environmental Research, 202, 111704. DOI: 10.1016/j.envres.2022.111704Filgueiras, R., Venancio, L. P., Aleman, C. C., & da Cunha, F. F. (2022). Comparison and calibration of terraclimate climatological variables over the Brazilian territory. Journal of South American Earth Sciences Volume 117. https://doi.org/10.1016/j.jsames.2022.103882Flynn KC., Frazier AE., Admas S. (2020). Performance of chlorophyllprediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions. Precis Agric:1–15. https://doi. org/ 10. 1007/ s11119- 020- 09708-4Forman, R. T. T. & Godron, M. (1986): Landscape Ecology, John Wiley and Sons, Nueva York.Franco, M., Leos, J., Salas, J., Acosta, M., & García, A. (2018). Análisis de costos y competitividad en la producción de aguacate en Michoacán, México. Revista Mexicana de Ciencias Agrícolas, 9(2), 391–403. http://www.scielo.org.mx/pdf/remexca/v9n2/2007-0934-remexca-9-02-391.pdfFriedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451Gaitan, S. B., & Ríos, M. D. (2020). Socio-economic and technological typology of avocado cv. Hass farms from Antioquia (Colombia). Ciência Rural, 50(7). https://doi.org/10.1590/0103-8478cr20190188Gallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144Gao, Y., Marpu, P., & Morales Manila, L. M. (2014). Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, 9263, 92630P. https://doi.org/10.1117/12.2068966García, J. S. A., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of hass avocado in Colombia. Challenges and opportunities: A review. Ciencia Rural, 51(8). https://doi.org/10.1590/0103-8478cr20200903García-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040655Gazoni, E., & Clark, C. (2024). openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files.Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2Gitelson, A. A., Vina, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 2–7.Gómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. Ingeniería y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.10973Gong, L., Li, X., Wu, S., & Jiang, L. (2022). Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecological Informatics, 72(April), 101834. https://doi.org/10.1016/j.ecoinf.2022.101834Goyal, M.K., Shivam, G., Sarma, A.K. (2019). Spatial homogeneity of extreme precipitation indices using fuzzy clustering over northeast India. Natural Hazards. 98, 559–574. https://doi.org/10.1007/s11069-019-03715-zGrüter, R., Trachsel, T., Laube, P., & Jaisli, I. (2022). Expected global suitability of coffee, cashew and avocado due to climate change. PLOS ONE, 17(1), e0261976. https://doi.org/10.1371/journal.pone.0261976H. Q. Liu and A. Huete, “A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, 1995, pp. 457-465. http://dx.doi.org/10.1109/36.377946H2O.ai. (2020). H2O AutoML: Scalable Automatic Machine Learning. https://www.h2o.ai/products/h2o-automl/Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013Han, Y., Bai, S.H., Trueman, S.J., Khoshelham, K., Kämper, W. (2023). Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging. Precis Agric. https://doi.org/10.1007/s11119-023-10022-yHanberry, B. B. (2023). Global Climate Classification and Comparison to Mid-Holocene and Last Glacial Maximum Climates, with Added Aridity Information and a Hypertropical Class. 552–569. https://doi.org/10.3390/earth4030029Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2Hastie, T., Tibshirani, R. & Friedman, J.H. (2009) The elementsof statistical learning: data mining, inference, and prediction,2nd edn. Springer-Verlag, New York.Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562–578.Hausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3Hebbar, K. B., Abhin, P. S., Jose, V. S., Neethu, P., Santhosh, A., Shil, S., & Vara Prasad, P. V. (2022). Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants, 11(6). https://doi.org/10.3390/plants11060731Hegyi, B., Stackhouse, P. W., Taylor, P., & Patadia, F. (2024). NASA POWER: Providing Present and Future Climate Services Based on NASA Data for the Energy, Agricultural, and Sustainable Buildings Communities. NASA Technical Reports Server.Hernández, C. M., Faye, A., Ly, M. O., Stewart, Z. P., Vara Prasad, P. V., Bastos, L. M., Nieto, L., Carcedo, A. J. P., & Ciampitti, I. A. (2021). Soil and climate characterization to define environments for summer crops in Senegal. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/su132111739Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J. & Dee, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343–366. https://doi.org/10.1007/s10044-020-00898-1Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. http://dx.doi.org/10.1002/joc.1276Holden, N. M., & Brereton, A. J. (2004). Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agricultural and Forest Meteorology, 122(3–4), 175–191. https://doi.org/10.1016/j.agrformet.2003.09.010Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. www.pnas.orgcgidoi10.1073pnas.0701890104Hribar, J. & Vidrih, R. (2015). Impacts of climate change on fruit physiology and quality. In: Proceedings. 50th Croatian and 10th International Symposium on Agriculture. Opatija. Croatia. 42- 45.Hughes, D. A., Kingston, D. G., & Todd, M. C. (2011). Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrology and Earth System Sciences, 15(3), 931–941. https://doi.org/10.5194/hess-15-931-2011Hunt ML., Blackburn GA., Carrasco L., Redhead JW., Rowland CS. (2019). High-resolution wheat yield mapping using Sentinel-2. Remote Sens Environ 233:11410. https://doi. org/ 10. 1016/j. rse. 2019. 111410Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agronomy Journal, 103(4), 1090–1099. https://doi.org/10.2134/agronj2010.0395Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.ICA. (2023). Instituto Colombiano Agropecuario – ICA. Consulta realizada al Programa de Registros Vegetales de Exportación. Dirección Técnica de Epidemiología y Vigilancia Fitosanitaria.ICONTEC. (2018). Frutas frescas. Aguacate variedad Hass. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación, 571, 15.IDEAM - UNAL. (2018). Variabilidad Climática y el cambio climático en Colombia. Bogotá, D.C., 1–53. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf. (último acceso: junio de 2023).IFAD. (2024). Republic of Colombia: Country strategic opportunities programme. September, 44–45. https://webapps.ifad.org/members/eb/141/docs/EB-2024-OR-3.pdfIGAC. (2017). Manual de procedimientos - Generación de Ortofotomosaico. Grupo interno de trabajo generación de datos y productos cartográficos. 11 pp.Imran, A. B., Khan, K., Ali, N., Ahmad, N., Ali, A., & Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6(1), 97–108. https://doi.org/10.22034/gjesm.2020.01.08Iniyan, S., Akhil Varma, V., & Teja Naidu, C. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175(September 2022), 103326. https://doi.org/10.1016/j.advengsoft.2022.103326Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming–a review. In Soil Science and Plant Nutrition (Vol. 66, Issue 6, pp. 798–810). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1738899IPCC. (2013). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.htmlIyigun, C., Türkeş, M., Batmaz, I., Yozgatligil, C., Purutçuoǧlu, V., Koç, E. K., & Öztürk, M. Z. (2013). Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology, 114(1–2), 95–106. https://doi.org/10.1007/s00704-012-0823-7Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., … Rosenzweig, C. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873–885. https://doi.org/10.1038/s43016-021-00400-yJavaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004Jeong, H., Bhattarai, R., & Hwang, S. (2019). How climate scenarios alter future predictions of field-scale water and nitrogen dynamics and crop yields. Journal of Environmental Management, 252. https://doi.org/10.1016/j.jenvman.2019.109623Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. In Current Opinion in Biotechnology (Vol. 70, pp. 15–22). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2020.09.003Jurišić, M., Radočaj, D., Plaščak, I., Galić, S. D., & Petrović, D. (2022). the Evaluation of the Rgb and Multispectral Camera on the Unmanned Aerial Vehicle (Uav) for the Machine Learning Classification of Maize. Poljoprivreda, 28(2), 74–80. https://doi.org/10.18047/poljo.28.2.10K. Boitt, M., N. Mundia, harles, & Pellikka, P. (2014). Modelling the Impacts of Climate Change on Agro-Ecological Zones – a Case Study of Taita Hills, Kenya. Universal Journal of Geoscience, 2(6), 172–179. https://doi.org/10.13189/ujg.2014.020602Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V. S., Malachy, N., Tanny, J., & Rozenstein, O. (2021). Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061046Karger, D. N., Schmatz, D. R., Dettling, G., & Zimmermann, N. E. (2020). High resolution monthly precipitation and temperature timeseries for the period 2006–2100, Sci. Data, 7, 248. https://doi.org/10.1038/s41597-020-00587-yKasimati, A., Espejo-García, B., Darra, N., & Fountas, S. (2022). Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Sensors, 22(9). https://doi.org/10.3390/s22093249Kganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Computers and Electronics in Agriculture, 218, 108730. https://doi.org/10.1016/j.compag.2024.108730Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., & Onwude, D. I. (2018). Early detection of diseases in plant tissue using spectroscopy–applications and limitations. In Applied Spectroscopy Reviews (Vol. 53, Issue 1, pp. 36–64). Taylor and Francis Inc. https://doi.org/10.1080/05704928.2017.1352510Khalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., Kropp, J. P., Pradhan, P., & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6(2), 663–676. https://doi.org/10.3934/AGRFOOD.2021039Kiil, L., Houmøller, M., & Hesselberg, T. (2023). General Circulation Models (GCMs). Https://www.Climate-Encyclopedia.Com/Opslag/Liste.Kiilu, S. N. (2021). Time Series Analysis of Rainfall and Temperature in Rwanda using ARIMA Model Ha wnmmmn. June. https://library.nexteinstein.org/wp-content/uploads/2023/03/AIMSRW21_stephen_kiilu_essay.pdfKim, S., Hong, S., Joh, M., & Song, S.-K. (2017).Deeprain: convLstm network for precipitation.Kior, A., Sukhov, V., & Sukhova, E. (2021). Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics, 8(12).Klakotskaya, N., Laurson, P., Libek, A. V., & Kikas, A. (2023). Assessment of the Aim Characteristics of Strawberry (Fragaria × Ananassa) Cultivars in Estonia by Using the K-Means Clustering Method. Horticulturae, 9(1). https://doi.org/10.3390/horticulturae9010104Kong, Z., Cui, Y., Xia, Z., & Lv, H. (2019). Convolution and Long Short-Term Memory Hybrid Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9(19), 4156. https://doi.org/10.3390/app9194156Kottaridi, K., Milionis, A., Demopoulos, V., Nikolaidis, V., Tsalgatidou, P. C., Tsafouros, A., Kotsiras, A., & Vithoulkas, A. (2024). Comparative analysis of machine learning classification algorithms for predicting olive anthracnose disease. Journal of Autonomous Intelligence, 7(5), 1466. https://doi.org/10.32629/jai.v7i5.1466Kozjek, K., Dolinar, M., & Skok, G. (2017). Objective climate classification of Slovenia. International Journal of Climatology, 37(March), 848–860. https://doi.org/10.1002/joc.5042Kożuch, A., Cywicka, D., & Adamowicz, K. (2023). A Comparison of Artificial Neural Network and Time Series Models for Timber Price Forecasting. Forests, 14(2). https://doi.org/10.3390/f14020177Krishna, M. V., Swaroopa, K., SwarnaLatha, G., & Yasaswani, V. (2023). Crop yield prediction in India based on mayfly optimization empowered attention-bi-directional long short-term memory (LSTM). Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16807-7Kuska, M. T., & Mahlein, A.-K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1Kyratzis, A. C., Skarlatos, D. P., Menexes, G. C., Vamvakousis, V. F., & Katsiotis, A. (2017). Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01114Lahav, E., & Trochoulias, T. (1982). The Effect of Temperature on Growth and Dry Matter Production of Avocado Plants. In Aust. J. Agric. Res (Vol. 33).Lai, Y., & Dzombak, D. A. (2020). Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather and Forecasting, 35, 959–976. https://doi.org/10.1175/WAF-D-19Lang, S., Blaschke, T., 2007. Landschaftsanalyse mit GIS. Ulmer, Stuttgart, 404 pp.Ledell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning, 1–16. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdfLee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540Lee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540Leng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01599-2Leng, G., Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep. 7. https://doi.org/10.1038/s41598-017-01599-2León, R., Díaz, M., & Rodríguez, L. (2020). Management of an artificial vision system for the detection of damage caused by pests in avocado crop using a drone. Revista Ciencia y Tecnología, 16(4), 145–151. https://doi.org/10.17268/rev.cyt.2020.04.14León-Rueda, W. A., León, C., Caro, S. G.-, & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2Li, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019). Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China. Journal of Agricultural Science, 157(5), 375–381. https://doi.org/10.1017/S0021859619000686Li, M., Shamshiri, R. R., Weltzien, C., & Schirrmann, M. (2022). Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174426Liang, S., & Wang Jindi. (2020). Chapter 15 - Estimate of vegetation production of terrestrial ecosystem. In Liang Shunlin & Wang Jindi (Eds.), Advanced Remote Sensing (2nd ed., pp. 581–620).Lipovac, A., Bezdan, A., Moravčević, D., Djurović, N., Ćosić, M., Benka, P., & Stričević, R. (2022). Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223786Liu, S., Peng, Y., Xia, Z., Hu, Y., Wang, G., Zhu, A. X., & Liu, Z. (2019). The Ga-BPNN-based evaluation of cultivated land quality in the PSR framework using Gaofen-1 satellite data. Sensors (Switzerland), 19(23), 1–14. https://doi.org/10.3390/s19235127Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298Lobell, D.B., Thau, D., Seifert, C., Engle, E. & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sens Environ. 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.021Lopes, A.R., Marcolin, J., Johann, J.A., Vilas Boas & M.A., Schuelter, A.R. (2019). Identification of homogeneous rainfall zones during grain crops in Paraná, Brazil. Engenharia Agrícola. 39, 707–714. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n6p707-714/2019López, D. (2020). El aguacate continúa ocupando el primer lugar de las exportaciones hortofrutícolas colombianas. Frutas y hortalizas. Revistas de la Asociación Hortifrutícola de Colombia. Asohofrucol. Enero – Febrero 2021. Pp 20 -21. https://www.asohofrucol.com.co/img/pdfrevistas/48Balance%20del.pdfLussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3), 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018Ma, C., Liu, M., Ding, F., Li, C., Cui, Y., Chen, W., Wang, Y. (2022). Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model. Sci Rep. 12. https://doi.org/10.1038/s41598-022-09535-9Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Chen, L., Flynn, K. C., & Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68–79. https://doi.org/10.1016/j.ecolind.2018.10.049Madonsela, S., Cho, M. A., Naidoo, L., Main, R., & Majozi, N. (2023). Exploring the utility of Sentinel-2 for estimating maize chlorophyll content and leaf area index across different growth stages. Journal of Spatial Science, 68(2), 339–351. https://doi.org/10.1080/14498596.2021.2000898MADR. (2019). Comienza el ordenamiento de la producción de aguacate Hass. Disponible en: https://www.minagricultura.gov.co/noticias/Paginas/Comienza-el-ordenamiento-de-la-producci%C3%B3n-de-aguacate-hass.aspx. (Último acceso: abril de 2023).Mahmud, S., Sumana, F. M., Mohsin, M., & Khan, Md. H. R. (2022). Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches. Natural Hazards, 111(2), 1863–1884. https://doi.org/10.1007/s11069-021-05120-xMahsin, M., Akhter, Y., & Begum, M. (2012a). Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mathematical Modelling and Application, 1(5), 67–73.Malachy, N., Zadak, I., & Rozenstein, O. (2022). Comparing Methods to Extract Crop Height and Estimate Crop Coefficient from UAV Imagery Using Structure from Motion. In Remote Sensing (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/rs14040810Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. In Sustainability (Switzerland) (Vol. 13, Issue 3, pp. 1–21). MDPI. https://doi.org/10.3390/su13031318Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production (pp. 23–46). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63661-4.00002-5Manideep, A. P. S., & Kharb, S. (2022). A Comparative Analysis of Machine Learning Prediction Techniques for Crop Yield Prediction in India. Turkish Journal of Computer and Mathematics Education, 13(02), 120–133.Manochandar, S., Punniyamoorthy, M., & Jeyachitra, R. K. (2020). Development of new seed with modified validity measures for k-means clustering. Computers and Industrial Engineering, 141. https://doi.org/10.1016/j.cie.2020.106290Marino, S., Cocozza, C., Tognetti, R., Alvino, A. (2015). Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precision Agriculture (2015) 16:613–629. Springer Science+Business Media New York. http://dx.doi.org/10.1007/s11119-015-9396-7Martinez, A. & J. Serna. (2018). Validación de las estimaciones de precipitación con CHIRPS e IRE/ IDEAM. Nota Técnica del Ideam. IDEAM – METEO.002. 25 pp. http://bart.ideam.gov.co/wrfideam/new_modelo/DOCUMENTOS/2018/NT_IDEAM-002-2018.pdfMartínez-Acosta, L., Medrano-Barboza, J. P., López-Ramos, Á., López, J. F. R., & López-Lambraño, Á. A. (2020). SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere, 11(6), 1–16. https://doi.org/10.3390/atmos11060602McKinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, December, 1–9.Mejiá-Cabrera, H. I., Flores, J. N., Sigueñas, J., Tuesta-Monteza, V., & Forero, M. G. (2020). Identification of Lasiodiplodia Theobromae in avocado trees through image processing and machine learning. Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115102F. https://doi.org/10.1117/12.2567322Mercado Polo, D., Pedraza Caballero, L., & Martínez Gómez, E. (2015). Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo. Prospectiva, 13(2), 88. https://doi.org/10.15665/rp.v13i2.491Mesa Sánchez, Ó. J., & Peñaranda Vélez, V. M. (2015). Complejidad de la estructura espacio-temporal de la precipitación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 304. https://doi.org/10.18257/raccefyn.196Michel, J., Vinasco-salinas, J., Inglada, J., Hagolle, O., Michel, J., Vinasco-salinas, J., Inglada, J., & S, O. H. S. (2022). SEN2VEN µ S , a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms To cite this version : HAL Id : hal-03904203. 0–17.Milagro-Pérez, J. and. (2020). Copernicus: the European Earth Observation programme. 1–7.Miranda, C. (2021). Modelización de Series Temporales modelos clásicos y SARIMA. Universidad de Granada. https://masteres.ugr.es/estadistica-aplicada/sites/master/moea/public/inline-files/TFM_MIRANDA_CHINLLI_CARLOS.pdfMisra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using sentinel-2 data: A review. Remote Sensing, 12(17), 10–14. https://doi.org/10.3390/RS12172760Mokria, M., Gebrekirstos, A., Said, H., Hadgu, K., Hagazi, N., Dubale, W., & Bräuning, A. (2022). Fruit weight and yield estimation models for five avocado cultivars in Ethiopia. Environmental Research Communications, 4(7). https://doi.org/10.1088/2515-7620/ac81a4Moriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Honkavaara, E., & Rosalen, D. L. (2023). Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy, 13(6).Muñoz Herrera, W., Bedoya, O. F., & Rincón, M. E. (2020). Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34). https://doi.org/10.24050/reia.v17i34.1292Mwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245. https://doi.org/10.1016/j.agwat.2020.106584Naeem, M. B., & Jahan, S. (2023). Unveiling the Thirst: Revealing the Water Requirements of Gujrat’s Thriving Crops using CROPWAT 8.0. Journal of Plant and Environment, 5(2), 123–134. https://doi.org/10.33687/jpe.005.02.4983Narkhede, U. P., & Adhiya, K. P. (2014). Evaluation of Modified K-Means Clustering Algorithm in Crop Prediction. In International Journal of Advanced Computer Research.Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe, H. A. S., & Kulasekara, B. R. (2022). Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051140Narvekar, M., Fargose, P., & Mukhopadhyay, D. (2017). Weather forecasting using ANN with error backpropagation algorithm. Advances in Intelligent Systems and Computing, 468, 629–639. https://doi.org/10.1007/978-981-10-1675-2_62NASA Applied Sciences. (2021). NASA Agriculture 2020 Annual Summary. Applied Sciences Program.Navrozidis, I., Pantazi, X. E., Lagopodi, A., Bochtis, D., & Alexandridis, T. K. (2023). Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote Sensing, 15(24). https://doi.org/10.3390/rs15245683Nedkov, R. (2017). Normalized differential greenness index for vegetation dynamics assessment. Comptes Rendus de L’Academie Bulgare Des Sciences, 70(8), 1143–1146.Nketiah EA, Chenlong L, Yingchuan J, Aram SA. (2023). Recurrent neural network modeling of multivariate time series and its application in temperature forecasting. PLoS ONE 18(5): e0285713. https://doi.org/10.1371/journal.pone.0285713NOAA. (2022). National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022, published online January 2023, retrieved on May 8, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213. Último acceso: diciembre de 2023.Nusrat, A., Gabriel, H. F., Haider, S., Ahmad, S., Shahid, M., & Jamal, S. A. (2020). Application of machine learning techniques to delineate homogeneous climate zones in river basins of Pakistan for hydro-climatic change impact studies. Applied Sciences (Switzerland), 10(19), 1–26. https://doi.org/10.3390/app10196878O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016Olaniyi, O. E. ., Adegbola, O. O. ., & Adefurin, O. M. (2020). Performance of Landsat 8 and Sentinel 2A in vegetation cover mapping of Ise Forest Reserve , Southwest Nigeria.Pandas Documentation. (2024). pandas.DataFrame.to_excel. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.htmlPanek, E., Gozdowski, D., Stępień, M., Samborski, S., Ruciński, D., & Buszke, B. (2020). Within-field relationships between satellite-derived vegetation indices, grain yield and spike number of winter wheat and triticale. Agronomy, 10(11), 1–18. https://doi.org/10.3390/agronomy10111842Pansera, W., Gomes, B., Vilas – Boas, M., Queiroz., Mello & E.L, Sampaio. (2015). Regionalization of monthly precipitation values in the state of Paraná (Brazil) by using multivariate clustering algorithms. Irriga 20(3):473-489. http://dx.doi.org/10.15809/irriga.2015v20n3p473Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411(May). https://doi.org/10.1016/j.ecolmodel.2019.108817Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.Peña, L., Rentería, V., Velásquez, C., Ojeda, M. L., & Barrera, E. (2019). Absorbancia y reflectancia de hojas de Ficus contaminadas con nanopartículas de plata. In Revista Mexicana de Física (Vol. 65).Pérez-Bueno, M. L., Pineda, M., Vida, C., Fernández-Ortuño, D., Torés, J. A., de Vicente, A., Cazorla, F. M., & Barón, M. (2019). Detection of white root rot in avocado trees by remote sensing. Plant Disease, 103(6), 1119–1125. https://doi.org/10.1094/PDIS-10-18-1778-REPettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/https://doi.org/10.1016/j.tree.2005.05.011Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026Pinto, J., Rueda-Chacón, H., & Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22(45), 109–128. https://doi.org/10.22430/22565337.1232Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/https://doi.org/10.1016/0034-4257(94)90134-1Radočaj, D., Šiljeg, A., Plaščak, I., Marić, I., & Jurišić, M. (2023). A Micro-Scale Approach for Cropland Suitability Assessment of Permanent Crops Using Machine Learning and a Low-Cost UAV. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020362Rahman, M. M., Robson, A., & Brinkhoff, J. (2022). Potential of Time-Series Sentinel 2 Data for Monitoring Avocado Crop Phenology. Remote Sensing, 14(23). https://doi.org/10.3390/rs14235942Rahman, M., Robson, A., Salgadoe, S., Walsh, K., & Bristow, M. (2020). Exploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Crops. 3, 154. https://doi.org/10.3390/proceedings2019036154Raju, K. S., & Kumar, D. N. (2020). Review of approaches for selection and ensembling of GCMS. Journal of Water and Climate Change, 11(3), 577–599. https://doi.org/10.2166/wcc.2020.128Ramírez, J., Castañeda, D. & J. Morales J. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres, Viçosa, 64(1): 050-061.Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2018). Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae, 240, 273–280. https://doi.org/10.1016/j.scienta.2018.06.047Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2021). Diseases and disorders associated with different stages of crop development and factors that determine the incidence in Hass avocado crops. Revista Ceres, 68(1), 071–082. https://doi.org/10.1590/0034-737X202168010009Ramírez-Gil, J. G., & Peterson, A. T. (2019). Current and potential distributions of the most important diseases affecting Hass avocado in Antioquia Colombia. Journal of Plant Protection Research, 59(2). https://doi.org/10.24425/jppr.2019.129288Ramírez-Gil, J. G., Gilchrist Ramelli, E., & Morales Osorio, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101, 103–115. https://doi.org/10.1016/j.cropro.2017.07.023Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). https://doi.org/10.3390/plants9060790Ramírez-Gil, J. G., Henao-Rojas, J. C., Diaz-Diez, C. A., Peña-Quiñones, A. J., León, N., Parra-Coronado, A., & Bernal-Estrada, J. A. (2023). Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon, 9(9), e19642. https://doi.org/10.1016/j.heliyon.2023.e19642Ramirez-Gil, J. G., Lopera, A. A., & Garcia, C. (2023b). Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18658Ramírez-Gil, J. G., López, J. H., & Henao-Rojas, J. C. (2019). Causes of Hass Avocado Fruit Rejection in Preharvest, Harvest, and Packinghouse: Economic Losses and Associated Variables. Agronomy, 10(1), 8. https://doi.org/10.3390/agronomy10010008Ramírez-Gil, J. G., Morales, J. G., & Peterson, A. T. (2018). Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 237, 287–295. https://doi.org/10.1016/j.scienta.2018.04.021Ramírez-Gil, J.G., Castañeda, D.A., Morales, J.G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres 61 (1), 050 -061. https://www.scielo.br/j/rceres/a/8VYhGtYxRcr4GHqtTLWdmjP/Ramírez-Gil, J.G., Cobos, M.E., Jiménez-García, D., Morales-Osorio, J.G., Peterson, A.T., (2019). Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop Pasture Sci. 70, 694–708. https://doi.org/10.1071/CP19094Ramirez-Guerrero, T., Hernandez-Perez, M. I., Tabares, M. S., Marulanda-Tobon, A., Villanueva, E., & Peña, A. (2023). Agroclimatic and Phytosanitary Events and Emerging Technologies for Their Identification in Avocado Crops: A Systematic Literature Review. Agronomy, 13(8), 1976. https://doi.org/10.3390/agronomy13081976Rasheed, S. U., Muhammad, W., Qaiser, I., & Irshad, M. J. (2021). A Multispectral Pest-Detection Algorithm for Precision Agriculture. Engineering Proceedings, 12(1). https://doi.org/10.3390/engproc2021012046Reints, J. (2019). Water Management Practices in California ‘Hass’ Avocado: Technologies Adoption and Impact of Soil Water Relations on Leaf Nutrient Concentrations and Yield [UC Riverside]. https://doi.org/10.1111/oik.05768Ren, H., Zhou, G., & Zhang, F. (2018). Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209(79), 439–445. https://doi.org/10.1016/j.rse.2018.02.068Reyes, J., Mesa, N. C., & Kondo, T. (2011). Biology of Oligonychus yothersi (McGregor) (Acari: Tetranychidae) on avocado Persea americana Mill. cv. Lorena (Lauraceae). In Caldasia (Vol. 33, Issue 1). http://www.icn.unal.edu.co/Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009Robson, A. J., Petty, J., Joyce, D. C., Marques, J. R., & Hofman, P. J. (2016). High resolution remote sensing, GIS and Google Earth for avocado fruit quality mapping and tree number auditing. Acta Horticulturae, 1130, 589–595. https://doi.org/10.17660/ActaHortic.2016.1130.88Robson, A., Rahman, M. M., & Muir, J. (2017). Using worldview satellite imagery to map yield in avocado (Persea americana): A case study in Bundaberg, Australia. Remote Sensing, 9(12), 1–18. https://doi.org/10.3390/rs9121223Robson, A., Rahman, M. M., Muir, J., Saint, A., Simpson, C., & Searle, C. (2017). Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Advances in Animal Biosciences, 8(2), 498–504. https://doi.org/10.1017/s2040470017000954Robson, A., Rahman, M., & Muir, J. (2017). Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sensing, 9(12), 1223. https://doi.org/10.3390/rs9121223Rocha-Arroyo, J. L., Salazar-García, S., Bárcenas, A., González-Durán, I., & Cossio-Vargas, L. (2011). Fenología del aguacate “Hass” en Michoacán. Revista Mexicana de Ciencias Agrícolas. Revista Mexicana de Ciencias Agrícolas, 2(3), 303–316.Rodríguez, P., Soto, I., Villamizar, J., & Rebolledo, A. (2023). Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality. Horticulturae, 9(4). https://doi.org/10.3390/horticulturae9040460Rodríguez-Almonacid, D. V., Ramírez-Gil, J. G., Higuera, O. L., Hernández, F., & Díaz-Almanza, E. (2023). A Comprehensive Step-by-Step Guide to Using Data Science Tools in the Gestion of Epidemiological and Climatological Data in Rice Production Systems. Agronomy, 13(11), 2844. https://doi.org/10.3390/agronomy13112844Rogers, C. A., Chen, J. M., Zheng, T., Croft, H., Gonsamo, A., Luo, X., & Staebler, R. M. (2020). The Response of Spectral Vegetation Indices and Solar-Induced Fluorescence to Changes in Illumination Intensity and Geometry in the Days Surrounding the 2017 North American Solar Eclipse. Journal of Geophysical Research: Biogeosciences, 125(10). https://doi.org/10.1029/2020JG005774Romero - Sánchez, M. (2012). Comportamiento fisiológico del aguacate (Persea americana mill.) Variedad Lorena en la zona de Mariquita, Tolima. Tesis de investigación presentada como requisito parcial para optar al título de Magister en Ciencias Agrarias, Área Fisiología de Cultivos. Universidad Nacional de Colombia. 135 pp. https://repositorio.unal.edu.co/handle/unal/9437Rosentrater, L. D. (2010). Representing and using scenarios for responding to climate change. Wiley Interdisciplinary Reviews: Climate Change, 1(2), 253–259. https://doi.org/10.1002/wcc.32Roy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478. https://doi.org/10.1016/j.heliyon.2019.e01478Ruiz, P., Monterroso, A., Conde, A., & Sánchez, G. (2022). Breve guía para la selección descarga y aplicación de escenarios de cambio climático para México de acuerdo con los últimos escenarios del IPCC-2022. UACh-UNAMBUAP-UAT-ISF-México, A.C. http://dx.doi.org/10.13140/RG.2.2.20064.15369Saha, P. P., Zeleke, K., & Hafeez, M. (2019). Impacts of land use and climate change on streamflow and water balance of two sub-catchments of the Murrumbidgee River in South Eastern Australia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (pp. 175–190). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00015-4Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), 1–21. https://doi.org/10.1371/journal.pone.0118432Salazar-García, S., Isidro, ¶ ;, Luis González-Durán, J., Luis, ;, & Tapia-Vargas, M. (2011). Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate “hass” en Michoacán, México. In Revista Revista Chapingo Serie Horticultura 17(2): 183-194, 2011.Salazar-García, s.; Cossio-Vargas, l. E.; Lovatt, C. J.; González-Durán, I. J. L.; Pérez-Barraza, m. H. 2006. Crop load affects vegetative growth flushes and shoot age influences irreversible commitment to flowering of 'Hass' avocado. HortScience 41:1541-1546.Salazar-Reque, I., Arteaga, D., Mendoza, F., Elena Rojas, M., Soto, J., Huaman, S., & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213. https://doi.org/10.1016/j.compag.2023.108246Salehnia, N., Salehnia, N., Ansari, H., Kolsoumi, S., & Bannayan, M. (2019). Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and K-means approaches. International Journal of Biometeorology, 63(7), 861–872. https://doi.org/10.1007/s00484-019-01699-wSankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. In Computers and Electronics in Agriculture (Vol. 72, Issue 1, pp. 1–13). https://doi.org/10.1016/j.compag.2010.02.007Schepen, A., Everingham, Y., & Wang, Q. J. (2020). An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.107991Scikit-learn. (2024). Train/test split and cross-validation. https://scikit-learn.org/stable/modules/cross_validation.htmlSelvaratnam, S. (2023). Applications of Robust Methods in Spatial Analysis. Journal of Probability and Statistics, 2023, 1–10. https://doi.org/10.1155/2023/1328265Serrano, A. & Brooks, A. (2019). Who is left behind in global food systems? Local farmers failed by Colombia’s avocado boom. Global Food History, 5(2), 172-190. https://doi.org/10.1177/2514848619838195Shapira, O., Chernoivanov, S., Neuberger, I., Levy, S., & Rubinovich, L. (2021). Physiological Characterization of Young ‘Hass’ Avocado Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants, 10(8), 1562. https://doi.org/10.3390/plants10081562Sharifi, A. (2020), Remotely sensed vegetation indices for crop nutrition mapping. J. Sci. Food Agric., 100: 5191-5196. https://doi.org/10.1002/jsfa.10568Sheridan, S. C. (2002). The redevelopment of a weather-type classification scheme for North America. International Journal of Climatology, 22(1), 51–68. https://doi.org/10.1002/joc.709Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. https://doi.org/10.1016/j.physd.2019.132306Sigurdsson, J., Armannsson, S. E., Ulfarsson, M. O., & Sveinsson, J. R. (2022). Fusing Sentinel-2 and Landsat 8 Satellite Images Using a Model-Based Method. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133224Siji George, C. G., & Sumathi, B. (2020). Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction. International Journal of Advanced Computer Science and Applications, 11(9), 173–178. https://doi.org/10.14569/IJACSA.2020.0110920Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456. https://doi.org/10.1016/j.ecolmodel.2021.109671Simoes, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & E. Cobos, M. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/bi.v15i2.13376Soltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., & Mahdavian, A. (2022). Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 200, 107130. https://doi.org/https://doi.org/10.1016/j.compag.2022.107130Sommaruga, R., & Eldridge, H. M. (2021). Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices, 20(2), 48–53. https://doi.org/10.1111/1746-692X.12289Sparks A. (2018). “nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R.” The Journal of Open Source Software, 3(30), 1035. http://dx.doi.org/10.21105/joss.01035Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/s10658-020-01961-7Stöckle, C. O., Marsal, J., & Villar, J. M. (2011). Impact of climate change on irrigated tree fruit production. In Acta Horticulturae (Vol. 889, pp. 41–52). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2011.889.2Stroppiana, D., Migliazzi, M., Chiarabini, V., Crema, A., Musanti, M., Franchino, C., & Villa, P. (2015). Rice yeld estimation using multispectral data from UAV: A preliminary experiment in northen Italy. 46664–4667.Su, P., Zhang, A., Wang, J., & Xu, W. (2023). Plausible maize planting distribution under future global change scenarios. Field Crops Research, 302(July), 109079. https://doi.org/10.1016/j.fcr.2023.109079Tan, P.N., Steinbach, M., Kumar & V. A. Karpatne. (2019). Introduction to Data Mining EBook: Global Edition. Pearson Education. ISBN=9780273775324, Disponible en: https://books.google.com.co/books?id=i8AoEAAAQBAJ. (Último acceso: junio de 2023)Tao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041231Technology Transfer Program. (2021). NASA Brings Space Technology to Agricultural Applications. NASA.Tektaş, M. (2010). Weather Forecasting Using ANFIS and ARIMA MODELS. A Case Study for Istanbul. 1, 5–10. http://dx.doi.org/10.5755/j01.erem.51.1.58Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4Timsina, J., & Humphreys, E. (2006). Applications of CERES-Rice and CERES-wheat in research, policy and climate change studies in Asia: A review. International Journal of Agricultural Research, 1(3), 202–225. https://doi.org/10.3923/ijar.2006.202.225Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291–307. https://doi.org/https://doi.org/10.1111/ecog.02880Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. https://doi.org/10.1016/j.jhydrol.2018.07.004Torres-Madronero, M. C., Rondón, T., Franco, R., Casamitjana, M., & Trochez González, J. (2023). Spectral Characterization of Avocado Persea Americana Mill. Cv. Hass Using Spectrometry and Imagery from the Visible to Near-Infrared Range. TecnoLógicas, 26(56), e2567. https://doi.org/10.22430/22565337.2567Tu, Y. H., Phinn, S., Johansen, K., & Robson, A. (2018). Assessing radiometric correction approaches for multi-spectral UAS imagery for horticultural applications. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111684Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0Tzatzani, T. T., Morianou, G., Tül, S., & Kourgialas, N. N. (2023). Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece. Agriculture (Switzerland), 13(7). https://doi.org/10.3390/agriculture13071342UPRA. (2019). Zonificación de aptitud para el cultivo comercial de aguacate (Persea americana Mill.) variedad Hass en Colombia, escala 1:100.000. Disponible en: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Zonificaci-n-de-aptitud-para-el-cultivo-comercial-/tx7u-frn2/data. (Último acceso: abril de 2023).Valencia-García Gema Alcaraz-Mármol Javier Del Cioppo-Morstadt Néstor Vera-Lucio Martha Bucaram-Leverone, R. (2018). Technologies and Innovation Communications in Computer and Information Science 883. In Citi. http://www.springer.com/series/7899Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1Van Loi. (2008). Use of GIS Modelling in Assessment of Forestry Land's Potential in Thua Thien Hue Province of Central Vietnam. Disponible en: https://d-nb.info/990716163/34 (Último acceso: diciembre de 2023).van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., KC, S., Kriegler, E., & O’Neill, B. (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. In Global Environmental Change (Vol. 42, pp. 148–152). Elsevier Ltd. https://doi.org/10.1016/j.gloenvcha.2016.10.009Viera, W., Gaona, P., Samaniego, I., Sotomayor, A., Viteri, P., Noboa, M., Merino, J., Mejía, P., & Park, C. H. (2023). Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants, 12(9). https://doi.org/10.3390/plants12091791Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-020-00368-0Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2014). Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 9(7), e106552. DOI: 10.1371/journal.pone.0106552Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods in Ecology and Evolution. 5. 1033-1042. https://doi.org/10.1111/2041-210X.12264Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., & He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.108096Wang, D., Liu, J., Shao, W., Mei, C., Su, X., & Wang, H. (2021). Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere, 12(7), 867. https://doi.org/10.3390/atmos12070867Wang, N., Guo, Y., Wei, X., Zhou, M., Wang, H., & Bai, Y. (2022). UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109155Wang, X., Ouyang, Y. Y., Liu, J., Zhao, G. (2019). Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition, 121(5), 474-484. https://doi.org/10.1017/S0007114518003628Wang, Y., Zhao, W., Tang, X., Liu, Y., Tang, H., Guo, J., Lin, Z., & Huang, F. (2023). Plasma rice yield prediction based on Bi-LSTM model. In X. Kong (Ed.), Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2023) (p. 68). SPIE. https://doi.org/10.1117/12.2674801Warren, T. (2005). Clustering of time series data - A survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021Waskom, M., Botvinnik, O., Gelbart, M., Ostblom, J., Lukauskas, S., Hobson, P., Halchenko, Y., Warmenhoven, J., Cole, J. B., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, T., Quintero, E., Bachant, P., Martin, M., Meyer, K., Augspurger, T., Yarkoni, T., … Subramanian, S. (2020). Waskom Seaborn: v0.10.1. Zenodo. https://doi.org/10.5281/zenodo.3767070Weil, A., Rubinovich, L., Tchernov, D., & Liran, O. (2022). Comparative Study between the Photosynthetic Parameters of Two Avocado (Persea americana) Cultivars Reveals Natural Variation in Light Reactions in Response to Frost Stress. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051129Wilkie, J. D., Conway, J., Griffin, J., & Toegel, H. (2019). Relationships between canopy size, light interception and productivity in conventional avocado planting systems. Journal of Horticultural Science and Biotechnology, 94(4), 481–487. https://doi.org/10.1080/14620316.2018.1544469Wójtowicz M., Wójtowicz A., Piekarczyk J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science 11, 31–50. http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_11_1_3.pdfWolstenholme, B. N. (2013). Ecology: climate and soils. In The avocado: botany, production and uses (pp. 86–117). CABI. https://doi.org/10.1079/9781845937010.0086Wolstenholme, B. y A. Whiley. (1995). Strategies for maximising avocado productivity: An overview. pp 61-70. En: Proceedings III World Avocado Congress. Israel. https://www.avocadosource.com/WAC3/wac3_p061.pdfWorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/cmip6/cmip6climate.htmlWu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., Yan, N., Chang, S., Zhao, Y., Dong, Q., Boken, V., Plotnikov, D., Guo, H., Wu, F., Zhao, H., Deronde, B., Tits, L., & Loupian, E. (2022). Challenges and opportunities in remote sensing-based crop monitoring: a review. December. https://academic.oup.com/nsr/article/10/4/nwac290/6939854Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005Wu, D., Johansen, K., Phinn, S., Robson, A., & Tu, Y.-H. (2020). Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crownsXiao, C., Ye, J., Esteves, R. M., and Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, Vol. 28, No. 14, pp. 3866-3878Yadav, D., Gupta, A. K., & Badhai, S. (2020). Effects of Climate Change on Agriculture Effects of Climate Change on Agriculture View project Training and achivement. View project. https://www.researchgate.net/publication/344064949Yahya, B. M., & Seker, D. Z. (2019). Designing Weather Forecasting Model Using Computational Intelligence Tools. Applied Artificial Intelligence, 33(2), 137–151. https://doi.org/10.1080/08839514.2018.1530858Yan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., Mu, X., & Yan, G. (2022). Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493Yohannes, H. (2015). A Review on Relationship between Climate Change and Agriculture. J Earth Sci Clim Change 07. https://doi.org/10.4172/2157-7617.1000335Yue, Y., Zhang, P., & Shang, Y. (2019). The potential global distribution and dynamics of wheat under multiple climate change scenarios. Science of the Total Environment, 688(19), 1308–1318. https://doi.org/10.1016/j.scitotenv.2019.06.153Zambon, I., Cecchini, M., Egidi, G., Saporito, M.G., Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 7, 36. https://doi.org/10.3390/pr7010036Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally 2 3. https://doi.org/10.1038/s43017-022-00298-5Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240(June 2019). https://doi.org/10.1016/j.rse.2020.111686Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., Cheng, T., Zhu, Y., Cao, W. X., & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003Zhu, L., Liu, X., Wang, Z., & Tian, L. (2023). High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. European Journal of Agronomy, 149, 126889. https://doi.org/https://doi.org/10.1016/j.eja.2023.126889Zuazo, V. H. D., Lipan, L., Rodríguez, B. C., Sendra, E., Tarifa, D. F., Nemś, A., Ruiz, B. G., Carbonell-Barrachina, Á. A., & García-Tejero, I. F. (2021). Impact of deficit irrigation on fruit yield and lipid profile of terraced avocado orchards. Agronomy for Sustainable Development, 41(5), 1–16. https://doi.org/10.1007/s13593-021-00731-xEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86890/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL79951349_2024.pdf79951349_2024.pdfTesis de Maestría en Geomáticaapplication/pdf14410133https://repositorio.unal.edu.co/bitstream/unal/86890/2/79951349_2024.pdf1b3de5d66a0b26af20194405c0930b5bMD52THUMBNAIL79951349_2024.pdf.jpg79951349_2024.pdf.jpgGenerated Thumbnailimage/jpeg6273https://repositorio.unal.edu.co/bitstream/unal/86890/3/79951349_2024.pdf.jpg437b1bad6b1376333b5ead498b830367MD53unal/86890oai:repositorio.unal.edu.co:unal/868902024-10-04 00:09:18.438Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |