Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P

ilustraciones, fotografías, gráficas, tablas

Autores:
Vásquez Godoy, Vanessa
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80627
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80627
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Mycobacterium tuberculosis
Potencia de la Vacuna
Enzimas
Mycobacterium tuberculosis
Vaccine Potency
Enzymes
Mycobacterium tuberculosis
Potencial vacunal
Atenuación
ATTPasa tipo P
Vaccine potential
Attenuation
MMPL7
P-type ATPase
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_a8f6ba0c5cdcb553a6f1c173aa16188f
oai_identifier_str oai:repositorio.unal.edu.co:unal/80627
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
dc.title.translated.eng.fl_str_mv Development of gene tools to obtain a Mycobacterium tuberculosis double mutant defective in membrane proteins MMPL7 and P-type ATPases
title Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
spellingShingle Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
540 - Química y ciencias afines
Mycobacterium tuberculosis
Potencia de la Vacuna
Enzimas
Mycobacterium tuberculosis
Vaccine Potency
Enzymes
Mycobacterium tuberculosis
Potencial vacunal
Atenuación
ATTPasa tipo P
Vaccine potential
Attenuation
MMPL7
P-type ATPase
title_short Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
title_full Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
title_fullStr Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
title_full_unstemmed Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
title_sort Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P
dc.creator.fl_str_mv Vásquez Godoy, Vanessa
dc.contributor.advisor.spa.fl_str_mv Soto Ospina, Carlos Yesid
dc.contributor.author.spa.fl_str_mv Vásquez Godoy, Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Bioquímica y Biología Molecular de las Micobacterias
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Mycobacterium tuberculosis
Potencia de la Vacuna
Enzimas
Mycobacterium tuberculosis
Vaccine Potency
Enzymes
Mycobacterium tuberculosis
Potencial vacunal
Atenuación
ATTPasa tipo P
Vaccine potential
Attenuation
MMPL7
P-type ATPase
dc.subject.decs.spa.fl_str_mv Mycobacterium tuberculosis
Potencia de la Vacuna
Enzimas
dc.subject.decs.eng.fl_str_mv Mycobacterium tuberculosis
Vaccine Potency
Enzymes
dc.subject.proposal.spa.fl_str_mv Mycobacterium tuberculosis
Potencial vacunal
Atenuación
ATTPasa tipo P
dc.subject.proposal.eng.fl_str_mv Vaccine potential
Attenuation
MMPL7
P-type ATPase
description ilustraciones, fotografías, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-28T13:45:19Z
dc.date.available.none.fl_str_mv 2021-10-28T13:45:19Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80627
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80627
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv World Health Organization, “Informe mundial sobre la tuberculosis 2017,” 2017. doi: ISBN 978 92 4 156539 4.
R. E. and M. H. Chaisson, “How research can help control tuberculosis,” Int J Tuberc Lung Dis, vol. 13, no. 5, pp. 558–68, 2009.
S.-G. Steven, Quezada; Sunny, “Vacuna contra la tuberculosis BCG : Eficacia y efectos adversos BCG vaccine against tuberculosis : Efficacy and adverse effects,” Rev. Cienc. UNEMI, vol. 8, no. 1390–4272, pp. 120–125, 2015.
World-Health-Organization, “Global tuberculosis report 2015,” 2015.
L. Novoa-Aponte and C. Y. Soto Ospina, “Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development.,” Biomed Res. Int., vol. 2014, p. 296986, 2014, doi: 10.1155/2014/296986.
M. G. Palmgren and P. Nissen, “P-type ATPases,” Annu Rev Biophys, vol. 40, pp. 243–266, 2011, doi: 10.1146/annurev.biophys.093008.131331
J. S. Cox, B. Chen, M. McNeil, and W. R. Jacobs, “Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.,” Nature, vol. 402, no. 6757, pp. 79–83, 1999, doi: 10.1038/47042.
W. Malaga, E. Perez, and C. Guilhot, “Production of unmarked mutations in mycobacteria using site-specific recombination,” FEMS Microbiol. Lett., 2003, doi: 10.1016/S0378-1097(03)00003-X.
P. Andersen and S. H. E. Kaufmann, “Novel vaccination strategies against tuberculosis,” Cold Spring Harb. Perspect. Med., 2014, doi: 10.1101/cshperspect.a018523.
J. . Grange, “The biology of the genus Mycobacterium,” Soc Appl Bacteriol Symp Ser, vol. 25, pp. 1S-9S, 1996.
A. C. Parte, “LPSN - List of prokaryotic names with standing in nomenclature,” Nucleic Acids Res., vol. 42, no. D1, 2014, doi: 10.1093/nar/gkt1111.
E. C. Hett and E. J. Rubin, “Bacterial growth and cell division: a mycobacterial perspective,” Microbiol. Mol. Biol. Rev., vol. 72, no. 1, pp. 126–56, table of contents, 2008, doi: 10.1128/mmbr.00028-07.
V. V. and F. P. Levy-Frebault, “Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species.,” Int J Syst Bacteriol, vol. 42, no. 2, pp. 315–23, 1999.
G. Wayne, LG, Kubica, “Family Mycobacteriaceae Chester,” in In Bergey’s manual of systematic bacteriology., M.N.S. eds Sneath P. H. A., Sharpe M. E., Holt J. G. (Williams and Wilkins, Baltimore, Md), 1986, pp. 1435–1457.
E. L. Rastogi, N., “The mycobacteria: an introduction to nomenclature and pathogenesis.,” Rev Sci Tech, vol. 20, no. 1, pp. 21–54, 2001.
M. Daffé and P. Draper, The Envelope Layers of Mycobacteria with Reference to their Pathogenicity, vol. 39. 1997.
R. Issa, “Detection and discrimination of Mycobacterium tuberculosis complex,” Diagn Microbiol Infect Dis, vol. 72, no. 1, pp. 62–67, 2012
P. J. Brennan and H. Nikaido, “The envelope of mycobacteria.,” Annu. Rev. Biochem., 1995, doi: 10.1146/annurev.biochem.64.1.29.
E. Tortoli, “Phylogeny of the genus Mycobacterium: Many doubts, few certainties,” Infect. Genet. Evol., 2012, doi: 10.1016/j.meegid.2011.05.025.
J. Hacker and U. Dobrindt, Pathogenomics. Weinheim, 2006.
K. Sakamoto, “The Pathology of Mycobacterium tuberculosis Infection,” Veterinary Pathology. 2012, doi: 10.1177/0300985811429313.
Y. and A. T. Zhang, “Genetic of Drug Resistance in Mycobacterium tuberculosis,” in In Molecular Genetics of Mycobacteria., ed. G.F.J. Hatfull, W.R., 2000, p. ASM Press Washington, D.C.
J. . Blanchard, “Molecular mechanisms of drug resistance in Mycobacterium tuberculosis,” Annu Rev Biochem, vol. 65, pp. 215–239, 1996.
G. M. Cook et al., “Physiology of Mycobacteria,” Advances in Microbial Physiology. 2009, doi: 10.1016/S0065-2911(09)05502-7.
V. and H. N. Jarlier, “Permeability barrier to hydrophilic solutes in Mycobacterium chelonei.,” J Bacteriol, vol. 79, no. 3, pp. 153–169, 1990.
D. Chatterjee, “The mycobacterial cell wall: structure, biosynthesis and sites of drug action.,” Curr. Opin. Chem. Biol., 1997, doi: 10.1016/S1367-5931(97)80055-5.
M. Daffé and G. Etienne, “The capsule of Mycobacterium tuberculosis and its implications for pathogenicity.,” Tuber. Lung Dis., vol. 79, no. 3, pp. 153–169, 1999, doi: 10.1054/tuld.1998.0200.
P. J. Brennan, “Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis,” 2003, doi: 10.1016/S1472-9792(02)00089-6
K. G. Mawuenyega et al., “Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.,” Mol. Biol. Cell, vol. 16, no. 1, pp. 396–404, 2005, doi: 10.1091/mbc.E04-04-0329.
C. Chalut, “MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria,” Tuberculosis, vol. 100. pp. 32–45, 2016, doi: 10.1016/j.tube.2016.06.004.
M. and J.-M. R. Daffé, “The Mycobacterial Cell Envelope,” DC ASM Press, vol. XVIII, p. 395, 2008.
C. Whitfield, “Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli,” Annu. Rev. Biochem., vol. 75, pp. 39–68, 2006, doi: 10.1146/.
A. O’Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson, and M. P. R. Berry, “The immune response in tuberculosis.,” Annu. Rev. Immunol., 2013, doi: 10.1146/annurev-immunol-032712-095939.
“‘The immune response in tuberculosis.’ Annu. Rev. Immunol. vol. 31, no. 1, pp. 475–527, 2013.,” Trends in Microbiology, vol. 26, no. 6. 2018, doi: 10.1016/j.tim.2018.02.012.
N. A. Knechel, “Tuberculosis: Pathophysiology, clinical features, and diagnosis,” Crit. Care Nurse, 2009, doi: 10.4037/ccn2009968.
M. Gengenbacher and S. H. E. Kaufmann, “Mycobacterium tuberculosis: Success through dormancy,” FEMS Microbiology Reviews. 2012, doi: 10.1111/j.1574-6976.2012.00331.x.
J. D. Ernst, “The immunological life cycle of tuberculosis,” Nature Reviews Immunology. 2012, doi: 10.1038/nri3259.
S. Sturgill-Koszycki et al., “Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase,” Science (80-. )., vol. 263, no. 5147, pp. 678–681, 1994, doi: 10.1126/science.8303277.
S. K. Ward, E. A. Hoye, and A. M. Talaat, “The global responses of Mycobacterium tuberculosis to physiological levels of copper,” J. Bacteriol., vol. 190, no. 8, pp. 2939–2946, 2008, doi: 10.1128/JB.01847-07.
S. M. Hingley-Wilson, V. K. Sambandamurthy, and W. R. Jacobs, “Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis,” Nature Immunology. 2003, doi: 10.1038/ni981.
J. A. Philips and J. D. Ernst, “Tuberculosis Pathogenesis and Immunity,” Annu. Rev. Pathol. Mech. Dis., 2012, doi: 10.1146/annurev-pathol-011811-132458.
G. Walzl, K. Ronacher, W. Hanekom, T. J. Scriba, and A. Zumla, “Immunological biomarkers of tuberculosis,” Nature Reviews Immunology. 2011, doi: 10.1038/nri2960
F. Squeglia, A. Ruggiero, and R. Berisio, “Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest,” Biochem. J., 2018, doi: 10.1042/bcj20180482.
M. A. Forrellad et al., “Virulence factors of the Mycobacterium tuberculosis complex.,” Virulence, vol. 4, no. 1, pp. 3–66, 2013, doi: 10.4161/viru.22329.
J. E. Galagan et al., “The Mycobacterium tuberculosis regulatory network and hypoxia,” Nature, 2013, doi: 10.1038/nature12337.
J. Gonzalo-Asensio et al., “PhoP: A missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence,” PLoS One, 2008, doi: 10.1371/journal.pone.0003496.
P. Coll, “Fármacos con actividad frente a Mycobacterium tuberculosis,” Enfermedades Infecciosas y Microbiologia Clinica. 2009, doi: 10.1016/j.eimc.2009.06.010.
A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries, “The challenge of new drug discovery for tuberculosis,” Nature. 2011, doi: 10.1038/nature09657.
A. Zumla et al., “Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies,” The Lancet Respiratory Medicine. 2015, doi: 10.1016/S2213-2600(15)00063-6.
World Health Organization, “Multidrug and extensively drug-resistant TB (M/XDR-TB): global report on surveillance and response. , 2010.,”
T. Smith, K. A. Wolff, and L. Nguyen, “Molecular biology of drug resistance in Mycobacterium tuberculosis,” Curr. Top. Microbiol. Immunol., 2013, doi: 10.1007/82-2012-279.
Z. C. J. Tang, W.-C. Yam, “Mycobacterium tuberculosis infection and vaccine development,” Tuberculosis, vol. 98, pp. 30–41, 2016.
M. K. O’Shea and H. McShane, “A review of clinical models for the evaluation of human TB vaccines,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1134407.
Y. A. W. Skeiky and J. C. Sadoff, “Advances in tuberculosis vaccine strategies,” Nat. Rev. Microbiol., 2006, doi: 10.1038/nrmicro1419.
H. A. Fletcher and L. Schrager, “TB vaccine development and the End TB Strategy: Importance and current status,” Trans. R. Soc. Trop. Med. Hyg., 2016, doi: 10.1093/trstmh/trw016.
D. F. Hoft, “Tuberculosis vaccine development: goals, immunological design, and evaluation,” The Lancet. 2008, doi: 10.1016/S0140-6736(08)61036-3.
S. Ginebra, “Organización Mundial de la Salud,” Wwwwhoint, 2011
M. G. Palmgren and P. Nissen, “P-Type ATPases,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.
C. Martín Montañés and B. Gicquel, “New tuberculosis vaccines,” Enferm. Infecc. Microbiol. Clin., 2011, doi: 10.1016/S0213-005X(11)70019-2.
Y. Pang et al., “Current status of new tuberculosis vaccine in children,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1120393.
R. Hernàndez Pando et al., “The use of mutant mycobacteria as new vaccines to prevent tuberculosis,” Tuberculosis, 2006, doi: 10.1016/j.tube.2006.01.022.
M. Bublitz, H. Poulsen, J. P. Morth, and P. Nissen, “In and out of the cation pumps: P-Type ATPase structure revisited,” Current Opinion in Structural Biology. 2010, doi: 10.1016/j.sbi.2010.06.007.
S. K. Ward, B. Abomoelak, E. A. Hoye, H. Steinberg, and A. M. Talaat, “CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis,” Mol. Microbiol., 2010, doi: 10.1111/j.1365-2958.2010.07273.x.
L. Yatime et al., “P-type ATPases as drug targets: Tools for medicine and science,” Biochimica et Biophysica Acta - Bioenergetics, vol. 1787, no. 4. pp. 207–220, 2009, doi: 10.1016/j.bbabio.2008.12.019.
W. Kühlbrandt, “Biology, structure and mechanism of P-type ATPases,” Nat. Rev. Mol. Cell Biol., vol. 5, no. 4, pp. 282–295, 2004, doi: 10.1038/nrm1354
P. Chène, “ATPases as drug targets: learning from their structure.,” Nat. Rev. Drug Discov., vol. 1, no. 9, pp. 665–673, 2002, doi: 10.1038/nrd894.
P. L. Pedersen, “Transport ATPases into the year 2008: A brief overview related to types, structures, functions and roles in health and disease,” Journal of Bioenergetics and Biomembranes. 2007, doi: 10.1007/s10863-007-9123-9.
D. D. Agranoff and S. Krishna, “Metal ion homeostasis and intracellular parasitism,” Molecular Microbiology, vol. 28, no. 3. pp. 403–412, 1998, doi: 10.1046/j.1365-2958.1998.00790.x.
M. G. Palmgren and P. Nissen, “P-type ATPases.,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.
K. B. Axelsen and M. G. Palmgren, “Evolution of substrate specificities in the P-type ATPase superfamily,” J. Mol. Evol., vol. 46, no. 1, pp. 84–101, 1998, doi: 10.1007/PL00006286.
T. Ogura and A. J. Wilkinson, “AAA+ superfamily ATPases: Common structure-diverse function,” Genes to Cells, vol. 6, no. 7. pp. 575–597, 2001, doi: 10.1046/j.1365-2443.2001.00447.x.
D. Agranoff and S. Krishna, “Metal ion transport and regulation in Mycobacterium tuberculosis.,” Front. Biosci., 2004.
S. K. Ward, B. Abomoelak, E. a Hoye, H. Steinberg, and M. Adel, “NIH Public Access,” vol. 77, no. 5, pp. 1096–1110, 2011, doi: 10.1111/j.1365-2958.2010.07273.x.CtpV.
L. Novoa-Aponte et al., “In silico Identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex,” BMC Structural Biology. 2012, doi: 10.1186/1472-6807-12-25.
L. V. Quitian Cruz, “Determinación de características funcionales de CtpG, una ATPasa tipo P transportadora de metales pesados a través de la membrana plasmática de Mycobacterium tuberculosis,” Universidad Nacional de Colombia Sede Bogotá, 2017.
H. Botella et al., “Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages,” Cell Host Microbe, vol. 10, no. 3, pp. 248–259, 2011, doi: 10.1016/j.chom.2011.08.006.
T. Soldati and O. Neyrolles, “Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!,” Traffic. 2012, doi: 10.1111/j.1600-0854.2012.01358.x.
T. Padilla-Benavides, J. E. Long, D. Raimunda, C. M. Sassetti, and J. M. Argüello, “A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria,” J. Biol. Chem., vol. 288, no. 16, pp. 11334–11347, Apr. 2013, doi: 10.1074/jbc.M112.448175.
J. M. Argüello, M. González-Guerrero, and D. Raimunda, “Bacterial transition metal P 1B-ATPases: Transport mechanism and roles in virulence,” Biochemistry. 2011, doi: 10.1021/bi201418k.
D. Raimunda, J. E. Long, T. Padilla-Benavides, C. M. Sassetti, and J. M. Argüello, “Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence,” Mol. Microbiol., vol. 91, no. 1, pp. 185–197, Jan. 2014, doi: 10.1111/mmi.12454.
S. M. Behar, M. Divangahi, and H. G. Remold, “Evasion of innate immunity by mycobacterium tuberculosis: Is death an exit strategy?,” Nature Reviews Microbiology. 2010, doi: 10.1038/nrmicro2387.
M. Maya-Hoyos, C. Rosales, L. Novoa-Aponte, E. Castillo, and C. Y. Soto, “The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells,” Heliyon, vol. 5, no. 11, p. e02852, 2019, doi: 10.1016/j.heliyon.2019.e02852.
M. H. Touchette and J. C. Seeliger, “Transport of outer membrane lipids in mycobacteria,” Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, vol. 1862, no. 11. Elsevier B.V., pp. 1340–1354, Nov. 01, 2017, doi: 10.1016/j.bbalip.2017.01.005.
M. Daffé, D. C. Crick, and M. Jackson, “Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids,” Microbiol. Spectr., 2014, doi: 10.1128/microbiolspec.mgm2-0021-2013.
M. Jackson, G. Stadthagen, and B. Gicquel, “Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: Biosynthesis, transport, regulation and biological activities,” Tuberculosis, vol. 87, no. 2. pp. 78–86, 2007, doi: 10.1016/j.tube.2006.05.003.
T. D. Sirakova, A. K. Thirumala, V. S. Dubey, H. Sprecher, and P. E. Kolattukudy, “The Mycobacterium tuberculosis pks2 Gene Encodes the Synthase for the Hepta- and Octamethyl-branched Fatty Acids Required for Sulfolipid Synthesis,” J. Biol. Chem., 2001, doi: 10.1074/jbc.M011468200.
Camacho LR, Constant P, Raynaud C, Laneélle MA, Triccas JA, Guicquel B, “Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in cell wall permeability barrier,” J Biol Chem, vol. 276, pp. 19845–54, 2001.
J. Quigley, V. K. Hughitt, C. A. Velikovsky, R. A. Mariuzza, N. M. El-Sayed, and V. Briken, “The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis,” MBio, 2017, doi: 10.1128/mBio.00148-17.
J. Augenstreich et al., “ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis,” Cell. Microbiol., vol. 19, no. 7, Jul. 2017, doi: 10.1111/cmi.12726.
J. P. Sarathy, V. Dartois, and E. J. D. Lee, “The role of transport mechanisms in Mycobacterium Tuberculosis drug resistance and tolerance,” Pharmaceuticals. 2012, doi: 10.3390/ph5111210.
P. Domenech, M. B. Reed, and C. E. Barry, “Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.,” Infect. Immun., vol. 73, no. 6, pp. 3492–501, Jun. 2005, doi: 10.1128/IAI.73.6.3492-3501.2005
H. I. Zgurskaya and H. Nikaido, “Multidrug resistance mechanisms: Drug efflux across two membranes,” Molecular Microbiology, vol. 37, no. 2. pp. 219–225, 2000, doi: 10.1046/j.1365-2958.2000.01926.x.
P. V. Reddy et al., “Disruption of mycobactin biosynthesis leads to attenuation of mycobacterium tuberculosis for growth and virulence,” J. Infect. Dis., vol. 208, no. 8, pp. 1255–1265, 2013, doi: 10.1093/infdis/jit250.
R. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, Aug. 2015, doi: 10.1016/J.BCP.2015.05.001.
L. R. Camacho, D. Ensergueix, E. Perez, B. Gicquel, and C. Guilhot, “Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis,” Mol. Microbiol., vol. 34, no. 2, pp. 257–267, 1999, doi: 10.1046/j.1365-2958.1999.01593.x.
J. Manuel Belardinelli, G. Larrouy-Maumus, V. Jones, L. P. S. De Carvalho, M. R. McNeil, and M. Jackson, “Biosynthesis and translocation of unsulfated acyltrehaloses in mycobacterium tuberculosis,” J. Biol. Chem., vol. 289, no. 40, pp. 27952–27965, 2014, doi: 10.1074/jbc.M114.581199.
M. H. Touchette et al., “The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis,” J. Bacteriol., vol. 197, no. 1, pp. 201–210, 2015, doi: 10.1128/JB.02015-14.
K. Tahlan et al., “SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of mycobacterium tuberculosis,” Antimicrob. Agents Chemother., vol. 56, no. 4, pp. 1797–1809, 2012, doi: 10.1128/AAC.05708-11.
S. A. Pacheco, F. F. Hsu, K. M. Powers, and G. E. Purdy, “MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis,” J. Biol. Chem., vol. 288, no. 33, pp. 24213–24222, 2013, doi: 10.1074/jbc.M113.473371.
C. M. Jones et al., “Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 5, pp. 1945–50, 2014, doi: 10.1073/pnas.1311402111.
R. M. Wells et al., “Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis,” PLoS Pathog., vol. 9, no. 1, 2013, doi: 10.1371/journal.ppat.1003120.
M. R. Pasca, P. Guglierame, E. De Rossi, F. Zara, and G. Riccardi, “mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis.,” Antimicrob. Agents Chemother., vol. 49, no. 11, pp. 4775–7, Nov. 2005, doi: 10.1128/AAC.49.11.4775-4777.2005.
M. Jain and J. S. Cox, “Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis,” PLoS Pathog., 2005, doi: 10.1371/journal.ppat.0010002.
R. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, 2015, doi: 10.1016/j.bcp.2015.05.001.
M. B. Reed et al., “A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.,” Nature, vol. 431, no. 7004, pp. 84–87, 2004, doi: 10.1038/nature02837.
J. C. van Kessel, “RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS,” Pittsburgh, 2003.
G. F. H. Van Kessel, J.C., L.J. Marinelli, “Recombineering mycobacteria and their phages.,” Nat. Rev. Microbiol., vol. 6, pp. 851–857, 2008.
J. C. van Kessel and G. F. Hatfull, “Recombineering in Mycobacterium tuberculosis,” Nat. Methods, 2007, doi: 10.1038/nmeth996.
I. Hastings Software, “Gene Runner.” New York. [
M. W. Davis, “ApE- A plasmid Editor,” University of Utah. 2013, [Online]. Available: http://biologylabs.utah.edu/jorgensen/wayned/ape/.
Promega Corporation, “BioMath Calculators: Ligations: Molar Ratio of Insert to Vector Calculator.” 2008, [Online]. Available: https://www.promega.com/resources/tools/biomath-calculators/.
A. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Ncional de Colombia, 2018.
M. M. Hoyos, “ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis,” Universidad Naional de Colombia, 2021.
S. Padmanabhan, S. Banerjee, and N. Mandi, “Molecular Cloning - Selected Applications in Medicine and BiologyScreening of Bacterial Recombinants: Strategies and Preventing False Positives,” Gregory G.Brown, Ed. 2011, pp. 1–15.
Promega Corporation, “pGEM®-T and pGEM®-T Easy Vector Systems,” 2800, 2015.
R. R. Reed, “Transposon-mediated site-specific recombination: A defined in vitro system,” Cell, vol. 25, no. 3, pp. 713–719, Sep. 1981, doi: 10.1016/0092-8674(81)90178-1.
A. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Nacional de Colombia, 2018.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 145 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80627/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80627/6/1073687714.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80627/7/1073687714.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
10725f42a91cca1262321ccda87c166c
80fd411e18e835cf2b8f2bbeeb385a5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886426183204864
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soto Ospina, Carlos Yesid90f333e0838e289f724edbb356042e46600Vásquez Godoy, Vanessa295834dcab41fb1a8013ed1a7250c860Bioquímica y Biología Molecular de las Micobacterias2021-10-28T13:45:19Z2021-10-28T13:45:19Z2021https://repositorio.unal.edu.co/handle/unal/80627Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEl documento presenta la investigación realizada sobre Mycobacterium tuberculosis, en cuanto a los transportadores de metales como lo son las ATPasas tipo P y los lípidos presentes en la membrana externa de la pared y que están relacionados con la virulencia de la bacteria; por otro lado muestra la metodología de obtención de mutantes delecionados en genes específicos de la micobacteria y la obtención de cepas mutantes desmarcadas de marcadores de selección antibiótica tanto en Mycobacterium tuberculosis como en Mycobacterium smegmatis. (Texto tomado de la fuente).The document presents the research carried out on Mycobacterium tuberculosis, in terms of metal transporters such as P-type ATPases and lipids present in the outer membrane of the wall and which are related to the virulence of the bacterium; on the other hand, it shows the methodology for obtaining deletion mutants in specific genes of the mycobacterium and the obtaining of mutant strains unmarked for antibiotic selection markers in both Mycobacterium tuberculosis and Mycobacterium smegmatis.Incluye anexosMaestríaMagíster en Ciencias - BioquímicaInteracción hospedero-patógenoxxi, 145 páginasapplication/pdfspa540 - Química y ciencias afinesMycobacterium tuberculosisPotencia de la VacunaEnzimasMycobacterium tuberculosisVaccine PotencyEnzymesMycobacterium tuberculosisPotencial vacunalAtenuaciónATTPasa tipo PVaccine potentialAttenuationMMPL7P-type ATPaseDesarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo PDevelopment of gene tools to obtain a Mycobacterium tuberculosis double mutant defective in membrane proteins MMPL7 and P-type ATPasesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáWorld Health Organization, “Informe mundial sobre la tuberculosis 2017,” 2017. doi: ISBN 978 92 4 156539 4.R. E. and M. H. Chaisson, “How research can help control tuberculosis,” Int J Tuberc Lung Dis, vol. 13, no. 5, pp. 558–68, 2009.S.-G. Steven, Quezada; Sunny, “Vacuna contra la tuberculosis BCG : Eficacia y efectos adversos BCG vaccine against tuberculosis : Efficacy and adverse effects,” Rev. Cienc. UNEMI, vol. 8, no. 1390–4272, pp. 120–125, 2015.World-Health-Organization, “Global tuberculosis report 2015,” 2015.L. Novoa-Aponte and C. Y. Soto Ospina, “Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development.,” Biomed Res. Int., vol. 2014, p. 296986, 2014, doi: 10.1155/2014/296986.M. G. Palmgren and P. Nissen, “P-type ATPases,” Annu Rev Biophys, vol. 40, pp. 243–266, 2011, doi: 10.1146/annurev.biophys.093008.131331J. S. Cox, B. Chen, M. McNeil, and W. R. Jacobs, “Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.,” Nature, vol. 402, no. 6757, pp. 79–83, 1999, doi: 10.1038/47042.W. Malaga, E. Perez, and C. Guilhot, “Production of unmarked mutations in mycobacteria using site-specific recombination,” FEMS Microbiol. Lett., 2003, doi: 10.1016/S0378-1097(03)00003-X.P. Andersen and S. H. E. Kaufmann, “Novel vaccination strategies against tuberculosis,” Cold Spring Harb. Perspect. Med., 2014, doi: 10.1101/cshperspect.a018523.J. . Grange, “The biology of the genus Mycobacterium,” Soc Appl Bacteriol Symp Ser, vol. 25, pp. 1S-9S, 1996.A. C. Parte, “LPSN - List of prokaryotic names with standing in nomenclature,” Nucleic Acids Res., vol. 42, no. D1, 2014, doi: 10.1093/nar/gkt1111.E. C. Hett and E. J. Rubin, “Bacterial growth and cell division: a mycobacterial perspective,” Microbiol. Mol. Biol. Rev., vol. 72, no. 1, pp. 126–56, table of contents, 2008, doi: 10.1128/mmbr.00028-07.V. V. and F. P. Levy-Frebault, “Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species.,” Int J Syst Bacteriol, vol. 42, no. 2, pp. 315–23, 1999.G. Wayne, LG, Kubica, “Family Mycobacteriaceae Chester,” in In Bergey’s manual of systematic bacteriology., M.N.S. eds Sneath P. H. A., Sharpe M. E., Holt J. G. (Williams and Wilkins, Baltimore, Md), 1986, pp. 1435–1457.E. L. Rastogi, N., “The mycobacteria: an introduction to nomenclature and pathogenesis.,” Rev Sci Tech, vol. 20, no. 1, pp. 21–54, 2001.M. Daffé and P. Draper, The Envelope Layers of Mycobacteria with Reference to their Pathogenicity, vol. 39. 1997.R. Issa, “Detection and discrimination of Mycobacterium tuberculosis complex,” Diagn Microbiol Infect Dis, vol. 72, no. 1, pp. 62–67, 2012P. J. Brennan and H. Nikaido, “The envelope of mycobacteria.,” Annu. Rev. Biochem., 1995, doi: 10.1146/annurev.biochem.64.1.29.E. Tortoli, “Phylogeny of the genus Mycobacterium: Many doubts, few certainties,” Infect. Genet. Evol., 2012, doi: 10.1016/j.meegid.2011.05.025.J. Hacker and U. Dobrindt, Pathogenomics. Weinheim, 2006.K. Sakamoto, “The Pathology of Mycobacterium tuberculosis Infection,” Veterinary Pathology. 2012, doi: 10.1177/0300985811429313.Y. and A. T. Zhang, “Genetic of Drug Resistance in Mycobacterium tuberculosis,” in In Molecular Genetics of Mycobacteria., ed. G.F.J. Hatfull, W.R., 2000, p. ASM Press Washington, D.C.J. . Blanchard, “Molecular mechanisms of drug resistance in Mycobacterium tuberculosis,” Annu Rev Biochem, vol. 65, pp. 215–239, 1996.G. M. Cook et al., “Physiology of Mycobacteria,” Advances in Microbial Physiology. 2009, doi: 10.1016/S0065-2911(09)05502-7.V. and H. N. Jarlier, “Permeability barrier to hydrophilic solutes in Mycobacterium chelonei.,” J Bacteriol, vol. 79, no. 3, pp. 153–169, 1990.D. Chatterjee, “The mycobacterial cell wall: structure, biosynthesis and sites of drug action.,” Curr. Opin. Chem. Biol., 1997, doi: 10.1016/S1367-5931(97)80055-5.M. Daffé and G. Etienne, “The capsule of Mycobacterium tuberculosis and its implications for pathogenicity.,” Tuber. Lung Dis., vol. 79, no. 3, pp. 153–169, 1999, doi: 10.1054/tuld.1998.0200.P. J. Brennan, “Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis,” 2003, doi: 10.1016/S1472-9792(02)00089-6K. G. Mawuenyega et al., “Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.,” Mol. Biol. Cell, vol. 16, no. 1, pp. 396–404, 2005, doi: 10.1091/mbc.E04-04-0329.C. Chalut, “MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria,” Tuberculosis, vol. 100. pp. 32–45, 2016, doi: 10.1016/j.tube.2016.06.004.M. and J.-M. R. Daffé, “The Mycobacterial Cell Envelope,” DC ASM Press, vol. XVIII, p. 395, 2008.C. Whitfield, “Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli,” Annu. Rev. Biochem., vol. 75, pp. 39–68, 2006, doi: 10.1146/.A. O’Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson, and M. P. R. Berry, “The immune response in tuberculosis.,” Annu. Rev. Immunol., 2013, doi: 10.1146/annurev-immunol-032712-095939.“‘The immune response in tuberculosis.’ Annu. Rev. Immunol. vol. 31, no. 1, pp. 475–527, 2013.,” Trends in Microbiology, vol. 26, no. 6. 2018, doi: 10.1016/j.tim.2018.02.012.N. A. Knechel, “Tuberculosis: Pathophysiology, clinical features, and diagnosis,” Crit. Care Nurse, 2009, doi: 10.4037/ccn2009968.M. Gengenbacher and S. H. E. Kaufmann, “Mycobacterium tuberculosis: Success through dormancy,” FEMS Microbiology Reviews. 2012, doi: 10.1111/j.1574-6976.2012.00331.x.J. D. Ernst, “The immunological life cycle of tuberculosis,” Nature Reviews Immunology. 2012, doi: 10.1038/nri3259.S. Sturgill-Koszycki et al., “Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase,” Science (80-. )., vol. 263, no. 5147, pp. 678–681, 1994, doi: 10.1126/science.8303277.S. K. Ward, E. A. Hoye, and A. M. Talaat, “The global responses of Mycobacterium tuberculosis to physiological levels of copper,” J. Bacteriol., vol. 190, no. 8, pp. 2939–2946, 2008, doi: 10.1128/JB.01847-07.S. M. Hingley-Wilson, V. K. Sambandamurthy, and W. R. Jacobs, “Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis,” Nature Immunology. 2003, doi: 10.1038/ni981.J. A. Philips and J. D. Ernst, “Tuberculosis Pathogenesis and Immunity,” Annu. Rev. Pathol. Mech. Dis., 2012, doi: 10.1146/annurev-pathol-011811-132458.G. Walzl, K. Ronacher, W. Hanekom, T. J. Scriba, and A. Zumla, “Immunological biomarkers of tuberculosis,” Nature Reviews Immunology. 2011, doi: 10.1038/nri2960F. Squeglia, A. Ruggiero, and R. Berisio, “Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest,” Biochem. J., 2018, doi: 10.1042/bcj20180482.M. A. Forrellad et al., “Virulence factors of the Mycobacterium tuberculosis complex.,” Virulence, vol. 4, no. 1, pp. 3–66, 2013, doi: 10.4161/viru.22329.J. E. Galagan et al., “The Mycobacterium tuberculosis regulatory network and hypoxia,” Nature, 2013, doi: 10.1038/nature12337.J. Gonzalo-Asensio et al., “PhoP: A missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence,” PLoS One, 2008, doi: 10.1371/journal.pone.0003496.P. Coll, “Fármacos con actividad frente a Mycobacterium tuberculosis,” Enfermedades Infecciosas y Microbiologia Clinica. 2009, doi: 10.1016/j.eimc.2009.06.010.A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries, “The challenge of new drug discovery for tuberculosis,” Nature. 2011, doi: 10.1038/nature09657.A. Zumla et al., “Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies,” The Lancet Respiratory Medicine. 2015, doi: 10.1016/S2213-2600(15)00063-6.World Health Organization, “Multidrug and extensively drug-resistant TB (M/XDR-TB): global report on surveillance and response. , 2010.,”T. Smith, K. A. Wolff, and L. Nguyen, “Molecular biology of drug resistance in Mycobacterium tuberculosis,” Curr. Top. Microbiol. Immunol., 2013, doi: 10.1007/82-2012-279.Z. C. J. Tang, W.-C. Yam, “Mycobacterium tuberculosis infection and vaccine development,” Tuberculosis, vol. 98, pp. 30–41, 2016.M. K. O’Shea and H. McShane, “A review of clinical models for the evaluation of human TB vaccines,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1134407.Y. A. W. Skeiky and J. C. Sadoff, “Advances in tuberculosis vaccine strategies,” Nat. Rev. Microbiol., 2006, doi: 10.1038/nrmicro1419.H. A. Fletcher and L. Schrager, “TB vaccine development and the End TB Strategy: Importance and current status,” Trans. R. Soc. Trop. Med. Hyg., 2016, doi: 10.1093/trstmh/trw016.D. F. Hoft, “Tuberculosis vaccine development: goals, immunological design, and evaluation,” The Lancet. 2008, doi: 10.1016/S0140-6736(08)61036-3.S. Ginebra, “Organización Mundial de la Salud,” Wwwwhoint, 2011M. G. Palmgren and P. Nissen, “P-Type ATPases,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.C. Martín Montañés and B. Gicquel, “New tuberculosis vaccines,” Enferm. Infecc. Microbiol. Clin., 2011, doi: 10.1016/S0213-005X(11)70019-2.Y. Pang et al., “Current status of new tuberculosis vaccine in children,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1120393.R. Hernàndez Pando et al., “The use of mutant mycobacteria as new vaccines to prevent tuberculosis,” Tuberculosis, 2006, doi: 10.1016/j.tube.2006.01.022.M. Bublitz, H. Poulsen, J. P. Morth, and P. Nissen, “In and out of the cation pumps: P-Type ATPase structure revisited,” Current Opinion in Structural Biology. 2010, doi: 10.1016/j.sbi.2010.06.007.S. K. Ward, B. Abomoelak, E. A. Hoye, H. Steinberg, and A. M. Talaat, “CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis,” Mol. Microbiol., 2010, doi: 10.1111/j.1365-2958.2010.07273.x.L. Yatime et al., “P-type ATPases as drug targets: Tools for medicine and science,” Biochimica et Biophysica Acta - Bioenergetics, vol. 1787, no. 4. pp. 207–220, 2009, doi: 10.1016/j.bbabio.2008.12.019.W. Kühlbrandt, “Biology, structure and mechanism of P-type ATPases,” Nat. Rev. Mol. Cell Biol., vol. 5, no. 4, pp. 282–295, 2004, doi: 10.1038/nrm1354P. Chène, “ATPases as drug targets: learning from their structure.,” Nat. Rev. Drug Discov., vol. 1, no. 9, pp. 665–673, 2002, doi: 10.1038/nrd894.P. L. Pedersen, “Transport ATPases into the year 2008: A brief overview related to types, structures, functions and roles in health and disease,” Journal of Bioenergetics and Biomembranes. 2007, doi: 10.1007/s10863-007-9123-9.D. D. Agranoff and S. Krishna, “Metal ion homeostasis and intracellular parasitism,” Molecular Microbiology, vol. 28, no. 3. pp. 403–412, 1998, doi: 10.1046/j.1365-2958.1998.00790.x.M. G. Palmgren and P. Nissen, “P-type ATPases.,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.K. B. Axelsen and M. G. Palmgren, “Evolution of substrate specificities in the P-type ATPase superfamily,” J. Mol. Evol., vol. 46, no. 1, pp. 84–101, 1998, doi: 10.1007/PL00006286.T. Ogura and A. J. Wilkinson, “AAA+ superfamily ATPases: Common structure-diverse function,” Genes to Cells, vol. 6, no. 7. pp. 575–597, 2001, doi: 10.1046/j.1365-2443.2001.00447.x.D. Agranoff and S. Krishna, “Metal ion transport and regulation in Mycobacterium tuberculosis.,” Front. Biosci., 2004.S. K. Ward, B. Abomoelak, E. a Hoye, H. Steinberg, and M. Adel, “NIH Public Access,” vol. 77, no. 5, pp. 1096–1110, 2011, doi: 10.1111/j.1365-2958.2010.07273.x.CtpV.L. Novoa-Aponte et al., “In silico Identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex,” BMC Structural Biology. 2012, doi: 10.1186/1472-6807-12-25.L. V. Quitian Cruz, “Determinación de características funcionales de CtpG, una ATPasa tipo P transportadora de metales pesados a través de la membrana plasmática de Mycobacterium tuberculosis,” Universidad Nacional de Colombia Sede Bogotá, 2017.H. Botella et al., “Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages,” Cell Host Microbe, vol. 10, no. 3, pp. 248–259, 2011, doi: 10.1016/j.chom.2011.08.006.T. Soldati and O. Neyrolles, “Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!,” Traffic. 2012, doi: 10.1111/j.1600-0854.2012.01358.x.T. Padilla-Benavides, J. E. Long, D. Raimunda, C. M. Sassetti, and J. M. Argüello, “A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria,” J. Biol. Chem., vol. 288, no. 16, pp. 11334–11347, Apr. 2013, doi: 10.1074/jbc.M112.448175.J. M. Argüello, M. González-Guerrero, and D. Raimunda, “Bacterial transition metal P 1B-ATPases: Transport mechanism and roles in virulence,” Biochemistry. 2011, doi: 10.1021/bi201418k.D. Raimunda, J. E. Long, T. Padilla-Benavides, C. M. Sassetti, and J. M. Argüello, “Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence,” Mol. Microbiol., vol. 91, no. 1, pp. 185–197, Jan. 2014, doi: 10.1111/mmi.12454.S. M. Behar, M. Divangahi, and H. G. Remold, “Evasion of innate immunity by mycobacterium tuberculosis: Is death an exit strategy?,” Nature Reviews Microbiology. 2010, doi: 10.1038/nrmicro2387.M. Maya-Hoyos, C. Rosales, L. Novoa-Aponte, E. Castillo, and C. Y. Soto, “The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells,” Heliyon, vol. 5, no. 11, p. e02852, 2019, doi: 10.1016/j.heliyon.2019.e02852.M. H. Touchette and J. C. Seeliger, “Transport of outer membrane lipids in mycobacteria,” Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, vol. 1862, no. 11. Elsevier B.V., pp. 1340–1354, Nov. 01, 2017, doi: 10.1016/j.bbalip.2017.01.005.M. Daffé, D. C. Crick, and M. Jackson, “Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids,” Microbiol. Spectr., 2014, doi: 10.1128/microbiolspec.mgm2-0021-2013.M. Jackson, G. Stadthagen, and B. Gicquel, “Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: Biosynthesis, transport, regulation and biological activities,” Tuberculosis, vol. 87, no. 2. pp. 78–86, 2007, doi: 10.1016/j.tube.2006.05.003.T. D. Sirakova, A. K. Thirumala, V. S. Dubey, H. Sprecher, and P. E. Kolattukudy, “The Mycobacterium tuberculosis pks2 Gene Encodes the Synthase for the Hepta- and Octamethyl-branched Fatty Acids Required for Sulfolipid Synthesis,” J. Biol. Chem., 2001, doi: 10.1074/jbc.M011468200.Camacho LR, Constant P, Raynaud C, Laneélle MA, Triccas JA, Guicquel B, “Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in cell wall permeability barrier,” J Biol Chem, vol. 276, pp. 19845–54, 2001.J. Quigley, V. K. Hughitt, C. A. Velikovsky, R. A. Mariuzza, N. M. El-Sayed, and V. Briken, “The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis,” MBio, 2017, doi: 10.1128/mBio.00148-17.J. Augenstreich et al., “ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis,” Cell. Microbiol., vol. 19, no. 7, Jul. 2017, doi: 10.1111/cmi.12726.J. P. Sarathy, V. Dartois, and E. J. D. Lee, “The role of transport mechanisms in Mycobacterium Tuberculosis drug resistance and tolerance,” Pharmaceuticals. 2012, doi: 10.3390/ph5111210.P. Domenech, M. B. Reed, and C. E. Barry, “Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.,” Infect. Immun., vol. 73, no. 6, pp. 3492–501, Jun. 2005, doi: 10.1128/IAI.73.6.3492-3501.2005H. I. Zgurskaya and H. Nikaido, “Multidrug resistance mechanisms: Drug efflux across two membranes,” Molecular Microbiology, vol. 37, no. 2. pp. 219–225, 2000, doi: 10.1046/j.1365-2958.2000.01926.x.P. V. Reddy et al., “Disruption of mycobactin biosynthesis leads to attenuation of mycobacterium tuberculosis for growth and virulence,” J. Infect. Dis., vol. 208, no. 8, pp. 1255–1265, 2013, doi: 10.1093/infdis/jit250.R. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, Aug. 2015, doi: 10.1016/J.BCP.2015.05.001.L. R. Camacho, D. Ensergueix, E. Perez, B. Gicquel, and C. Guilhot, “Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis,” Mol. Microbiol., vol. 34, no. 2, pp. 257–267, 1999, doi: 10.1046/j.1365-2958.1999.01593.x.J. Manuel Belardinelli, G. Larrouy-Maumus, V. Jones, L. P. S. De Carvalho, M. R. McNeil, and M. Jackson, “Biosynthesis and translocation of unsulfated acyltrehaloses in mycobacterium tuberculosis,” J. Biol. Chem., vol. 289, no. 40, pp. 27952–27965, 2014, doi: 10.1074/jbc.M114.581199.M. H. Touchette et al., “The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis,” J. Bacteriol., vol. 197, no. 1, pp. 201–210, 2015, doi: 10.1128/JB.02015-14.K. Tahlan et al., “SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of mycobacterium tuberculosis,” Antimicrob. Agents Chemother., vol. 56, no. 4, pp. 1797–1809, 2012, doi: 10.1128/AAC.05708-11.S. A. Pacheco, F. F. Hsu, K. M. Powers, and G. E. Purdy, “MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis,” J. Biol. Chem., vol. 288, no. 33, pp. 24213–24222, 2013, doi: 10.1074/jbc.M113.473371.C. M. Jones et al., “Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 5, pp. 1945–50, 2014, doi: 10.1073/pnas.1311402111.R. M. Wells et al., “Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis,” PLoS Pathog., vol. 9, no. 1, 2013, doi: 10.1371/journal.ppat.1003120.M. R. Pasca, P. Guglierame, E. De Rossi, F. Zara, and G. Riccardi, “mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis.,” Antimicrob. Agents Chemother., vol. 49, no. 11, pp. 4775–7, Nov. 2005, doi: 10.1128/AAC.49.11.4775-4777.2005.M. Jain and J. S. Cox, “Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis,” PLoS Pathog., 2005, doi: 10.1371/journal.ppat.0010002.R. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, 2015, doi: 10.1016/j.bcp.2015.05.001.M. B. Reed et al., “A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.,” Nature, vol. 431, no. 7004, pp. 84–87, 2004, doi: 10.1038/nature02837.J. C. van Kessel, “RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS,” Pittsburgh, 2003.G. F. H. Van Kessel, J.C., L.J. Marinelli, “Recombineering mycobacteria and their phages.,” Nat. Rev. Microbiol., vol. 6, pp. 851–857, 2008.J. C. van Kessel and G. F. Hatfull, “Recombineering in Mycobacterium tuberculosis,” Nat. Methods, 2007, doi: 10.1038/nmeth996.I. Hastings Software, “Gene Runner.” New York. [M. W. Davis, “ApE- A plasmid Editor,” University of Utah. 2013, [Online]. Available: http://biologylabs.utah.edu/jorgensen/wayned/ape/.Promega Corporation, “BioMath Calculators: Ligations: Molar Ratio of Insert to Vector Calculator.” 2008, [Online]. Available: https://www.promega.com/resources/tools/biomath-calculators/.A. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Ncional de Colombia, 2018.M. M. Hoyos, “ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis,” Universidad Naional de Colombia, 2021.S. Padmanabhan, S. Banerjee, and N. Mandi, “Molecular Cloning - Selected Applications in Medicine and BiologyScreening of Bacterial Recombinants: Strategies and Preventing False Positives,” Gregory G.Brown, Ed. 2011, pp. 1–15.Promega Corporation, “pGEM®-T and pGEM®-T Easy Vector Systems,” 2800, 2015.R. R. Reed, “Transposon-mediated site-specific recombination: A defined in vitro system,” Cell, vol. 25, no. 3, pp. 713–719, Sep. 1981, doi: 10.1016/0092-8674(81)90178-1.A. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Nacional de Colombia, 2018.InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80627/5/license.txt8153f7789df02f0a4c9e079953658ab2MD55ORIGINAL1073687714.2021.pdf1073687714.2021.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf3242188https://repositorio.unal.edu.co/bitstream/unal/80627/6/1073687714.2021.pdf10725f42a91cca1262321ccda87c166cMD56THUMBNAIL1073687714.2021.pdf.jpg1073687714.2021.pdf.jpgGenerated Thumbnailimage/jpeg4275https://repositorio.unal.edu.co/bitstream/unal/80627/7/1073687714.2021.pdf.jpg80fd411e18e835cf2b8f2bbeeb385a5bMD57unal/80627oai:repositorio.unal.edu.co:unal/806272023-07-28 23:04:55.843Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK