Muestreo de Estructuras de Redes en Datos no Estructurados

ilustraciones, diagramas

Autores:
Velásquez Tafur, Luis David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85329
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85329
https://repositorio.unal.edu.co/
Palabra clave:
310 - Colecciones de estadística general
000 - Ciencias de la computación, información y obras generales
Industrias de semillas de arroz
Estadísticas y datos numéricos
Rice seed industry
Statistics & numerical data
Muestreo de grafos
Redes
Cultivos de arroz
Muestreo de caminatas aleatorias
Muestreo basado en nodos
Graph sampling
Networks
Rice crops
Random walk sampling
Node-based sampling
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a8f8e8610c3ecaf60855a176a98c8d57
oai_identifier_str oai:repositorio.unal.edu.co:unal/85329
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Muestreo de Estructuras de Redes en Datos no Estructurados
dc.title.translated.eng.fl_str_mv Sampling of Network Structures in Unstructured Data
title Muestreo de Estructuras de Redes en Datos no Estructurados
spellingShingle Muestreo de Estructuras de Redes en Datos no Estructurados
310 - Colecciones de estadística general
000 - Ciencias de la computación, información y obras generales
Industrias de semillas de arroz
Estadísticas y datos numéricos
Rice seed industry
Statistics & numerical data
Muestreo de grafos
Redes
Cultivos de arroz
Muestreo de caminatas aleatorias
Muestreo basado en nodos
Graph sampling
Networks
Rice crops
Random walk sampling
Node-based sampling
title_short Muestreo de Estructuras de Redes en Datos no Estructurados
title_full Muestreo de Estructuras de Redes en Datos no Estructurados
title_fullStr Muestreo de Estructuras de Redes en Datos no Estructurados
title_full_unstemmed Muestreo de Estructuras de Redes en Datos no Estructurados
title_sort Muestreo de Estructuras de Redes en Datos no Estructurados
dc.creator.fl_str_mv Velásquez Tafur, Luis David
dc.contributor.advisor.none.fl_str_mv Trujillo Oyola, Leonardo
Ramirez Gil, Joaquin Guillermo
dc.contributor.author.none.fl_str_mv Velásquez Tafur, Luis David
dc.subject.ddc.spa.fl_str_mv 310 - Colecciones de estadística general
000 - Ciencias de la computación, información y obras generales
topic 310 - Colecciones de estadística general
000 - Ciencias de la computación, información y obras generales
Industrias de semillas de arroz
Estadísticas y datos numéricos
Rice seed industry
Statistics & numerical data
Muestreo de grafos
Redes
Cultivos de arroz
Muestreo de caminatas aleatorias
Muestreo basado en nodos
Graph sampling
Networks
Rice crops
Random walk sampling
Node-based sampling
dc.subject.lemb.spa.fl_str_mv Industrias de semillas de arroz
Estadísticas y datos numéricos
dc.subject.lemb.eng.fl_str_mv Rice seed industry
Statistics & numerical data
dc.subject.proposal.spa.fl_str_mv Muestreo de grafos
Redes
Cultivos de arroz
Muestreo de caminatas aleatorias
Muestreo basado en nodos
dc.subject.proposal.eng.fl_str_mv Graph sampling
Networks
Rice crops
Random walk sampling
Node-based sampling
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-02
dc.date.accessioned.none.fl_str_mv 2024-01-16T16:26:36Z
dc.date.available.none.fl_str_mv 2024-01-16T16:26:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85329
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85329
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Frank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89
Frank, O. (1977b), ‘A note on bernoulli sampling in graphs and horvitz-thompson estima- tion’, Scandinavian Journal of Statistics pp. 178–180.
Frank, O. (1977c), ‘Survey sampling in graphs’, Journal of Statistical Planning and Inference 1(3), 235–264.
Frank, O. (1978), ‘Estimation of the number of connected components in a graph by using a sampled subgraph’, Scandinavian Journal of Statistics pp. 177–188.
Frank, O. (1979), ‘Sampling and estimation in large social networks’, Social networks 1(1), 91–101.
Qi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103
Rojas, H. (2009), Estrategias de muestreo. Diseño de Encuestas y Estimación de Parámetros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4C
Särndal„ C.-E., Swensson, B. Wretman, J. (1992), Model Assisted Survey Sampling, Springer Science & Business Media.
Shimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.
Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234
Trujillo, L., Nino, J. & G, H. (2016), ‘Latin american congress of probability and mathema- tical statistics’, CLAPEM, San José, Costa Rica
Zhang, L.-C. (2021), Graph Sampling, CRC Press.
Zhang, L.-C. Patone, M. (2017), ‘Graph sampling’, Metron 75, 277–299.
Zhang, P. Itan, Y. (2019), ‘Biological network approaches and applications in rare disease studies’, Genes 10(10), 797.
Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.
Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.
Ashish (2020), ‘Graph sampling’. URL: https://github.com/Ashish7129/Graph Sampling
Ba˜nos, R.A. A.A., . (2020), ‘Induced random walk sampling: a new methodology for social network analysis’, Quality Quantity, 54(5), pp.1371-1387. DOI .
Biggs, N., Lloyd, E. K. & Wilson, R. J. (1986), Graph Theory, 1736-1936, Oxford University Press.
Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.
Birnbaum, Z. W. & Sirken, M. G. (1965), Design of Sample Surveys to Estimate the Prevalence of Rare Diseases: Three Unbiased Estimates, number 1000, Vital Health Statistics, 2(11), pp. 1-14. National Center for Health Statistics.
Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .
Brewer, K. (2002), ‘Combined survey sampling inference: Weighing basu’s elephants’, Arnold Publishers .
Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.
Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.
Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12.
Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.
Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.
DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.
Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.
Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.
Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.
Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.
Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.
Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .
Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.
Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.
Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.
Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.
Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.
Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.
Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .
Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.
Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.
Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12
Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.
Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.
DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.
Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.
Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.
Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.
Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.
Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.
Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .
Frank, O. (1971), ‘Statistical inference in graphs’, F¨orsvarets forskningsanstalt .
Frank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89.
Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.
Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.
Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.
Gregoire, T. G. & Valentine, H. T. (2007), Sampling Strategies for Natural Resources and the Environment, CRC Press.
Gupta, L., Jain, R. & Vaszkun, G. (2015), ‘Survey of important issues in uav communication networks’, IEEE communications surveys & tutorials 18(2), 1123–1152.
Harrison, R. L. (2010), Introduction to monte carlo simulation in aip conference proceedings, Vol. 1204, American Institute of Physics, pp. 17–21.
Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2, Springer.
Horvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.
Hu, M.-G. &Wang, J.-F. (2011), ‘A spatial sampling optimization package using msn theory’, Environmental Modelling & Software 26(4), 546–548.
IFAPA (2004), ‘Comportamiento de pyricularia oryzae en las marimas del guadalquivir. eficacia fungicida frente al p´atogeno’, Junta de Andaluc´ıa. Consejer´ıa de Agricultura y Pesca .
Jessen, R. J. (1955), ‘Determining the fruit count on a tree by randomized branch sampling’, Biometrics 11(1), 99–109.
Kaufman, L. & Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.
Langville, A. N. & Meyer, C. D. (2006), Google’s PageRank and beyond: The science of Search Engine Rankings, Princeton university press.
Lavall´ee, P. (2007), ‘Gwsm and calibration’, Indirect Sampling pp. 121–150.
Leskovec, J., Kleinberg, J. & Faloutsos, C. (2007), ‘Graph evolution: Densification and shrinking diameters’, ACM transactions on Knowledge Discovery from Data 1(1), 2–es.
Linde, Y., Buzo, A. & Gray, R. (1980), ‘An algorithm for vector quantizer design’, IEEE Transactions on Communications 28(1), 84–95.
L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. (2017), ‘Machine learning with big data: Challenges and approaches’, IEEE Access 5, 7776–7797.
Madden, L. & Hughes, G. (1999), ‘Sampling for plant disease incidence’, Phytopathology 89(11), 1088–1103. URL: arxiv.org/pdf/physics/0603229.pdf
Madden, L. V., Hughes, G. & Van Den Bosch, F. (2007), The Study of Plant Disease Epidemics.
McLaren, C. D. & Bruner, M. W. (2022), ‘Citation network analysis’, International Review of Sport and Exercise Psychology 15(1), 179–198.
Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013), Machine Learning: An Artificial Intelligence Approach, Springer Science & Business Media.
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagic, E. (2015), ‘Deep learning applications and challenges in big data analytics’, Journal of big data 2(1), 1–21.
Newman, M. E. (2001), ‘The structure of scientific collaboration networks’, Proceedings of the national academy of sciences 98(2), 404–409.
Pearson, K. (1905), ‘The problem of the random walk’, Nature 72(1865), pp. 294.
Porta, M. (2014), A Dictionary of Epidemiology, Oxford university press.
Portenoy, J., Hullman, J. & West, J. D. (2017), ‘Leveraging citation networks to visualize scholarly influence over time’, Frontiers in Research Metrics and Analytics 2, 8.
Qi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103
Rojas, H. (2009), Estrategias de muestreo. Dise˜no de Encuestas y Estimaci´on de Par´ametros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4C
Rousseeuw, P. J. (1987), ‘Silhouettes: A graphical aid to the interpretation and validation of cluster analysis’, Journal of Computational and Applied Mathematics 20, 53–65.
Salganik, M. J. & Heckathorn, D. D. (2004), ‘Sampling and estimation in hidden populations using respondent-driven sampling’, Sociological methodology 34(1), 193–240.
S¨arndal, C.-E., Swensson, B. & Wretman, J. (2003), Model Assisted Survey Sampling (2nd edition), Springer Science & Business Media.
S¨arndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer series in statistics, Springer-Verlag. URL: https://books.google.com.co/books?id=MWCzngEACAAJ
Shimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.
Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234.
Van den Bos, W., Crone, E. A., Meuwese, R. & G¨uro˘glu, B. (2018), ‘Social network cohesion in school classes promotes prosocial behavior’, PLoS One 13(4), e0194656.
Wiegand, H. & Kish, L. (1965), ‘Survey sampling’.
Xie, F. & Levinson, D. (2007), ‘Measuring the structure of road networks’, Geographical analysis 39(3), 336–356.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 69 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85329/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85329/2/1033817182.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85329/3/1033817182.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
39c7ebfccc35e982de9cb743b3e70391
924a976799cfb6b12cc8c079c6ce4115
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090178233368576
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Trujillo Oyola, Leonardo3071a809cf31e3bc9635cf923ab5132dRamirez Gil, Joaquin Guillermo9331c32569bc3eaae1aa66d84bc9b6d6Velásquez Tafur, Luis David778b9dc058e036c0413b3cc7f669c9652024-01-16T16:26:36Z2024-01-16T16:26:36Z2023-11-02https://repositorio.unal.edu.co/handle/unal/85329Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste trabajo aborda el problema práctico en la industria fitosanitaria de la producción de arroz mediante la implementación de una metodología de muestreo estadístico en redes. Se analizan diversos métodos para el muestreo en redes, incluyendo muestreo aleatorio simple, estimador Horvitz Thompson, clasificación no supervisada, y estimación Monte Carlo. Se exploran también muestreos de redes, enfocándose en nodos y conexiones específicas. Luego, se aplican estos conceptos al muestreo fitosanitario en cultivos de arroz utilizando datos de Fedearroz. (Texto tomado de la fuente)This work addresses the practical problem in the phytosanitary industry of rice production through the implementation of a statistical sampling methodology in networks. Various methods for network sampling are analyzed, including simple random sampling, Horvitz Thompson estimator, unsupervised classification, and Monte Carlo estimation. Network samplings are also explored, focusing on specific nodes and connections. Subsequently, these concepts are applied to phytosanitary sampling in rice crops using data from Fedearroz.MaestríaMagister en estadísticaMuestreo estadísticoMuestreo en redesxi, 69 páginasapplication/pdfspa310 - Colecciones de estadística general000 - Ciencias de la computación, información y obras generalesIndustrias de semillas de arrozEstadísticas y datos numéricosRice seed industryStatistics & numerical dataMuestreo de grafosRedesCultivos de arrozMuestreo de caminatas aleatoriasMuestreo basado en nodosGraph samplingNetworksRice cropsRandom walk samplingNode-based samplingMuestreo de Estructuras de Redes en Datos no EstructuradosSampling of Network Structures in Unstructured DataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáFrank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89Frank, O. (1977b), ‘A note on bernoulli sampling in graphs and horvitz-thompson estima- tion’, Scandinavian Journal of Statistics pp. 178–180.Frank, O. (1977c), ‘Survey sampling in graphs’, Journal of Statistical Planning and Inference 1(3), 235–264.Frank, O. (1978), ‘Estimation of the number of connected components in a graph by using a sampled subgraph’, Scandinavian Journal of Statistics pp. 177–188.Frank, O. (1979), ‘Sampling and estimation in large social networks’, Social networks 1(1), 91–101.Qi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103Rojas, H. (2009), Estrategias de muestreo. Diseño de Encuestas y Estimación de Parámetros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4CSärndal„ C.-E., Swensson, B. Wretman, J. (1992), Model Assisted Survey Sampling, Springer Science & Business Media.Shimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234Trujillo, L., Nino, J. & G, H. (2016), ‘Latin american congress of probability and mathema- tical statistics’, CLAPEM, San José, Costa RicaZhang, L.-C. (2021), Graph Sampling, CRC Press.Zhang, L.-C. Patone, M. (2017), ‘Graph sampling’, Metron 75, 277–299.Zhang, P. Itan, Y. (2019), ‘Biological network approaches and applications in rare disease studies’, Genes 10(10), 797.Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.Ashish (2020), ‘Graph sampling’. URL: https://github.com/Ashish7129/Graph SamplingBa˜nos, R.A. A.A., . (2020), ‘Induced random walk sampling: a new methodology for social network analysis’, Quality Quantity, 54(5), pp.1371-1387. DOI .Biggs, N., Lloyd, E. K. & Wilson, R. J. (1986), Graph Theory, 1736-1936, Oxford University Press.Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.Birnbaum, Z. W. & Sirken, M. G. (1965), Design of Sample Surveys to Estimate the Prevalence of Rare Diseases: Three Unbiased Estimates, number 1000, Vital Health Statistics, 2(11), pp. 1-14. National Center for Health Statistics.Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .Brewer, K. (2002), ‘Combined survey sampling inference: Weighing basu’s elephants’, Arnold Publishers .Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12.Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .Frank, O. (1971), ‘Statistical inference in graphs’, F¨orsvarets forskningsanstalt .Frank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89.Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.Gregoire, T. G. & Valentine, H. T. (2007), Sampling Strategies for Natural Resources and the Environment, CRC Press.Gupta, L., Jain, R. & Vaszkun, G. (2015), ‘Survey of important issues in uav communication networks’, IEEE communications surveys & tutorials 18(2), 1123–1152.Harrison, R. L. (2010), Introduction to monte carlo simulation in aip conference proceedings, Vol. 1204, American Institute of Physics, pp. 17–21.Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2, Springer.Horvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.Hu, M.-G. &Wang, J.-F. (2011), ‘A spatial sampling optimization package using msn theory’, Environmental Modelling & Software 26(4), 546–548.IFAPA (2004), ‘Comportamiento de pyricularia oryzae en las marimas del guadalquivir. eficacia fungicida frente al p´atogeno’, Junta de Andaluc´ıa. Consejer´ıa de Agricultura y Pesca .Jessen, R. J. (1955), ‘Determining the fruit count on a tree by randomized branch sampling’, Biometrics 11(1), 99–109.Kaufman, L. & Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.Langville, A. N. & Meyer, C. D. (2006), Google’s PageRank and beyond: The science of Search Engine Rankings, Princeton university press.Lavall´ee, P. (2007), ‘Gwsm and calibration’, Indirect Sampling pp. 121–150.Leskovec, J., Kleinberg, J. & Faloutsos, C. (2007), ‘Graph evolution: Densification and shrinking diameters’, ACM transactions on Knowledge Discovery from Data 1(1), 2–es.Linde, Y., Buzo, A. & Gray, R. (1980), ‘An algorithm for vector quantizer design’, IEEE Transactions on Communications 28(1), 84–95.L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. (2017), ‘Machine learning with big data: Challenges and approaches’, IEEE Access 5, 7776–7797.Madden, L. & Hughes, G. (1999), ‘Sampling for plant disease incidence’, Phytopathology 89(11), 1088–1103. URL: arxiv.org/pdf/physics/0603229.pdfMadden, L. V., Hughes, G. & Van Den Bosch, F. (2007), The Study of Plant Disease Epidemics.McLaren, C. D. & Bruner, M. W. (2022), ‘Citation network analysis’, International Review of Sport and Exercise Psychology 15(1), 179–198.Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013), Machine Learning: An Artificial Intelligence Approach, Springer Science & Business Media.Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagic, E. (2015), ‘Deep learning applications and challenges in big data analytics’, Journal of big data 2(1), 1–21.Newman, M. E. (2001), ‘The structure of scientific collaboration networks’, Proceedings of the national academy of sciences 98(2), 404–409.Pearson, K. (1905), ‘The problem of the random walk’, Nature 72(1865), pp. 294.Porta, M. (2014), A Dictionary of Epidemiology, Oxford university press.Portenoy, J., Hullman, J. & West, J. D. (2017), ‘Leveraging citation networks to visualize scholarly influence over time’, Frontiers in Research Metrics and Analytics 2, 8.Qi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103Rojas, H. (2009), Estrategias de muestreo. Dise˜no de Encuestas y Estimaci´on de Par´ametros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4CRousseeuw, P. J. (1987), ‘Silhouettes: A graphical aid to the interpretation and validation of cluster analysis’, Journal of Computational and Applied Mathematics 20, 53–65.Salganik, M. J. & Heckathorn, D. D. (2004), ‘Sampling and estimation in hidden populations using respondent-driven sampling’, Sociological methodology 34(1), 193–240.S¨arndal, C.-E., Swensson, B. & Wretman, J. (2003), Model Assisted Survey Sampling (2nd edition), Springer Science & Business Media.S¨arndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer series in statistics, Springer-Verlag. URL: https://books.google.com.co/books?id=MWCzngEACAAJShimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234.Van den Bos, W., Crone, E. A., Meuwese, R. & G¨uro˘glu, B. (2018), ‘Social network cohesion in school classes promotes prosocial behavior’, PLoS One 13(4), e0194656.Wiegand, H. & Kish, L. (1965), ‘Survey sampling’.Xie, F. & Levinson, D. (2007), ‘Measuring the structure of road networks’, Geographical analysis 39(3), 336–356.EstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85329/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1033817182.2023.pdf1033817182.2023.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf833828https://repositorio.unal.edu.co/bitstream/unal/85329/2/1033817182.2023.pdf39c7ebfccc35e982de9cb743b3e70391MD52THUMBNAIL1033817182.2023.pdf.jpg1033817182.2023.pdf.jpgGenerated Thumbnailimage/jpeg4360https://repositorio.unal.edu.co/bitstream/unal/85329/3/1033817182.2023.pdf.jpg924a976799cfb6b12cc8c079c6ce4115MD53unal/85329oai:repositorio.unal.edu.co:unal/853292024-01-16 23:03:36.598Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=