Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2
ilustraciones, diagramas
- Autores:
-
Suárez Riaño, Oscar Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84336
- Palabra clave:
- 540 - Química y ciencias afines
Paladio
Níquel
Nanopartículas
Intercambio Isotópico de Hidrógeno
Dearomatización
Efecto Cinético Isotópico Inverso
Ligandos Carbeno N-Heterocíclico
Palladium
Nickel
Nanoparticles
Hydrogen Isotope Exchange
Dearomatization
Inverse Kinetic Isotope Effect
N-Heterocyclic Carbene Ligands
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_a8c68f821b9bee6e61f488384742deb4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84336 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
dc.title.translated.spa.fl_str_mv |
Nanopartículas basadas en paladio estabilizadas por ligandos carbeno NHeterocíclico: Aplicación catalítica en la transformación de moléculas nitrogenadas con D2 |
title |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
spellingShingle |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 540 - Química y ciencias afines Paladio Níquel Nanopartículas Intercambio Isotópico de Hidrógeno Dearomatización Efecto Cinético Isotópico Inverso Ligandos Carbeno N-Heterocíclico Palladium Nickel Nanoparticles Hydrogen Isotope Exchange Dearomatization Inverse Kinetic Isotope Effect N-Heterocyclic Carbene Ligands |
title_short |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
title_full |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
title_fullStr |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
title_full_unstemmed |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
title_sort |
Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2 |
dc.creator.fl_str_mv |
Suárez Riaño, Oscar Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Baquero Velasco, Edwin Arley Chaudret, Bruno |
dc.contributor.author.none.fl_str_mv |
Suárez Riaño, Oscar Eduardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Estado Sólido y Catálisis Ambiental |
dc.contributor.orcid.spa.fl_str_mv |
Oscar Suárez-Riaño [0000000190537423] |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Paladio Níquel Nanopartículas Intercambio Isotópico de Hidrógeno Dearomatización Efecto Cinético Isotópico Inverso Ligandos Carbeno N-Heterocíclico Palladium Nickel Nanoparticles Hydrogen Isotope Exchange Dearomatization Inverse Kinetic Isotope Effect N-Heterocyclic Carbene Ligands |
dc.subject.proposal.spa.fl_str_mv |
Paladio Níquel Nanopartículas Intercambio Isotópico de Hidrógeno Dearomatización Efecto Cinético Isotópico Inverso Ligandos Carbeno N-Heterocíclico |
dc.subject.proposal.eng.fl_str_mv |
Palladium Nickel Nanoparticles Hydrogen Isotope Exchange Dearomatization Inverse Kinetic Isotope Effect N-Heterocyclic Carbene Ligands |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-27 |
dc.date.accessioned.none.fl_str_mv |
2023-07-27T20:50:16Z |
dc.date.available.none.fl_str_mv |
2023-07-27T20:50:16Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84336 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84336 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Gómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111 (8), 4857–4963. https://doi.org/10.1021/cr100436k. Howland, R. H. Deuterated Drugs. J. Psychosoc. Nurs. Ment. Health Serv. 2015, 53 (9). https://doi.org/10.3928/02793695-20150821-55. Stokvis, E.; Rosing, H.; Beijnen, J. H. Stable Isotopically Labeled Internal Standards in Quantitative Bioanalysis Using Liquid Chromatography/Mass Spectrometry: Necessity or Not? Rapid Commun. Mass Spectrom. 2005, 19 (3), 401–407. https://doi.org/10.1002/rcm.1790. Palazzolo, A.; Asensio, J. M.; Bouzouita, D.; Pieters, G.; Tricard, S.; Chaudret, B. Metal Nanoparticles for Hydrogen Isotope Exchange; 2020; pp 281–302. https://doi.org/10.1007/978-3-030-45823-2_9. Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 2019, 62 (11), 5276–5297. https://doi.org/10.1021/acs.jmedchem.8b01808. Schmidt, C. First Deuterated Drug Approved. Nat. Biotechnol. 2017, 35 (6), 493–494. https://doi.org/10.1038/nbt0617-493. Jacques, V.; Czarnik, A. W.; Judge, T. M.; Van der Ploeg, L. H. T.; DeWitt, S. H. Differentiation of Antiinflammatory and Antitumorigenic Properties of Stabilized Enantiomers of Thalidomide Analogs. Proc. Natl. Acad. Sci. 2015, 112 (12). https://doi.org/10.1073/pnas.1417832112. Chen, J.; Mannargudi, B. M.; Xu, L.; Uetrecht, J. Demonstration of the Metabolic Pathway Responsible for Nevirapine-Induced Skin Rash. Chem. Res. Toxicol. 2008, 21 (9), 1862–1870. https://doi.org/10.1021/tx800177k. Phillips, D. H.; Potter, G. A.; Horton, M. N.; Hewker, A.; Crofton-Sleigh, C.; Jarman, M.; Venitt, S. Reduced Genotoxicity of [D5-Ethyl]-Tamoxifen Implicates α-Hydroxylation of the Ethyl Group as a Major Pathway of Tamoxifen Activation to a Liver Carcinogen. Carcinogenesis 1994, 15 (8), 1487–1492. https://doi.org/10.1093/carcin/15.8.1487. Uttamsingh, V.; Gallegos, R.; Liu, J. F.; Harbeson, S. L.; Bridson, G. W.; Cheng, C.; Wells, D. S.; Graham, P. B.; Zelle, R.; Tung, R. Altering Metabolic Profiles of Drugs by Precision Deuteration: Reducing Mechanism-Based Inhibition of CYP2D6 by Paroxetine. J. Pharmacol. Exp. Ther. 2015, 354 (1), 43–54. https://doi.org/10.1124/jpet.115.223768. Yung, C. M.; Skaddan, M. B.; Bergman, R. G. Stoichiometric and Catalytic H/D Incorporation by Cationic Iridium Complexes: A Common Monohydrido-Iridium Intermediate. J. Am. Chem. Soc. 2004, 126 (40), 13033–13043. https://doi.org/10.1021/ja046825g. Heys, R. Investigation of [IrH2(Me2CO)2(PPh3)2]BF4 as a Catalyst of Hydrogen Isotope Exchange of Substrates in Solution. J. Chem. Soc. Chem. Commun. 1992, No. 9, 680. https://doi.org/10.1039/c39920000680. Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M.; Rojahn, P.; Weck, R. Expanded Applicability of Iridium(I) NHC/Phosphine Catalysts in Hydrogen Isotope Exchange Processes with Pharmaceutically-Relevant Heterocycles. Tetrahedron 2015, 71 (13), 1924–1929. https://doi.org/10.1016/j.tet.2015.02.029. Valero, M.; Weck, R.; Güssregen, S.; Atzrodt, J.; Derdau, V. Highly Selective Directed Iridium‐Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew. Chem. Int. Ed. 2018, 57 (27), 8159–8163. https://doi.org/10.1002/anie.201804010. Prechtl, M. H. G.; Hölscher, M.; Ben-David, Y.; Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angew. Chem. Int. Ed. 2007, 46 (13), 2269–2272. https://doi.org/10.1002/anie.200603677. Takahashi, M.; Oshima, K.; Matsubara, S. Ruthenium Catalyzed Deuterium Labelling of α-Carbon in Primary Alcohol and Primary/Secondary Amine in D2O. Chem. Lett. 2005, 34 (2), 192–193. https://doi.org/10.1246/cl.2005.192. Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. Ruthenium-Catalyzed Selective α,β-Deuteration of Bioactive Amines. J. Am. Chem. Soc. 2012, 134 (29), 12239–12244. https://doi.org/10.1021/ja3041338. Pony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-Catalysed Tritiation of Pharmaceuticals. Nature 2016, 529 (7585), 195–199. https://doi.org/10.1038/nature16464. Yang, H.; Zarate, C.; Palmer, W. N.; Rivera, N.; Hesk, D.; Chirik, P. J. Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in N -Heterocycles and Its Application to the Tritiation of Pharmaceuticals. ACS Catal. 2018, 8 (11), 10210–10218. https://doi.org/10.1021/acscatal.8b03717. Palmer, W. N.; Chirik, P. J. Cobalt-Catalyzed Stereoretentive Hydrogen Isotope Exchange of C(Sp3 )–H Bonds. ACS Catal. 2017, 7 (9), 5674–5678. https://doi.org/10.1021/acscatal.7b02051. Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Efficient C−H/C−D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Org. Lett. 2004, 6 (9), 1485–1487. https://doi.org/10.1021/ol0496374. Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Aromatic Ring Favorable and Efficient H–D Exchange Reaction Catalyzed by Pt/C. Tetrahedron Lett. 2005, 46 (41), 6995–6998. https://doi.org/10.1016/j.tetlet.2005.08.067. Lepron, M.; Daniel-bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2020, 54. https://doi.org/10.1021/acs.accounts.0c00721. Ndolomingo, M. J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55 (15), 6195–6241. https://doi.org/10.1007/s10853-020-04415-x. Birch, A. J. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430. https://doi.org/10.1039/jr9440000430. Buchner, E.; Curtius, T. Ueber Die Einwirkung von Diazoessigäther Auf Aromatische Kohlenwasserstoffe. Berichte der Dtsch. Chem. Gesellschaft 1885, 18 (2), 2377–2379. https://doi.org/10.1002/cber.188501802119. Lan, P.; Ye, S.; Banwell, M. G. The Application of Dioxygenase‐Based Chemoenzymatic Processes to the Total Synthesis of Natural Products. Chem. Asian J. 2019, 14 (22), 4001–4012. https://doi.org/10.1002/asia.201900988. Zheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds. Chem 2016, 1 (6), 830–857. https://doi.org/10.1016/j.chempr.2016.11.005. Okumura, M.; Sarlah, D. Arenophile-Mediated Dearomative Functionalization Strategies. Synlett 2018, 29 (07), 845–855. https://doi.org/10.1055/s-0036-1591940. Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52 (21), 6752–6756. https://doi.org/10.1021/jm901241e. Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50 (18), 4068–4093. https://doi.org/10.1002/anie.201006017. Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6 (7), 1589–1603. https://doi.org/10.1016/j.chempr.2020.06.015. Zheng, C.; You, S. L. Advances in Catalytic Asymmetric Dearomatization. ACS Cent. Sci. 2021, 7 (3), 432–444. https://doi.org/10.1021/acscentsci.0c01651. Faisca Phillips, A. M. M. M. Organocatalytic Enantioselective Dearomatization Reactions for the Synthesis of Nitrogen Heterocycles. In Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley, 2020; pp 273–323. https://doi.org/10.1002/9781119708841.ch11. Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47 (21), 7996–8017. https://doi.org/10.1039/c8cs00389k. Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Partial Hydrogenation of Benzene to Cyclohexene. Appl. Surf. Sci. 1997, 121–122, 448–451. https://doi.org/10.1016/S0169-4332(97)00325-5. Wei, Y.; Rao, B.; Cong, X.; Zeng, X. Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(Alkyl)Carbene Rhodium Complexes. J. Am. Chem. Soc. 2015, 137 (29), 9250–9253. https://doi.org/10.1021/jacs.5b05868. Ott, L. S.; Finke, R. G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251 (9–10), 1075–1100. https://doi.org/10.1016/j.ccr.2006.08.016. Polshettiwar, V. Nanomaterials in Catalysis . Edited by Philippe Serp and Karine Philippot. Angew. Chem. Int. Ed. 2013, 52 (43), 11199–11199. https://doi.org/10.1002/anie.201305828. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011. Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; Parak, W. J.; Kanaras, A. G. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119 (8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733. Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871. https://doi.org/10.1039/d0ma00807a. Khan, F. A. Applications of Nanomaterials in Human Health; 2020. https://doi.org/10.1007/978-981-15-4802-4. Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. - Sci. 2019, 31 (2), 257–269. https://doi.org/.odf. Zuluaga Villamil, M. A. Nanopartículas de Ir y Ru / Ir Estabilizadas Con Ligandos Carbeno N- Heterocíclico Para Activación de Enlaces C-H, Universidad Nacional de Colombia, 2020. Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics. J. Am. Chem. Soc. 2001, 123 (31), 7584–7593. https://doi.org/10.1021/ja003961m. Myers, D. Colloids and Colloidal Stability. In Surfaces, Interfaces, and Colloids; John Wiley & Sons, Inc.: New York, USA; pp 214–252. https://doi.org/10.1002/0471234990.ch10. David, M. Applications of Ionic Liquids in Science and Technology; Handy, S., Ed.; InTech, 2011. https://doi.org/10.5772/1769. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384. Wanzlick, H.-W.; Schönherr, H.-J. Direct Synthesis of a Mercury Salt-Carbene Complex. Angew. Chem. Int. Ed. 1968, 7 (2), 141–142. https://doi.org/10.1002/anie.196801412. Öfele, K. 1,3-Dimethyl-4-Imidazolinyliden-(2)-Pentacarbonylchrom Ein Neuer Übergangsmetall-Carben-Komplex. J. Organomet. Chem. 1968, 12 (3), P42–P43. https://doi.org/10.1016/S0022-328X(00)88691-X. Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113 (1), 361–363. https://doi.org/10.1021/ja00001a054. Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Metal Complexes of N-Heterocyclic Carbenes—A New Structural Principle for Catalysts in Homogeneous Catalysis. Angew. Chem. Int. Ed. 1995, 34 (21), 2371–2374. https://doi.org/10.1002/anie.199523711. Grubbs, R. H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45 (23), 3760–3765. https://doi.org/10.1002/anie.200600680. Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M‒(NHC) (NHC = N-Heterocyclic Carbene) Bond. Coord. Chem. Rev. 2009, 253 (5–6), 687–703. https://doi.org/10.1016/j.ccr.2008.06.006. Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chem. Rev. 2015, 115 (20), 11503–11532. https://doi.org/10.1021/acs.chemrev.5b00220. Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514. Shen, H.; Tian, G.; Xu, Z.; Wang, L.; Wu, Q.; Zhang, Y.; Teo, B. K.; Zheng, N. N-Heterocyclic Carbene Coordinated Metal Nanoparticles and Nanoclusters. Coord. Chem. Rev. 2022, 458, 214425. https://doi.org/10.1016/j.ccr.2022.214425. Koy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces. Nat. Catal. 2021, 4 (5), 352–363. https://doi.org/10.1038/s41929-021-00607-z. An, Y. Y.; Yu, J. G.; Han, Y. F. Recent Advances in the Chemistry of N-Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chinese J. Chem. 2019, 37 (1), 76–87. https://doi.org/10.1002/cjoc.201800450. Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Nanoclusters in Ionic Liquids: Evidence for N-Heterocyclic Carbene Formation from Imidazolium-Based Ionic Liquids Detected by 2H NMR. J. Am. Chem. Soc. 2005, 127 (16), 5758–5759. https://doi.org/10.1021/ja0423320. Valero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC‐Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew. Chem. Int. Ed. 2020, 59 (9), 3517–3522. https://doi.org/10.1002/anie.201914369. Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Philippot, K.; Chaudret, B. Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. Angew. Chem. Int. Ed. 2011, 50 (50), 12080–12084. https://doi.org/10.1002/anie.201106348. Baquero, E. A.; Tricard, S.; Flores, J. C.; de Jesús, E.; Chaudret, B. Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2014, 53 (48), 13220–13224. https://doi.org/10.1002/anie.201407758. Ruiz-Varilla, A. M.; Baquero, E. A.; Chaudret, B.; de Jesús, E.; Gonzalez-Arellano, C.; Flores, J. C. Water-Soluble NHC-Stabilized Platinum Nanoparticles as Recoverable Catalysts for Hydrogenation in Water. Catal. Sci. Technol. 2020, 10 (9), 2874–2881. https://doi.org/10.1039/D0CY00481B. Planellas, M.; Guo, W.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T. Hydrosilylation of Internal Alkynes Catalyzed by Tris- Imidazolium Salt-Stabilized Palladium Nanoparticles. Adv. Synth. Catal. 2014, 356 (1), 179–188. https://doi.org/10.1002/adsc.201300641. Planellas, M.; Pleixats, R.; Shafir, A. Palladium Nanoparticles in Suzuki Cross-Couplings: Tapping into the Potential of Tris-Imidazolium Salts for Nanoparticle Stabilization. Adv. Synth. Catal. 2012, 354 (4), 651–662. https://doi.org/10.1002/adsc.201100574. Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chem. Eur. J. 2017, 23 (54), 13435–13444. https://doi.org/10.1002/chem.201702204. Richter, C.; Schaepe, K.; Glorius, F.; Ravoo, B. J. Tailor-Made N-Heterocyclic Carbenes for Nanoparticle Stabilization. Chem. Commun. 2014, 50 (24), 3204. https://doi.org/10.1039/c4cc00654b. Khol, H.; Reimer, L. Transmission Electron Microscopy, 5th ed.; Springer Series in Optical Sciences; Springer New York: New York, NY, 2008; Vol. 36. https://doi.org/10.1007/978-0-387-40093-8. Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10 (27), 12871–12934. https://doi.org/10.1039/c8nr02278j. Stachowiak, G. W.; Batchelor, A. W.; Stachowiak, G. B. Surface Micrography and Analysis. In Tribology Series; 2004; Vol. 44, pp 165–220. https://doi.org/10.1016/S0167-8922(04)80024-5. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Springer US: Boston, MA, 2009. https://doi.org/10.1007/978-0-387-76501-3. Titus, D.; James Jebaseelan Samuel, E.; Roopan, S. M. Nanoparticle Characterization Techniques; Elsevier Inc., 2019. https://doi.org/10.1016/b978-0-08-102579-6.00012-5. Romeu, D.; Gomez, A.; Reyes-Gasg, J. Electron Diffraction and HRTEM Structure Analysis of Nanowires. In Nanowires - Fundamental Research; InTech, 2011. https://doi.org/10.5772/18915. Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S. R.; Chougule, M. B.; Tekade, R. K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development; Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-817909-3.00010-8. Grdadolnik, J. ATR-FTIR Spectroscopy: Its Advantages and Limitations. Acta Chim. Slov. 2002, 49 (3), 631–642. Martinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C. NHC-Stabilised Rh Nanoparticles: Surface Study and Application in the Catalytic Hydrogenation of Aromatic Substrates. J. Catal. 2017, 354, 113–127. https://doi.org/10.1016/j.jcat.2017.08.010. Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 2021, 1 (1). https://doi.org/10.1038/s43586-020-00002-1. Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angew. Chem. Int. Ed. 2017, 56 (3), 865–869. https://doi.org/10.1002/anie.201610251. Cano, I.; Martínez-Prieto, L. M.; Fazzini, P. F.; Coppel, Y.; Chaudret, B.; Van Leeuwen, P. W. N. M. Characterization of Secondary Phosphine Oxide Ligands on the Surface of Iridium Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19 (32), 21655–21662. https://doi.org/10.1039/c7cp03439c. Lu, L. T. Water-Dispersible Magnetic Nanoparticles for Biomedical Applications: Synthesis and Characterisation, University of Liverpool, 2011. https://doi.org/10.17638/03062809. Rühling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B. J.; Glorius, F. Modular Bidentate Hybrid NHC-Thioether Ligands for the Stabilization of Palladium Nanoparticles in Various Solvents. Angew. Chem. Int. Ed. 2016, 55 (19), 5856–5860. https://doi.org/10.1002/anie.201508933. Martínez-Prieto, L. M.; Rakers, L.; López-Vinasco, A. M.; Cano, I.; Coppel, Y.; Philippot, K.; Glorius, F.; Chaudret, B.; van Leeuwen, P. W. N. M. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chem. Eur. J. 2017, 23 (52), 12779–12786. https://doi.org/10.1002/chem.201702288. Martínez-Prieto, L. M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51 (2), 376–384. https://doi.org/10.1021/acs.accounts.7b00378. Ranganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd Nanoparticles. Angew. Chem. Int. Ed. 2010, 49 (42), 7786–7789. https://doi.org/10.1002/anie.201002782. Pieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.; Berthet, J.-C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective and Stereospecific Deuteration of Bioactive Aza Compounds by the Use of Ruthenium Nanoparticles. Angew. Chem. Int. Ed. 2014, 53 (1), 230–234. https://doi.org/10.1002/anie.201307930. Taglang, C.; Martínez-Prieto, L. M.; Del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific C-H Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554. Martínez-Prieto, L. M.; Baquero, E. A.; Pieters, G.; Flores, J. C.; De Jesús, E.; Nayral, C.; Delpech, F.; Van Leeuwen, P. W. N. M.; Lippens, G.; Chaudret, B. Monitoring of Nanoparticle Reactivity in Solution: Interaction of l-Lysine and Ru Nanoparticles Probed by Chemical Shift Perturbation Parallels Regioselective H/D Exchange. Chem. Commun. 2017, 53 (43), 5850–5853. https://doi.org/10.1039/c7cc02445b. Palazzolo, A.; Feuillastre, S.; Pfeifer, V.; Garcia‐Argote, S.; Bouzouita, D.; Tricard, S.; Chollet, C.; Marcon, E.; Buisson, D.; Cholet, S.; Fenaille, F.; Lippens, G.; Chaudret, B.; Pieters, G. Efficient Access to Deuterated and Tritiated Nucleobase Pharmaceuticals and Oligonucleotides Using Hydrogen‐Isotope Exchange. Angew. Chem. Int. Ed. 2019, 58 (15), 4891–4895. https://doi.org/10.1002/anie.201813946. Reshi, N. U. D.; Samuelson, A. G. Recent Advances in Soluble Ruthenium(0) Nanocatalysts and Their Reactivity. Appl. Catal. A Gen. 2020, 598, 117561. https://doi.org/10.1016/j.apcata.2020.117561. Bouzouita, D.; Asensio, J. M.; Pfeifer, V.; Palazzolo, A.; Lecante, P.; Pieters, G.; Feuillastre, S.; Tricard, S.; Chaudret, B. Chemoselective H/D Exchange Catalyzed by Nickel Nanoparticles Stabilized by N-Heterocyclic Carbene Ligands. Nanoscale 2020, 12 (29), 15736–15742. https://doi.org/10.1039/d0nr04384b. Singh, A. K.; Xu, Q. Synergistic Catalysis over Bimetallic Alloy Nanoparticles. ChemCatChem 2013, 5 (3), 652–676. https://doi.org/10.1002/cctc.201200591. Bouzouita, D.; Lippens, G.; Baquero, E. A.; Fazzini, P. F.; Pieters, G.; Coppel, Y.; Lecante, P.; Tricard, S.; Martínez-Prieto, L. M.; Chaudret, B. Tuning the Catalytic Activity and Selectivity of Water-Soluble Bimetallic RuPt Nanoparticles by Modifying Their Surface Metal Distribution. Nanoscale 2019, 11 (35), 16544–16552. https://doi.org/10.1039/c9nr04149d. Muetterties, E. L.; Rakowski, M. C.; Hirsekorn, F. J.; Larson, W. D.; Basus, V. J.; Anet, F. A. L. Hydrogenation of Arenes with Discrete Coordination Catalysts. III. Synthesis and Nuclear Magnetic Resonance Spectrum of All-Cis-Cyclohexane-D6. J. Am. Chem. Soc. 1975, 97 (5), 1266–1267. https://doi.org/10.1021/ja00838a064. Eisen, M. S.; Marks, T. J. Supported Organoactinide Complexes as Heterogeneous Catalysts. A Kinetic and Mechanistic Study of Facile Arene Hydrogenation. J. Am. Chem. Soc. 1992, 114 (26), 10358–10368. https://doi.org/10.1021/ja00052a036. Jones, R. A.; Seeberger, M. H. Synthesis of Polymer-Supported Transition Metal Catalysts via Phosphido Linkages: Heterogeneous Catalysts for the Hydrogenation of Aromatic Compounds under Mild Conditions. J. Chem. Soc. Chem. Commun. 1985, No. 6, 373. https://doi.org/10.1039/c39850000373. Kopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122 (6), 6634–6718. https://doi.org/10.1021/acs.chemrev.1c00795. Kuwano, R.; Morioka, R.; Kashiwabara, M.; Kameyama, N. Catalytic Asymmetric Hydrogenation of Naphthalenes. Angew. Chem. Int. Ed. 2012, 51 (17), 4136–4139. https://doi.org/10.1002/anie.201201153. Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science. 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270. Wang, D. S.; Tang, J.; Zhou, Y. G.; Chen, M. W.; Yu, C. Bin; Duan, Y.; Jiang, G. F. Dehydration Triggered Asymmetric Hydrogenation of 3-(α-Hydroxyalkyl)Indoles. Chem. Sci. 2011, 2 (4), 803–806. https://doi.org/10.1039/c0sc00614a. Ranade, V. S.; Consiglio, G.; Prins, R. Functional-Group-Directed Diastereoselective Hydrogenation of Aromatic Compounds. J. Org. Chem. 2000, 65 (4), 1132–1138. https://doi.org/10.1021/jo991604s. Heitbaum, M.; Fröhlich, R.; Glorius, F. Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines. Adv. Synth. Catal. 2010, 352 (2–3), 357–362. https://doi.org/10.1002/adsc.200900763. Giles, R.; Ahn, G.; Jung, K. W. H-D Exchange in Deuterated Trifluoroacetic Acid via Ligand-Directed NHC-Palladium Catalysis: A Powerful Method for Deuteration of Aromatic Ketones, Amides, and Amino Acids. Tetrahedron Lett. 2015, 56 (45), 6231–6235. https://doi.org/10.1016/j.tetlet.2015.09.100. Farizyan, M.; Mondal, A.; Mal, S.; Deufel, F.; van Gemmeren, M. Palladium-Catalyzed Nondirected Late-Stage C–H Deuteration of Arenes. J. Am. Chem. Soc. 2021, 143 (40), 16370–16376. https://doi.org/10.1021/jacs.1c08233. Sajiki, H.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Palladium-Catalyzed Base-Selective H-D Exchange Reaction of Nucleosides in Deuterium Oxide. Synlett 2005, No. 9, 1385–1388. https://doi.org/10.1055/s-2005-868489. Sawama, Y.; Monguchi, Y.; Sajiki, H. Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-HD System. Synlett 2012, 23 (7), 959–972. https://doi.org/10.1055/s-0031-1289696. Guy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D2O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796. Pfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chem. Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043. Lyubimov, S. E.; Zvinchuk, A. A.; Korlyukov, A. A.; Davankov, V. A.; Parenago, O. P. Palladium Nanoparticles in Hypercrosslinked Polystyrene: Synthesis and Application in the Hydrogenation of Arenes. Pet. Chem. 2021, 61 (1), 76–80. https://doi.org/10.1134/S0965544121010084. Wiberg, K. B. The Deuterium Isotope Effect. Chem. Rev. 1955, 55 (4), 713–743. https://doi.org/10.1021/cr50004a004. Westheimer, F. H. The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. Chem. Rev. 1961, 61 (3), 265–273. https://doi.org/10.1021/cr60211a004. Klinman, J. P. A New Model for the Origin of Kinetic Hydrogen Isotope Effects. J. Phys. Org. Chem. 2010, 23 (7), 606–612. https://doi.org/10.1002/poc.1661. Gallego, D.; Baquero, E. A. Recent Advances on Mechanistic Studies on C-H Activation Catalyzed by Base Metals. Open Chem. 2018, 16 (1), 1001–1058. https://doi.org/10.1515/chem-2018-0102. Simmons, E. M.; Hartwig, J. F. On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51 (13), 3066–3072. https://doi.org/10.1002/anie.201107334. Kumar, A.; Gao, C. Homogeneous (De)Hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. https://doi.org/10.1002/cctc.202001404. Rej, S.; Das, A.; Chatani, N. Strategic Evolution in Transition Metal-Catalyzed Directed C–H Bond Activation and Future Directions. Coord. Chem. Rev. 2021, 431, 213683. https://doi.org/10.1016/j.ccr.2020.213683. Jones, W. D. Isotope Effects in C-H Bond Activation Reactions by Transition Metals. Acc. Chem. Res. 2003, 36 (2), 140–146. https://doi.org/10.1021/ar020148i. Bi, Q.; Song, E.; Chen, J.; Riaz, M. S.; Zhu, M.; Liu, J.; Han, Y.-F.; Huang, F. Nano Gold Coupled Black Titania Composites with Enhanced Surface Plasma Properties for Efficient Photocatalytic Alkyne Reduction. Appl. Catal. B Environ. 2022, 309, 121222. https://doi.org/10.1016/j.apcatb.2022.121222. Zhang, A.; Xia, J.; Yao, Q.; Lu, Z. H. Pd–WOx Heterostructures Immobilized by MOFs-Derived Carbon Cage for Formic Acid Dehydrogenation. Appl. Catal. B Environ. 2022, 309, 121278. https://doi.org/10.1016/j.apcatb.2022.121278. Kim, H.; Yang, S.; Hyun Lim, Y.; Lee, J.; Ha, J.-M.; Heui Kim, D. Enhancement in the Metal Efficiency of Ru/TiO2 Catalyst for Guaiacol Hydrogenation via Hydrogen Spillover in the Liquid Phase. J. Catal. 2022, 410, 93–102. https://doi.org/10.1016/j.jcat.2022.04.017. Mollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; Mayoral, Á.; Borja, P.; Mata, J. A. Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega 2018, 3 (11), 15217–15228. https://doi.org/10.1021/acsomega.8b02193. Gayathri, V.; Pentela, N.; Samanta, D. Palladium Nanoparticles Capped by Thermoresponsive N‐heterocyclic Carbene: Two Different Approaches for a Comparative Study. Appl. Organomet. Chem. 2021, 35 (4). https://doi.org/10.1002/aoc.6166. Azad, M.; Rostamizadeh, S.; Estiri, H.; Nouri, F. Ultra‐small and Highly Dispersed Pd Nanoparticles inside the Pores of ZIF‐8: Sustainable Approach to Waste‐minimized Mizoroki–Heck Cross‐coupling Reaction Based on Reusable Heterogeneous Catalyst. Appl. Organomet. Chem. 2019, 33 (7). https://doi.org/10.1002/aoc.4952. Hegde, R. V.; Ong, T.-G.; Ambre, R.; Jadhav, A. H.; Patil, S. A.; Dateer, R. B. Regioselective Direct C2 Arylation of Indole, Benzothiophene and Benzofuran: Utilization of Reusable Pd NPs and NHC-Pd@MNPs Catalyst for C–H Activation Reaction. Catal. Letters 2021, 151 (5), 1397–1405. https://doi.org/10.1007/s10562-020-03390-x. Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science (80-. ). 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270. Wollenburg, M.; Heusler, A.; Bergander, K.; Glorius, F. Trans -Selective and Switchable Arene Hydrogenation of Phenol Derivatives. ACS Catal. 2020, 10 (19), 11365–11370. https://doi.org/10.1021/acscatal.0c03423. Pfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chemi.Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043. Gonzalez-Galvez, D.; Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Chaudret, B.; Philippot, K.; Van Leeuwen, P. W. N. M. NHC-Stabilized Ruthenium Nanoparticles as New Catalysts for the Hydrogenation of Aromatics. Catal. Sci. Technol. 2013, 3 (1), 99–105. https://doi.org/10.1039/c2cy20561k. Lara, P.; Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B. Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem 2014, 6 (1), 87–90. https://doi.org/10.1002/cctc.201300821. Ishii, Y.; Wickramasinghe, N. P.; Chimon, S. A New Approach in 1D and 2D 13 C High-Resolution Solid-State NMR Spectroscopy of Paramagnetic Organometallic Complexes by Very Fast Magic-Angle Spinning. J. Am. Chem. Soc. 2003, 125 (12), 3438–3439. https://doi.org/10.1021/ja0291742. Martínez-Prieto, L. M.; van Leeuwen, P. W. N. M. Ligand Effects in Ruthenium Nanoparticle Catalysis; 2020; pp 407–448. https://doi.org/10.1007/978-3-030-45823-2_12. Zuluaga-Villamil, A.; Mencia, G.; Asensio, J. M.; Fazzini, P.-F.; Baquero, E. A.; Chaudret, B. N-Heterocyclic Carbene-Based Iridium and Ruthenium/Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C–H Bond Activations. Organometallics 2022. https://doi.org/10.1021/acs.organomet.2c00288. Dekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metal‐Organic Framework Coating Effects. ChemPhysChem 2019, 20 (10), 1158–1176. https://doi.org/10.1002/cphc.201900109. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344. Bantreil, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene Ligands and Derived Ruthenium Olefin Metathesis Catalysts. Nat. Protoc. 2011, 6 (1), 69–77. https://doi.org/10.1038/nprot.2010.177. Moore, L. R.; Cooks, S. M.; Anderson, M. S.; Schanz, H.-J.; Griffin, S. T.; Rogers, R. D.; Kirk, M. C.; Shaughnessy, K. H. Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-Ylidene Complexes with Noncoordinating Anionic Substituents. Organometallics 2006, 25 (21), 5151–5158. https://doi.org/10.1021/om060552b. Amiens, C.; Chaudret, B.; Ciuculescu-Pradines, D.; Collière, V.; Fajerwerg, K.; Fau, P.; Kahn, M.; Maisonnat, A.; Soulantica, K.; Philippot, K. Organometallic Approach for the Synthesis of Nanostructures. New J. Chem. 2013, 37 (11), 3374. https://doi.org/10.1039/c3nj00650f. Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem. Int. Ed. 2018, 57 (7), 1758–1784. https://doi.org/10.1002/anie.201704146. Katsnelson, A. Heavy Drugs Draw Heavy Interest from Pharma Backers. Nat. Med. 2013, 19 (6), 656–656. https://doi.org/10.1038/nm0613-656. Atzrodt, J.; Derdau, V. Pd- and Pt-Catalyzed H/D Exchange Methods and Their Application for Internal MS Standard Preparation from a Sanofi-Aventis Perspective. J. Label. Compd. Radiopharm. 2010, 53 (11–12), 674–685. https://doi.org/10.1002/jlcr.1818. Lepron, M.; Daniel-Bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S.; Pieters, G. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2021, 54 (6), 1465–1480. https://doi.org/10.1021/acs.accounts.0c00721. Yang, H.; Hesk, D. Base Metal-Catalyzed Hydrogen Isotope Exchange. J. Label. Compd. Radiopharm. 2020, 63 (6), 296–307. https://doi.org/10.1002/jlcr.3826. Valero, M.; Derdau, V. Highlights of Aliphatic C(Sp3)-H Hydrogen Isotope Exchange Reactions. J. Label. Compd. Radiopharm. 2020, 63 (6), 266–280. https://doi.org/10.1002/jlcr.3783. Sullivan, J. A.; Flanagan, K. A.; Hain, H. Selective H–D Exchange Catalysed by Aqueous Phase and Immobilised Pd Nanoparticles. Catal. Today 2008, 139 (3), 154–160. https://doi.org/10.1016/j.cattod.2008.03.031. Guy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D 2 O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796. Zhao, C.; Gan, W.; Fan, X.; Cai, Z.; Dyson, P.; Kou, Y. Aqueous-Phase Biphasic Dehydroaromatization of Bio-Derived Limonene into p-Cymene by Soluble Pd Nanocluster Catalysts. J. Catal. 2008, 254 (2), 244–250. https://doi.org/10.1016/j.jcat.2008.01.003. Köktürk, M.; Altindag, F.; Nas, M. S.; Calimli, M. H. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol. Trace Elem. Res. 2022, 200 (5), 2455–2467. https://doi.org/10.1007/s12011-021-02821-z. Niakan, M.; Masteri-Farahani, M. Pd–Ni Bimetallic Catalyst Supported on Dendrimer-Functionalized Magnetic Graphene Oxide for Efficient Catalytic Suzuki-Miyaura Coupling Reaction. Tetrahedron 2022, 108, 132655. https://doi.org/10.1016/j.tet.2022.132655. Aalinejad, M.; Pesyan Noroozi, N.; Alamgholiloo, H. Stabilization of Pd–Ni Alloy Nanoparticles on Kryptofix 23 Modified SBA-15 for Catalytic Enhancement. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 634, 127956. https://doi.org/10.1016/j.colsurfa.2021.127956. Niakan, M.; Masteri-Farahani, M. Ultrafine and Well-Dispersed Pd-Ni Bimetallic Catalyst Stabilized by Dendrimer-Grafted Magnetic Graphene Oxide for Selective Reduction of Toxic Nitroarenes under Mild Conditions. J. Hazard. Mater. 2022, 424, 127717. https://doi.org/10.1016/j.jhazmat.2021.127717. Abbasi, F.; Karimi-Sabet, J.; Abbasi, Z.; Ghotbi, C. Conversion of CO into CO2 by High Active and Stable PdNi Nanoparticles Supported on a Metal-Organic Framework. Front. Chem. Sci. Eng. 2021. https://doi.org/10.1007/s11705-021-2111-5. Jansat, S.; Durand, J.; Favier, I.; Malbosc, F.; Pradel, C.; Teuma, E.; Gómez, M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009, 1 (2), 244–246. https://doi.org/10.1002/cctc.200900127. ASM International. ASM Handbook Volume 3: Alloy Phase Diagrams; 1998. Martínez-Prieto, L. M.; Cano, I.; Márquez, A.; Baquero, E. A.; Tricard, S.; Cusinato, L.; del Rosal, I.; Poteau, R.; Coppel, Y.; Philippot, K.; Chaudret, B.; Cámpora, J.; van Leeuwen, P. W. N. M. Zwitterionic Amidinates as Effective Ligands for Platinum Nanoparticle Hydrogenation Catalysts. Chem. Sci. 2017, 8 (4), 2931–2941. https://doi.org/10.1039/C6SC05551F. Moddeman, W. E.; Bowling, W. C.; Carter, D. C.; Grove, D. R. XPS Surface and Bulk Studies of Heat Treated Palladium in the Presence of Hydrogen at 150°C. Surf. Interface Anal. 1988, 11 (6–7), 317–326. https://doi.org/10.1002/sia.740110609. Senō, M.; Tsuchiya, S.; Hidai, M.; Uchida, Y. X-Ray Photoelectron Spectra of Aryl-Nickel Complexes. Bull. Chem. Soc. Jpn. 1976, 49 (5), 1184–1186. https://doi.org/10.1246/bcsj.49.1184. Powell, C. J. Recommended Auger Parameters for 42 Elemental Solids. J. Electron Spectros. Relat. Phenomena 2012, 185 (1–2), 1–3. https://doi.org/10.1016/j.elspec.2011.12.001. Taglang, C.; Martínez-Prieto, L. M.; del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554 Maegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Efficient and Selective Deuteration of Phenylalanine Derivatives Catalyzed by Pd/C. Synlett 2005, No. 5, 0845–0847. https://doi.org/10.1055/s-2005-863730. Šamonina-Kosicka, J.; Kańska, M. Synthesis of Selectively Labeled Histidine and Its Methylderivatives with Deuterium, Tritium, and Carbon-14. J. Label. Compd. Radiopharm. 2013, 56 (6), 317–320. https://doi.org/10.1002/jlcr.3027. Hashimoto, M.; Puteri Tachrim, Z.; Kurokawa, N.; Tokoro, Y. Hydrogen-Deuterium Exchange of Histidine and Histamine with Deuterated Trifluoromethanesulfonic Acid. Heterocycles 2020, 101 (1), 357. https://doi.org/10.3987/COM-19-S(F)28. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
135 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84336/2/1032493037.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/84336/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84336/3/1032493037.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
01df59f67fc693d0ea8464b784f1e000 eb34b1cf90b7e1103fc9dfd26be24b4a 3790c859df89217bab2cdb5c5fa44c5d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089414281789440 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Baquero Velasco, Edwin Arleya0215cba2df4047cc9177f789693255bChaudret, Bruno3c550616eac1bfa0d6bd87042bf18f29Suárez Riaño, Oscar Eduardob3a2ea2e0af1cdbb93191ec688904aa6Estado Sólido y Catálisis AmbientalOscar Suárez-Riaño [0000000190537423]2023-07-27T20:50:16Z2023-07-27T20:50:16Z2022-10-27https://repositorio.unal.edu.co/handle/unal/84336Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasDeuterium-labeled compounds have been of great interest in recent years due to their diverse applications. For instance, they can be used in mechanistic studies, to alter pharmacokinetic profiles, and as internal standards in different techniques coupled to mass spectrometry. Among the different reported methods to obtain those molecules, we can highlight two: Hydrogen Isotope Exchange (HIE) reactions and dearomatization reactions using D2 as reducing agent. These processes can be catalyzed using transition metals both in homogeneous and heterogeneous fashions. In this sense, metal nanoparticles (MNPs) have appeared as a new alternative in catalysis, especially in H–H and C–H bonds activation, due to their great advantages compared to metals in their bulk conformation. Thus, N-Heterocyclic Carbene (NHC) ligands have played an important role as MNPs stabilizers due to their unique and versatile stereoelectronic properties, and their ability to form robust bonds with metals. In this line, there have been few reports about NHC-stabilized MNPs for the deuteration reactions, in which monometallic RuNPs, IrNPs, NiNPs, and bimetallic RuIrNPs and RuPtNPs were employed as nanocatalysts using different lipophilic and water-soluble substrates (amino acids). Their usual selectivities found in the deuteration of the substrates are mainly towards positions close to heteroatoms such as nitrogen. However, aromatic rings reduction still remains a major drawback in H/D exchange reactions, especially when bioactive molecules like amino acids are used. In this work we present the synthesis of monometallic PdNPs, NiNPs, and bimetallic PdNiNPs stabilized by either lipo- or water-soluble NHC ligands. The obtained MNPs were characterized by state-of-the-art techniques such as Transmission Electron Microscopy (TEM), HighResolution TEM coupled to Energy Dispersive X-Ray spectroscopy, Attenuated Total Reflectance Infrared spectroscopy, Solid-State Nuclear Magnetic Resonance, and X-Ray Photoelectron Spectroscopy. These MNPs were found to disperse in both organic and aqueous media because of the stabilization and coordination of adequate NHC ligands to the surface with sizes ranging from 1.8 to 2.9 nm. They were tested as nanocatalysts in dearomatization and HIE reactions over different lipophilic (pyridine, 2-methylpyridine, 2-methoxypyridine, 2- (trifluoromethyl)pyridine, 2-phenylpyridine, 3-phenylpyridine, and 4-phenylpyridine) and watersoluble (L-phenylalanine, L-tyrosine, and L-histidine) substrates. Monometallic PdNPs were active in dearomatization reactions over pyridine and its derivatives, as well as with 2- phenylpyridine and its isomers. Moreover, we found an unexpected inverse kinetic isotope effect in 2-phenylpyridine dearomatization reaction, with better results using D2 compared to H2 when Pd@NHC NPs were used as nanocatalysts. A higher difference was found with NHC-stabilized PdNPs compared to their analogues stabilized by polyvinylpyrrolidone. It suggests that NHC ligands could promote this effect based on the DFT calculations performed. In regard with watersoluble systems, bimetallic PdNiNPs were able to deuterate selectively the b position to the amino acid moiety when L-phenylalanine was used as a substrate. In this case, the aromatic reduction side process was fully suppressed thanks to a synergetic effect of both metals. On the other hand, a change in the deuteration selectivity was achieved when L-tyrosine was used as a substrate. At lower temperatures the b position to the amino acid moiety was deuterated, while at higher temperatures the deuteration took place at the ortho position with respect to the phenol group.Los compuestos deuterados han despertado gran interés en los últimos años debido a sus diversas aplicaciones. Por ejemplo, pueden utilizarse en estudios mecanísticos, para alterar perfiles farmacocinéticos y como patrones internos en diferentes técnicas acopladas a espectrometría de masas. Entre los diferentes métodos reportados para la obtención de estas moléculas, podemos destacar dos: las reacciones de Intercambio Isotópico de Hidrógeno (HIE) y las reacciones de dearomatización utilizando D2 como agente reductor. Estos procesos pueden catalizarse utilizando metales de transición tanto de forma homogénea como heterogénea. En este sentido, las nanopartículas metálicas (MNPs) han aparecido como una nueva alternativa en catálisis, especialmente en la activación de enlaces H–H y C–H, debido a sus grandes ventajas en comparación con los metales en su conformación bulk. Así pues, los ligandos Carbeno NHeterocíclicos (NHC) han desempeñado un papel importante como estabilizadores de MNPs debido a sus propiedades estereoelectrónicas únicas y versátiles, y a su capacidad para formar enlaces robustos con metales. En esta línea, se han publicado pocos reportes sobre las MNPs estabilizadas con NHC para las reacciones de deuteración, en las que se emplearon como nanocatalizadores monometálicos nanopartículas de Ru, Ir y Ni, y bimetálicos de RuIr y RuPt utilizando diferentes sustratos lipofílicos e hidrosolubles (aminoácidos). La selectividad de estos catalizadores en la deuteración principalmente es hacia posiciones cercanas a heteroátomos como el nitrógeno. Sin embargo, la reducción de los anillos aromáticos sigue siendo un gran inconveniente en las reacciones de intercambio H/D, especialmente cuando se utilizan moléculas bioactivas como los aminoácidos. En este trabajo se presenta la síntesis de nanopartículas monométiclas de Pd, Ni y bimetálicas de PdNi estabilizadas por ligandos NHC liposolubles e hidrosolubles. Las nanopartículas obtenidas se caracterizaron mediante las técnicas más avanzadas, como la microscopía electrónica de transmisión (MET), MET de alta resolución acoplado a espectroscopia de rayos X de energía dispersiva, espectroscopia infrarroja de reflectancia total atenuada, resonancia magnética nuclear en estado sólido y espectroscopia fotoelectrónica de rayos X. Se observó que estas MNP se dispersaban en medios orgánicos y acuosos debido a la estabilización y coordinación de los ligandos NHC a la superficie, con tamaños entre 1,8 y 2,9 nm.. Se probaron en reacciones de dearomatización y HIE sobre diferentes sustratos lipofílicos (piridina, 2- metilpiridina, 2-metoxipiridina, 2-(trifluorometil)piridina, 2-fenilpiridina, 3-fenilpiridina y 4- fenilpiridina) e hidrosolubles (L-fenilalanina, L-tirosina y L-histidina). Las PdNPs fueron activas en reacciones de dearomatización sobre piridina y sus derivados, así como con 2-fenilpiridina y sus isómeros. Además, se encontró un inesperado efecto cinético isotópico inverso en la reacción de dearomatización de la 2-fenilpiridina, con mejores resultados utilizando D2 en comparación con H2 cuando se utilizaron Pd@NHC NPs como nanocatalizadores, con una mayor diferencia para Pd@NHC NPs comparado con las PdNPs estabilizadas por polivinilpirrolidona. Esto sugiere que los ligandos NHC podrían promover este efecto basándose en los cálculos DFT realizados. Con respecto a los sistemas solubles en agua, las PdNiNPs fueron capaces de deuterar selectivamente la posición b a la fracción aminoácida cuando se utilizó L-fenilalanina como sustrato, evitando la reducción del anillo aromático, gracias a un efecto sinérgico de ambos metales. Por otro lado, se observó un cambio en la selectividad de la deuteración cuando se utilizó L-tirosina como sustrato. A temperaturas más bajas se deuteró la posición b con respecto a la fracción aminoácida, mientras que a temperaturas más altas la deuteración tuvo lugar en la posición orto con respecto al grupo fenol. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - QuímicaNanocatálisis y Química Organometálica135 páginasapplication/pdfeng540 - Química y ciencias afinesPaladioNíquelNanopartículasIntercambio Isotópico de HidrógenoDearomatizaciónEfecto Cinético Isotópico InversoLigandos Carbeno N-HeterocíclicoPalladiumNickelNanoparticlesHydrogen Isotope ExchangeDearomatizationInverse Kinetic Isotope EffectN-Heterocyclic Carbene LigandsPd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2Nanopartículas basadas en paladio estabilizadas por ligandos carbeno NHeterocíclico: Aplicación catalítica en la transformación de moléculas nitrogenadas con D2Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáGómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111 (8), 4857–4963. https://doi.org/10.1021/cr100436k.Howland, R. H. Deuterated Drugs. J. Psychosoc. Nurs. Ment. Health Serv. 2015, 53 (9). https://doi.org/10.3928/02793695-20150821-55.Stokvis, E.; Rosing, H.; Beijnen, J. H. Stable Isotopically Labeled Internal Standards in Quantitative Bioanalysis Using Liquid Chromatography/Mass Spectrometry: Necessity or Not? Rapid Commun. Mass Spectrom. 2005, 19 (3), 401–407. https://doi.org/10.1002/rcm.1790.Palazzolo, A.; Asensio, J. M.; Bouzouita, D.; Pieters, G.; Tricard, S.; Chaudret, B. Metal Nanoparticles for Hydrogen Isotope Exchange; 2020; pp 281–302. https://doi.org/10.1007/978-3-030-45823-2_9.Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 2019, 62 (11), 5276–5297. https://doi.org/10.1021/acs.jmedchem.8b01808.Schmidt, C. First Deuterated Drug Approved. Nat. Biotechnol. 2017, 35 (6), 493–494. https://doi.org/10.1038/nbt0617-493.Jacques, V.; Czarnik, A. W.; Judge, T. M.; Van der Ploeg, L. H. T.; DeWitt, S. H. Differentiation of Antiinflammatory and Antitumorigenic Properties of Stabilized Enantiomers of Thalidomide Analogs. Proc. Natl. Acad. Sci. 2015, 112 (12). https://doi.org/10.1073/pnas.1417832112.Chen, J.; Mannargudi, B. M.; Xu, L.; Uetrecht, J. Demonstration of the Metabolic Pathway Responsible for Nevirapine-Induced Skin Rash. Chem. Res. Toxicol. 2008, 21 (9), 1862–1870. https://doi.org/10.1021/tx800177k.Phillips, D. H.; Potter, G. A.; Horton, M. N.; Hewker, A.; Crofton-Sleigh, C.; Jarman, M.; Venitt, S. Reduced Genotoxicity of [D5-Ethyl]-Tamoxifen Implicates α-Hydroxylation of the Ethyl Group as a Major Pathway of Tamoxifen Activation to a Liver Carcinogen. Carcinogenesis 1994, 15 (8), 1487–1492. https://doi.org/10.1093/carcin/15.8.1487.Uttamsingh, V.; Gallegos, R.; Liu, J. F.; Harbeson, S. L.; Bridson, G. W.; Cheng, C.; Wells, D. S.; Graham, P. B.; Zelle, R.; Tung, R. Altering Metabolic Profiles of Drugs by Precision Deuteration: Reducing Mechanism-Based Inhibition of CYP2D6 by Paroxetine. J. Pharmacol. Exp. Ther. 2015, 354 (1), 43–54. https://doi.org/10.1124/jpet.115.223768.Yung, C. M.; Skaddan, M. B.; Bergman, R. G. Stoichiometric and Catalytic H/D Incorporation by Cationic Iridium Complexes: A Common Monohydrido-Iridium Intermediate. J. Am. Chem. Soc. 2004, 126 (40), 13033–13043. https://doi.org/10.1021/ja046825g.Heys, R. Investigation of [IrH2(Me2CO)2(PPh3)2]BF4 as a Catalyst of Hydrogen Isotope Exchange of Substrates in Solution. J. Chem. Soc. Chem. Commun. 1992, No. 9, 680. https://doi.org/10.1039/c39920000680.Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M.; Rojahn, P.; Weck, R. Expanded Applicability of Iridium(I) NHC/Phosphine Catalysts in Hydrogen Isotope Exchange Processes with Pharmaceutically-Relevant Heterocycles. Tetrahedron 2015, 71 (13), 1924–1929. https://doi.org/10.1016/j.tet.2015.02.029.Valero, M.; Weck, R.; Güssregen, S.; Atzrodt, J.; Derdau, V. Highly Selective Directed Iridium‐Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew. Chem. Int. Ed. 2018, 57 (27), 8159–8163. https://doi.org/10.1002/anie.201804010.Prechtl, M. H. G.; Hölscher, M.; Ben-David, Y.; Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angew. Chem. Int. Ed. 2007, 46 (13), 2269–2272. https://doi.org/10.1002/anie.200603677.Takahashi, M.; Oshima, K.; Matsubara, S. Ruthenium Catalyzed Deuterium Labelling of α-Carbon in Primary Alcohol and Primary/Secondary Amine in D2O. Chem. Lett. 2005, 34 (2), 192–193. https://doi.org/10.1246/cl.2005.192.Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. Ruthenium-Catalyzed Selective α,β-Deuteration of Bioactive Amines. J. Am. Chem. Soc. 2012, 134 (29), 12239–12244. https://doi.org/10.1021/ja3041338.Pony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-Catalysed Tritiation of Pharmaceuticals. Nature 2016, 529 (7585), 195–199. https://doi.org/10.1038/nature16464.Yang, H.; Zarate, C.; Palmer, W. N.; Rivera, N.; Hesk, D.; Chirik, P. J. Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in N -Heterocycles and Its Application to the Tritiation of Pharmaceuticals. ACS Catal. 2018, 8 (11), 10210–10218. https://doi.org/10.1021/acscatal.8b03717.Palmer, W. N.; Chirik, P. J. Cobalt-Catalyzed Stereoretentive Hydrogen Isotope Exchange of C(Sp3 )–H Bonds. ACS Catal. 2017, 7 (9), 5674–5678. https://doi.org/10.1021/acscatal.7b02051.Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Efficient C−H/C−D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Org. Lett. 2004, 6 (9), 1485–1487. https://doi.org/10.1021/ol0496374.Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Aromatic Ring Favorable and Efficient H–D Exchange Reaction Catalyzed by Pt/C. Tetrahedron Lett. 2005, 46 (41), 6995–6998. https://doi.org/10.1016/j.tetlet.2005.08.067.Lepron, M.; Daniel-bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2020, 54. https://doi.org/10.1021/acs.accounts.0c00721.Ndolomingo, M. J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55 (15), 6195–6241. https://doi.org/10.1007/s10853-020-04415-x.Birch, A. J. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430. https://doi.org/10.1039/jr9440000430.Buchner, E.; Curtius, T. Ueber Die Einwirkung von Diazoessigäther Auf Aromatische Kohlenwasserstoffe. Berichte der Dtsch. Chem. Gesellschaft 1885, 18 (2), 2377–2379. https://doi.org/10.1002/cber.188501802119.Lan, P.; Ye, S.; Banwell, M. G. The Application of Dioxygenase‐Based Chemoenzymatic Processes to the Total Synthesis of Natural Products. Chem. Asian J. 2019, 14 (22), 4001–4012. https://doi.org/10.1002/asia.201900988.Zheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds. Chem 2016, 1 (6), 830–857. https://doi.org/10.1016/j.chempr.2016.11.005.Okumura, M.; Sarlah, D. Arenophile-Mediated Dearomative Functionalization Strategies. Synlett 2018, 29 (07), 845–855. https://doi.org/10.1055/s-0036-1591940.Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52 (21), 6752–6756. https://doi.org/10.1021/jm901241e.Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50 (18), 4068–4093. https://doi.org/10.1002/anie.201006017.Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6 (7), 1589–1603. https://doi.org/10.1016/j.chempr.2020.06.015.Zheng, C.; You, S. L. Advances in Catalytic Asymmetric Dearomatization. ACS Cent. Sci. 2021, 7 (3), 432–444. https://doi.org/10.1021/acscentsci.0c01651.Faisca Phillips, A. M. M. M. Organocatalytic Enantioselective Dearomatization Reactions for the Synthesis of Nitrogen Heterocycles. In Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley, 2020; pp 273–323. https://doi.org/10.1002/9781119708841.ch11.Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47 (21), 7996–8017. https://doi.org/10.1039/c8cs00389k.Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Partial Hydrogenation of Benzene to Cyclohexene. Appl. Surf. Sci. 1997, 121–122, 448–451. https://doi.org/10.1016/S0169-4332(97)00325-5.Wei, Y.; Rao, B.; Cong, X.; Zeng, X. Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(Alkyl)Carbene Rhodium Complexes. J. Am. Chem. Soc. 2015, 137 (29), 9250–9253. https://doi.org/10.1021/jacs.5b05868.Ott, L. S.; Finke, R. G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251 (9–10), 1075–1100. https://doi.org/10.1016/j.ccr.2006.08.016.Polshettiwar, V. Nanomaterials in Catalysis . Edited by Philippe Serp and Karine Philippot. Angew. Chem. Int. Ed. 2013, 52 (43), 11199–11199. https://doi.org/10.1002/anie.201305828.Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; Parak, W. J.; Kanaras, A. G. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119 (8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733.Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871. https://doi.org/10.1039/d0ma00807a.Khan, F. A. Applications of Nanomaterials in Human Health; 2020. https://doi.org/10.1007/978-981-15-4802-4.Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. - Sci. 2019, 31 (2), 257–269. https://doi.org/.odf.Zuluaga Villamil, M. A. Nanopartículas de Ir y Ru / Ir Estabilizadas Con Ligandos Carbeno N- Heterocíclico Para Activación de Enlaces C-H, Universidad Nacional de Colombia, 2020.Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics. J. Am. Chem. Soc. 2001, 123 (31), 7584–7593. https://doi.org/10.1021/ja003961m.Myers, D. Colloids and Colloidal Stability. In Surfaces, Interfaces, and Colloids; John Wiley & Sons, Inc.: New York, USA; pp 214–252. https://doi.org/10.1002/0471234990.ch10.David, M. Applications of Ionic Liquids in Science and Technology; Handy, S., Ed.; InTech, 2011. https://doi.org/10.5772/1769.Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384.Wanzlick, H.-W.; Schönherr, H.-J. Direct Synthesis of a Mercury Salt-Carbene Complex. Angew. Chem. Int. Ed. 1968, 7 (2), 141–142. https://doi.org/10.1002/anie.196801412.Öfele, K. 1,3-Dimethyl-4-Imidazolinyliden-(2)-Pentacarbonylchrom Ein Neuer Übergangsmetall-Carben-Komplex. J. Organomet. Chem. 1968, 12 (3), P42–P43. https://doi.org/10.1016/S0022-328X(00)88691-X.Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113 (1), 361–363. https://doi.org/10.1021/ja00001a054.Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Metal Complexes of N-Heterocyclic Carbenes—A New Structural Principle for Catalysts in Homogeneous Catalysis. Angew. Chem. Int. Ed. 1995, 34 (21), 2371–2374. https://doi.org/10.1002/anie.199523711.Grubbs, R. H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45 (23), 3760–3765. https://doi.org/10.1002/anie.200600680.Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M‒(NHC) (NHC = N-Heterocyclic Carbene) Bond. Coord. Chem. Rev. 2009, 253 (5–6), 687–703. https://doi.org/10.1016/j.ccr.2008.06.006.Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chem. Rev. 2015, 115 (20), 11503–11532. https://doi.org/10.1021/acs.chemrev.5b00220.Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514.Shen, H.; Tian, G.; Xu, Z.; Wang, L.; Wu, Q.; Zhang, Y.; Teo, B. K.; Zheng, N. N-Heterocyclic Carbene Coordinated Metal Nanoparticles and Nanoclusters. Coord. Chem. Rev. 2022, 458, 214425. https://doi.org/10.1016/j.ccr.2022.214425.Koy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces. Nat. Catal. 2021, 4 (5), 352–363. https://doi.org/10.1038/s41929-021-00607-z.An, Y. Y.; Yu, J. G.; Han, Y. F. Recent Advances in the Chemistry of N-Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chinese J. Chem. 2019, 37 (1), 76–87. https://doi.org/10.1002/cjoc.201800450.Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Nanoclusters in Ionic Liquids: Evidence for N-Heterocyclic Carbene Formation from Imidazolium-Based Ionic Liquids Detected by 2H NMR. J. Am. Chem. Soc. 2005, 127 (16), 5758–5759. https://doi.org/10.1021/ja0423320.Valero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC‐Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew. Chem. Int. Ed. 2020, 59 (9), 3517–3522. https://doi.org/10.1002/anie.201914369.Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Philippot, K.; Chaudret, B. Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. Angew. Chem. Int. Ed. 2011, 50 (50), 12080–12084. https://doi.org/10.1002/anie.201106348.Baquero, E. A.; Tricard, S.; Flores, J. C.; de Jesús, E.; Chaudret, B. Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2014, 53 (48), 13220–13224. https://doi.org/10.1002/anie.201407758.Ruiz-Varilla, A. M.; Baquero, E. A.; Chaudret, B.; de Jesús, E.; Gonzalez-Arellano, C.; Flores, J. C. Water-Soluble NHC-Stabilized Platinum Nanoparticles as Recoverable Catalysts for Hydrogenation in Water. Catal. Sci. Technol. 2020, 10 (9), 2874–2881. https://doi.org/10.1039/D0CY00481B.Planellas, M.; Guo, W.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T. Hydrosilylation of Internal Alkynes Catalyzed by Tris- Imidazolium Salt-Stabilized Palladium Nanoparticles. Adv. Synth. Catal. 2014, 356 (1), 179–188. https://doi.org/10.1002/adsc.201300641.Planellas, M.; Pleixats, R.; Shafir, A. Palladium Nanoparticles in Suzuki Cross-Couplings: Tapping into the Potential of Tris-Imidazolium Salts for Nanoparticle Stabilization. Adv. Synth. Catal. 2012, 354 (4), 651–662. https://doi.org/10.1002/adsc.201100574.Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chem. Eur. J. 2017, 23 (54), 13435–13444. https://doi.org/10.1002/chem.201702204.Richter, C.; Schaepe, K.; Glorius, F.; Ravoo, B. J. Tailor-Made N-Heterocyclic Carbenes for Nanoparticle Stabilization. Chem. Commun. 2014, 50 (24), 3204. https://doi.org/10.1039/c4cc00654b.Khol, H.; Reimer, L. Transmission Electron Microscopy, 5th ed.; Springer Series in Optical Sciences; Springer New York: New York, NY, 2008; Vol. 36. https://doi.org/10.1007/978-0-387-40093-8.Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10 (27), 12871–12934. https://doi.org/10.1039/c8nr02278j.Stachowiak, G. W.; Batchelor, A. W.; Stachowiak, G. B. Surface Micrography and Analysis. In Tribology Series; 2004; Vol. 44, pp 165–220. https://doi.org/10.1016/S0167-8922(04)80024-5.Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Springer US: Boston, MA, 2009. https://doi.org/10.1007/978-0-387-76501-3.Titus, D.; James Jebaseelan Samuel, E.; Roopan, S. M. Nanoparticle Characterization Techniques; Elsevier Inc., 2019. https://doi.org/10.1016/b978-0-08-102579-6.00012-5.Romeu, D.; Gomez, A.; Reyes-Gasg, J. Electron Diffraction and HRTEM Structure Analysis of Nanowires. In Nanowires - Fundamental Research; InTech, 2011. https://doi.org/10.5772/18915.Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S. R.; Chougule, M. B.; Tekade, R. K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development; Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-817909-3.00010-8.Grdadolnik, J. ATR-FTIR Spectroscopy: Its Advantages and Limitations. Acta Chim. Slov. 2002, 49 (3), 631–642.Martinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C. NHC-Stabilised Rh Nanoparticles: Surface Study and Application in the Catalytic Hydrogenation of Aromatic Substrates. J. Catal. 2017, 354, 113–127. https://doi.org/10.1016/j.jcat.2017.08.010.Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 2021, 1 (1). https://doi.org/10.1038/s43586-020-00002-1.Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angew. Chem. Int. Ed. 2017, 56 (3), 865–869. https://doi.org/10.1002/anie.201610251.Cano, I.; Martínez-Prieto, L. M.; Fazzini, P. F.; Coppel, Y.; Chaudret, B.; Van Leeuwen, P. W. N. M. Characterization of Secondary Phosphine Oxide Ligands on the Surface of Iridium Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19 (32), 21655–21662. https://doi.org/10.1039/c7cp03439c.Lu, L. T. Water-Dispersible Magnetic Nanoparticles for Biomedical Applications: Synthesis and Characterisation, University of Liverpool, 2011. https://doi.org/10.17638/03062809.Rühling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B. J.; Glorius, F. Modular Bidentate Hybrid NHC-Thioether Ligands for the Stabilization of Palladium Nanoparticles in Various Solvents. Angew. Chem. Int. Ed. 2016, 55 (19), 5856–5860. https://doi.org/10.1002/anie.201508933.Martínez-Prieto, L. M.; Rakers, L.; López-Vinasco, A. M.; Cano, I.; Coppel, Y.; Philippot, K.; Glorius, F.; Chaudret, B.; van Leeuwen, P. W. N. M. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chem. Eur. J. 2017, 23 (52), 12779–12786. https://doi.org/10.1002/chem.201702288.Martínez-Prieto, L. M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51 (2), 376–384. https://doi.org/10.1021/acs.accounts.7b00378.Ranganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd Nanoparticles. Angew. Chem. Int. Ed. 2010, 49 (42), 7786–7789. https://doi.org/10.1002/anie.201002782.Pieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.; Berthet, J.-C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective and Stereospecific Deuteration of Bioactive Aza Compounds by the Use of Ruthenium Nanoparticles. Angew. Chem. Int. Ed. 2014, 53 (1), 230–234. https://doi.org/10.1002/anie.201307930.Taglang, C.; Martínez-Prieto, L. M.; Del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific C-H Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554.Martínez-Prieto, L. M.; Baquero, E. A.; Pieters, G.; Flores, J. C.; De Jesús, E.; Nayral, C.; Delpech, F.; Van Leeuwen, P. W. N. M.; Lippens, G.; Chaudret, B. Monitoring of Nanoparticle Reactivity in Solution: Interaction of l-Lysine and Ru Nanoparticles Probed by Chemical Shift Perturbation Parallels Regioselective H/D Exchange. Chem. Commun. 2017, 53 (43), 5850–5853. https://doi.org/10.1039/c7cc02445b.Palazzolo, A.; Feuillastre, S.; Pfeifer, V.; Garcia‐Argote, S.; Bouzouita, D.; Tricard, S.; Chollet, C.; Marcon, E.; Buisson, D.; Cholet, S.; Fenaille, F.; Lippens, G.; Chaudret, B.; Pieters, G. Efficient Access to Deuterated and Tritiated Nucleobase Pharmaceuticals and Oligonucleotides Using Hydrogen‐Isotope Exchange. Angew. Chem. Int. Ed. 2019, 58 (15), 4891–4895. https://doi.org/10.1002/anie.201813946.Reshi, N. U. D.; Samuelson, A. G. Recent Advances in Soluble Ruthenium(0) Nanocatalysts and Their Reactivity. Appl. Catal. A Gen. 2020, 598, 117561. https://doi.org/10.1016/j.apcata.2020.117561.Bouzouita, D.; Asensio, J. M.; Pfeifer, V.; Palazzolo, A.; Lecante, P.; Pieters, G.; Feuillastre, S.; Tricard, S.; Chaudret, B. Chemoselective H/D Exchange Catalyzed by Nickel Nanoparticles Stabilized by N-Heterocyclic Carbene Ligands. Nanoscale 2020, 12 (29), 15736–15742. https://doi.org/10.1039/d0nr04384b.Singh, A. K.; Xu, Q. Synergistic Catalysis over Bimetallic Alloy Nanoparticles. ChemCatChem 2013, 5 (3), 652–676. https://doi.org/10.1002/cctc.201200591.Bouzouita, D.; Lippens, G.; Baquero, E. A.; Fazzini, P. F.; Pieters, G.; Coppel, Y.; Lecante, P.; Tricard, S.; Martínez-Prieto, L. M.; Chaudret, B. Tuning the Catalytic Activity and Selectivity of Water-Soluble Bimetallic RuPt Nanoparticles by Modifying Their Surface Metal Distribution. Nanoscale 2019, 11 (35), 16544–16552. https://doi.org/10.1039/c9nr04149d.Muetterties, E. L.; Rakowski, M. C.; Hirsekorn, F. J.; Larson, W. D.; Basus, V. J.; Anet, F. A. L. Hydrogenation of Arenes with Discrete Coordination Catalysts. III. Synthesis and Nuclear Magnetic Resonance Spectrum of All-Cis-Cyclohexane-D6. J. Am. Chem. Soc. 1975, 97 (5), 1266–1267. https://doi.org/10.1021/ja00838a064.Eisen, M. S.; Marks, T. J. Supported Organoactinide Complexes as Heterogeneous Catalysts. A Kinetic and Mechanistic Study of Facile Arene Hydrogenation. J. Am. Chem. Soc. 1992, 114 (26), 10358–10368. https://doi.org/10.1021/ja00052a036.Jones, R. A.; Seeberger, M. H. Synthesis of Polymer-Supported Transition Metal Catalysts via Phosphido Linkages: Heterogeneous Catalysts for the Hydrogenation of Aromatic Compounds under Mild Conditions. J. Chem. Soc. Chem. Commun. 1985, No. 6, 373. https://doi.org/10.1039/c39850000373.Kopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122 (6), 6634–6718. https://doi.org/10.1021/acs.chemrev.1c00795.Kuwano, R.; Morioka, R.; Kashiwabara, M.; Kameyama, N. Catalytic Asymmetric Hydrogenation of Naphthalenes. Angew. Chem. Int. Ed. 2012, 51 (17), 4136–4139. https://doi.org/10.1002/anie.201201153.Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science. 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270.Wang, D. S.; Tang, J.; Zhou, Y. G.; Chen, M. W.; Yu, C. Bin; Duan, Y.; Jiang, G. F. Dehydration Triggered Asymmetric Hydrogenation of 3-(α-Hydroxyalkyl)Indoles. Chem. Sci. 2011, 2 (4), 803–806. https://doi.org/10.1039/c0sc00614a.Ranade, V. S.; Consiglio, G.; Prins, R. Functional-Group-Directed Diastereoselective Hydrogenation of Aromatic Compounds. J. Org. Chem. 2000, 65 (4), 1132–1138. https://doi.org/10.1021/jo991604s.Heitbaum, M.; Fröhlich, R.; Glorius, F. Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines. Adv. Synth. Catal. 2010, 352 (2–3), 357–362. https://doi.org/10.1002/adsc.200900763.Giles, R.; Ahn, G.; Jung, K. W. H-D Exchange in Deuterated Trifluoroacetic Acid via Ligand-Directed NHC-Palladium Catalysis: A Powerful Method for Deuteration of Aromatic Ketones, Amides, and Amino Acids. Tetrahedron Lett. 2015, 56 (45), 6231–6235. https://doi.org/10.1016/j.tetlet.2015.09.100.Farizyan, M.; Mondal, A.; Mal, S.; Deufel, F.; van Gemmeren, M. Palladium-Catalyzed Nondirected Late-Stage C–H Deuteration of Arenes. J. Am. Chem. Soc. 2021, 143 (40), 16370–16376. https://doi.org/10.1021/jacs.1c08233.Sajiki, H.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Palladium-Catalyzed Base-Selective H-D Exchange Reaction of Nucleosides in Deuterium Oxide. Synlett 2005, No. 9, 1385–1388. https://doi.org/10.1055/s-2005-868489.Sawama, Y.; Monguchi, Y.; Sajiki, H. Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-HD System. Synlett 2012, 23 (7), 959–972. https://doi.org/10.1055/s-0031-1289696.Guy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D2O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796.Pfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chem. Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043.Lyubimov, S. E.; Zvinchuk, A. A.; Korlyukov, A. A.; Davankov, V. A.; Parenago, O. P. Palladium Nanoparticles in Hypercrosslinked Polystyrene: Synthesis and Application in the Hydrogenation of Arenes. Pet. Chem. 2021, 61 (1), 76–80. https://doi.org/10.1134/S0965544121010084.Wiberg, K. B. The Deuterium Isotope Effect. Chem. Rev. 1955, 55 (4), 713–743. https://doi.org/10.1021/cr50004a004.Westheimer, F. H. The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. Chem. Rev. 1961, 61 (3), 265–273. https://doi.org/10.1021/cr60211a004.Klinman, J. P. A New Model for the Origin of Kinetic Hydrogen Isotope Effects. J. Phys. Org. Chem. 2010, 23 (7), 606–612. https://doi.org/10.1002/poc.1661.Gallego, D.; Baquero, E. A. Recent Advances on Mechanistic Studies on C-H Activation Catalyzed by Base Metals. Open Chem. 2018, 16 (1), 1001–1058. https://doi.org/10.1515/chem-2018-0102.Simmons, E. M.; Hartwig, J. F. On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51 (13), 3066–3072. https://doi.org/10.1002/anie.201107334.Kumar, A.; Gao, C. Homogeneous (De)Hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. https://doi.org/10.1002/cctc.202001404.Rej, S.; Das, A.; Chatani, N. Strategic Evolution in Transition Metal-Catalyzed Directed C–H Bond Activation and Future Directions. Coord. Chem. Rev. 2021, 431, 213683. https://doi.org/10.1016/j.ccr.2020.213683.Jones, W. D. Isotope Effects in C-H Bond Activation Reactions by Transition Metals. Acc. Chem. Res. 2003, 36 (2), 140–146. https://doi.org/10.1021/ar020148i.Bi, Q.; Song, E.; Chen, J.; Riaz, M. S.; Zhu, M.; Liu, J.; Han, Y.-F.; Huang, F. Nano Gold Coupled Black Titania Composites with Enhanced Surface Plasma Properties for Efficient Photocatalytic Alkyne Reduction. Appl. Catal. B Environ. 2022, 309, 121222. https://doi.org/10.1016/j.apcatb.2022.121222.Zhang, A.; Xia, J.; Yao, Q.; Lu, Z. H. Pd–WOx Heterostructures Immobilized by MOFs-Derived Carbon Cage for Formic Acid Dehydrogenation. Appl. Catal. B Environ. 2022, 309, 121278. https://doi.org/10.1016/j.apcatb.2022.121278.Kim, H.; Yang, S.; Hyun Lim, Y.; Lee, J.; Ha, J.-M.; Heui Kim, D. Enhancement in the Metal Efficiency of Ru/TiO2 Catalyst for Guaiacol Hydrogenation via Hydrogen Spillover in the Liquid Phase. J. Catal. 2022, 410, 93–102. https://doi.org/10.1016/j.jcat.2022.04.017.Mollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; Mayoral, Á.; Borja, P.; Mata, J. A. Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega 2018, 3 (11), 15217–15228. https://doi.org/10.1021/acsomega.8b02193.Gayathri, V.; Pentela, N.; Samanta, D. Palladium Nanoparticles Capped by Thermoresponsive N‐heterocyclic Carbene: Two Different Approaches for a Comparative Study. Appl. Organomet. Chem. 2021, 35 (4). https://doi.org/10.1002/aoc.6166.Azad, M.; Rostamizadeh, S.; Estiri, H.; Nouri, F. Ultra‐small and Highly Dispersed Pd Nanoparticles inside the Pores of ZIF‐8: Sustainable Approach to Waste‐minimized Mizoroki–Heck Cross‐coupling Reaction Based on Reusable Heterogeneous Catalyst. Appl. Organomet. Chem. 2019, 33 (7). https://doi.org/10.1002/aoc.4952.Hegde, R. V.; Ong, T.-G.; Ambre, R.; Jadhav, A. H.; Patil, S. A.; Dateer, R. B. Regioselective Direct C2 Arylation of Indole, Benzothiophene and Benzofuran: Utilization of Reusable Pd NPs and NHC-Pd@MNPs Catalyst for C–H Activation Reaction. Catal. Letters 2021, 151 (5), 1397–1405. https://doi.org/10.1007/s10562-020-03390-x.Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science (80-. ). 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270.Wollenburg, M.; Heusler, A.; Bergander, K.; Glorius, F. Trans -Selective and Switchable Arene Hydrogenation of Phenol Derivatives. ACS Catal. 2020, 10 (19), 11365–11370. https://doi.org/10.1021/acscatal.0c03423.Pfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chemi.Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043.Gonzalez-Galvez, D.; Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Chaudret, B.; Philippot, K.; Van Leeuwen, P. W. N. M. NHC-Stabilized Ruthenium Nanoparticles as New Catalysts for the Hydrogenation of Aromatics. Catal. Sci. Technol. 2013, 3 (1), 99–105. https://doi.org/10.1039/c2cy20561k.Lara, P.; Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B. Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem 2014, 6 (1), 87–90. https://doi.org/10.1002/cctc.201300821.Ishii, Y.; Wickramasinghe, N. P.; Chimon, S. A New Approach in 1D and 2D 13 C High-Resolution Solid-State NMR Spectroscopy of Paramagnetic Organometallic Complexes by Very Fast Magic-Angle Spinning. J. Am. Chem. Soc. 2003, 125 (12), 3438–3439. https://doi.org/10.1021/ja0291742.Martínez-Prieto, L. M.; van Leeuwen, P. W. N. M. Ligand Effects in Ruthenium Nanoparticle Catalysis; 2020; pp 407–448. https://doi.org/10.1007/978-3-030-45823-2_12.Zuluaga-Villamil, A.; Mencia, G.; Asensio, J. M.; Fazzini, P.-F.; Baquero, E. A.; Chaudret, B. N-Heterocyclic Carbene-Based Iridium and Ruthenium/Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C–H Bond Activations. Organometallics 2022. https://doi.org/10.1021/acs.organomet.2c00288.Dekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metal‐Organic Framework Coating Effects. ChemPhysChem 2019, 20 (10), 1158–1176. https://doi.org/10.1002/cphc.201900109.Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.Bantreil, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene Ligands and Derived Ruthenium Olefin Metathesis Catalysts. Nat. Protoc. 2011, 6 (1), 69–77. https://doi.org/10.1038/nprot.2010.177.Moore, L. R.; Cooks, S. M.; Anderson, M. S.; Schanz, H.-J.; Griffin, S. T.; Rogers, R. D.; Kirk, M. C.; Shaughnessy, K. H. Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-Ylidene Complexes with Noncoordinating Anionic Substituents. Organometallics 2006, 25 (21), 5151–5158. https://doi.org/10.1021/om060552b.Amiens, C.; Chaudret, B.; Ciuculescu-Pradines, D.; Collière, V.; Fajerwerg, K.; Fau, P.; Kahn, M.; Maisonnat, A.; Soulantica, K.; Philippot, K. Organometallic Approach for the Synthesis of Nanostructures. New J. Chem. 2013, 37 (11), 3374. https://doi.org/10.1039/c3nj00650f.Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem. Int. Ed. 2018, 57 (7), 1758–1784. https://doi.org/10.1002/anie.201704146.Katsnelson, A. Heavy Drugs Draw Heavy Interest from Pharma Backers. Nat. Med. 2013, 19 (6), 656–656. https://doi.org/10.1038/nm0613-656.Atzrodt, J.; Derdau, V. Pd- and Pt-Catalyzed H/D Exchange Methods and Their Application for Internal MS Standard Preparation from a Sanofi-Aventis Perspective. J. Label. Compd. Radiopharm. 2010, 53 (11–12), 674–685. https://doi.org/10.1002/jlcr.1818.Lepron, M.; Daniel-Bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S.; Pieters, G. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2021, 54 (6), 1465–1480. https://doi.org/10.1021/acs.accounts.0c00721.Yang, H.; Hesk, D. Base Metal-Catalyzed Hydrogen Isotope Exchange. J. Label. Compd. Radiopharm. 2020, 63 (6), 296–307. https://doi.org/10.1002/jlcr.3826.Valero, M.; Derdau, V. Highlights of Aliphatic C(Sp3)-H Hydrogen Isotope Exchange Reactions. J. Label. Compd. Radiopharm. 2020, 63 (6), 266–280. https://doi.org/10.1002/jlcr.3783.Sullivan, J. A.; Flanagan, K. A.; Hain, H. Selective H–D Exchange Catalysed by Aqueous Phase and Immobilised Pd Nanoparticles. Catal. Today 2008, 139 (3), 154–160. https://doi.org/10.1016/j.cattod.2008.03.031.Guy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D 2 O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796.Zhao, C.; Gan, W.; Fan, X.; Cai, Z.; Dyson, P.; Kou, Y. Aqueous-Phase Biphasic Dehydroaromatization of Bio-Derived Limonene into p-Cymene by Soluble Pd Nanocluster Catalysts. J. Catal. 2008, 254 (2), 244–250. https://doi.org/10.1016/j.jcat.2008.01.003.Köktürk, M.; Altindag, F.; Nas, M. S.; Calimli, M. H. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol. Trace Elem. Res. 2022, 200 (5), 2455–2467. https://doi.org/10.1007/s12011-021-02821-z.Niakan, M.; Masteri-Farahani, M. Pd–Ni Bimetallic Catalyst Supported on Dendrimer-Functionalized Magnetic Graphene Oxide for Efficient Catalytic Suzuki-Miyaura Coupling Reaction. Tetrahedron 2022, 108, 132655. https://doi.org/10.1016/j.tet.2022.132655.Aalinejad, M.; Pesyan Noroozi, N.; Alamgholiloo, H. Stabilization of Pd–Ni Alloy Nanoparticles on Kryptofix 23 Modified SBA-15 for Catalytic Enhancement. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 634, 127956. https://doi.org/10.1016/j.colsurfa.2021.127956.Niakan, M.; Masteri-Farahani, M. Ultrafine and Well-Dispersed Pd-Ni Bimetallic Catalyst Stabilized by Dendrimer-Grafted Magnetic Graphene Oxide for Selective Reduction of Toxic Nitroarenes under Mild Conditions. J. Hazard. Mater. 2022, 424, 127717. https://doi.org/10.1016/j.jhazmat.2021.127717.Abbasi, F.; Karimi-Sabet, J.; Abbasi, Z.; Ghotbi, C. Conversion of CO into CO2 by High Active and Stable PdNi Nanoparticles Supported on a Metal-Organic Framework. Front. Chem. Sci. Eng. 2021. https://doi.org/10.1007/s11705-021-2111-5.Jansat, S.; Durand, J.; Favier, I.; Malbosc, F.; Pradel, C.; Teuma, E.; Gómez, M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009, 1 (2), 244–246. https://doi.org/10.1002/cctc.200900127.ASM International. ASM Handbook Volume 3: Alloy Phase Diagrams; 1998.Martínez-Prieto, L. M.; Cano, I.; Márquez, A.; Baquero, E. A.; Tricard, S.; Cusinato, L.; del Rosal, I.; Poteau, R.; Coppel, Y.; Philippot, K.; Chaudret, B.; Cámpora, J.; van Leeuwen, P. W. N. M. Zwitterionic Amidinates as Effective Ligands for Platinum Nanoparticle Hydrogenation Catalysts. Chem. Sci. 2017, 8 (4), 2931–2941. https://doi.org/10.1039/C6SC05551F.Moddeman, W. E.; Bowling, W. C.; Carter, D. C.; Grove, D. R. XPS Surface and Bulk Studies of Heat Treated Palladium in the Presence of Hydrogen at 150°C. Surf. Interface Anal. 1988, 11 (6–7), 317–326. https://doi.org/10.1002/sia.740110609.Senō, M.; Tsuchiya, S.; Hidai, M.; Uchida, Y. X-Ray Photoelectron Spectra of Aryl-Nickel Complexes. Bull. Chem. Soc. Jpn. 1976, 49 (5), 1184–1186. https://doi.org/10.1246/bcsj.49.1184.Powell, C. J. Recommended Auger Parameters for 42 Elemental Solids. J. Electron Spectros. Relat. Phenomena 2012, 185 (1–2), 1–3. https://doi.org/10.1016/j.elspec.2011.12.001.Taglang, C.; Martínez-Prieto, L. M.; del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554Maegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Efficient and Selective Deuteration of Phenylalanine Derivatives Catalyzed by Pd/C. Synlett 2005, No. 5, 0845–0847. https://doi.org/10.1055/s-2005-863730.Šamonina-Kosicka, J.; Kańska, M. Synthesis of Selectively Labeled Histidine and Its Methylderivatives with Deuterium, Tritium, and Carbon-14. J. Label. Compd. Radiopharm. 2013, 56 (6), 317–320. https://doi.org/10.1002/jlcr.3027.Hashimoto, M.; Puteri Tachrim, Z.; Kurokawa, N.; Tokoro, Y. Hydrogen-Deuterium Exchange of Histidine and Histamine with Deuterated Trifluoromethanesulfonic Acid. Heterocycles 2020, 101 (1), 357. https://doi.org/10.3987/COM-19-S(F)28.NanoX Graduate School of Research scholarshipProyecto código HERMES 56495EstudiantesInvestigadoresORIGINAL1032493037.2022.pdf1032493037.2022.pdfTesis de Maestría en Químicaapplication/pdf32527507https://repositorio.unal.edu.co/bitstream/unal/84336/2/1032493037.2022.pdf01df59f67fc693d0ea8464b784f1e000MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84336/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1032493037.2022.pdf.jpg1032493037.2022.pdf.jpgGenerated Thumbnailimage/jpeg5254https://repositorio.unal.edu.co/bitstream/unal/84336/3/1032493037.2022.pdf.jpg3790c859df89217bab2cdb5c5fa44c5dMD53unal/84336oai:repositorio.unal.edu.co:unal/843362023-08-12 23:04:01.002Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |