Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia

ilustraciones, graficas

Autores:
Aranguren Quintero, Daniel Felipe
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81751
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81751
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
single-electron transistor
Transistor de electrón único
Universalidad
Temperatura Kondo
Puntos cuánticos
Modelo de Anderson
Grupo de renormalización numérico
Termoelectricidad
Figura térmica de mérito
Eficiencia termoeléctrica
Coeficientes de transporte
Efecto Seebeck
Aproximación atómica
SET
Universality
Kondo Temperature
Quantum Dots
Anderson Model
Numerical Renormalization Group
Atomic Approximation for the Anderson Model
Thermoelectricity
Thermal Figure of Merit
Thermoelectric Efficiency
Transport Coefficients
Seebeck Effect
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_a88e0df4a4ca1be737611bee5e78739b
oai_identifier_str oai:repositorio.unal.edu.co:unal/81751
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
dc.title.translated.eng.fl_str_mv Study of thermoelectric properties in nanostructured systems: possible conditions to optimize efficiency
title Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
spellingShingle Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
530 - Física::539 - Física moderna
single-electron transistor
Transistor de electrón único
Universalidad
Temperatura Kondo
Puntos cuánticos
Modelo de Anderson
Grupo de renormalización numérico
Termoelectricidad
Figura térmica de mérito
Eficiencia termoeléctrica
Coeficientes de transporte
Efecto Seebeck
Aproximación atómica
SET
Universality
Kondo Temperature
Quantum Dots
Anderson Model
Numerical Renormalization Group
Atomic Approximation for the Anderson Model
Thermoelectricity
Thermal Figure of Merit
Thermoelectric Efficiency
Transport Coefficients
Seebeck Effect
title_short Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
title_full Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
title_fullStr Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
title_full_unstemmed Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
title_sort Estudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficiencia
dc.creator.fl_str_mv Aranguren Quintero, Daniel Felipe
dc.contributor.advisor.none.fl_str_mv Franco Peñaloza, Roberto
Ramos Rodriguez, Edwin
dc.contributor.author.none.fl_str_mv Aranguren Quintero, Daniel Felipe
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Sistemas Correlacionados
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
single-electron transistor
Transistor de electrón único
Universalidad
Temperatura Kondo
Puntos cuánticos
Modelo de Anderson
Grupo de renormalización numérico
Termoelectricidad
Figura térmica de mérito
Eficiencia termoeléctrica
Coeficientes de transporte
Efecto Seebeck
Aproximación atómica
SET
Universality
Kondo Temperature
Quantum Dots
Anderson Model
Numerical Renormalization Group
Atomic Approximation for the Anderson Model
Thermoelectricity
Thermal Figure of Merit
Thermoelectric Efficiency
Transport Coefficients
Seebeck Effect
dc.subject.other.eng.fl_str_mv single-electron transistor
dc.subject.other.spa.fl_str_mv Transistor de electrón único
dc.subject.proposal.spa.fl_str_mv Universalidad
Temperatura Kondo
Puntos cuánticos
Modelo de Anderson
Grupo de renormalización numérico
Termoelectricidad
Figura térmica de mérito
Eficiencia termoeléctrica
Coeficientes de transporte
Efecto Seebeck
Aproximación atómica
dc.subject.proposal.none.fl_str_mv SET
dc.subject.proposal.eng.fl_str_mv Universality
Kondo Temperature
Quantum Dots
Anderson Model
Numerical Renormalization Group
Atomic Approximation for the Anderson Model
Thermoelectricity
Thermal Figure of Merit
Thermoelectric Efficiency
Transport Coefficients
Seebeck Effect
description ilustraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-26T13:31:09Z
dc.date.available.none.fl_str_mv 2022-07-26T13:31:09Z
dc.date.issued.none.fl_str_mv 2022-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81751
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81751
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, “Observation of the fano kondo antiresonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. Lett., vol. 95, p. 066801, Aug 2005.
A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijn se, “Thermoelectric characterization of the kondo resonance in nanowire quantum dots,” Phys. Rev. Lett., vol. 121, p. 206801, Nov 2018.
J. He and T. Tritt, “Advances in thermoelectric materials research: Looking back and moving forward,” Science, vol. 357, p. eaak9997, 09 2017.
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, “Nanostructured ther moelectrics: Big efficiency gains from small features,” Advanced Materials, vol. 22, no. 36, pp. 3970–3980, 2010.
Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Progress in Natural Science: Mate rials International, vol. 22, no. 6, pp. 535–549, 2012.
T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices,” Science, vol. 297, no. 5590, pp. 2229–2232, 2002.
J. Parks, A. Champagne, T. Costi, W. Shum, A. Pasupathy, E. Neuscamman, S. Flores Torres, P. Cornaglia, A. Aligia, C. Balseiro, et al., “Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect,” Science, vol. 328, no. 5984, pp. 1370–1373, 2010.
C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal rectifier,” Science, vol. 314, no. 5802, pp. 1121–1124, 2006.
R. Scheibner, H. Buhmann, D. Reuter, M. Kiselev, and L. Molenkamp, “Thermopower of a kondo spin-correlated quantum dot,” Physical review letters, vol. 95, no. 17, p. 176602, 2005.
R. Scheibner, E. Novik, T. Borzenko, M. K¨onig, D. Reuter, A. Wieck, H. Buhmann, and L. Molenkamp, “Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots,” Physical Review B, vol. 75, no. 4, p. 041301, 2007.
O.-P. Saira, M. Meschke, F. Giazotto, A. M. Savin, M. M¨ott¨onen, and J. P. Pekola, “Heat transistor: Demonstration of gate-controlled electronic refrigeration,” Physical review letters, vol. 99, no. 2, p. 027203, 2007.
N. Linden, S. Popescu, and P. Skrzypczyk, “How small can thermal machines be? the smallest possible refrigerator,” Physical review letters, vol. 105, no. 13, p. 130401, 2010.
M. Grobis, I. Rau, R. Potok, H. Shtrikman, and D. Goldhaber-Gordon, “Universal scaling in nonequilibrium transport through a single channel kondo dot,” Physical review letters, vol. 100, no. 24, p. 246601, 2008.
A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, and D. Mahalu, “Spin-1 2 kondo effect in an inas nanowire quantum dot: Unitary limit, conductance scaling, and zeeman splitting,” Physical Review B, vol. 84, no. 24, p. 245316, 2011.
T. Costi and V. Zlati´c, “Thermoelectric transport through strongly correlated quantum dots,” Physical Review B, vol. 81, no. 23, p. 235127, 2010.
M. Yoshida and L. N. d. Oliveira, “Thermoelectric effects in quantum dots,” Physica B: Condensed Matter, vol. 404, no. 19, pp. 3312–3315, 2009.
D. Boese and R. Fazio, “Thermoelectric effects in kondo-correlated quantum dots,” EPL (Europhysics Letters), vol. 56, no. 4, p. 576, 2001.
B. Dong and X. Lei, “Effect of the kondo correlation on the thermopower in a quantum dot,” Journal of Physics: Condensed Matter, vol. 14, no. 45, p. 11747, 2002.
D. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, 1997.
G. S. Nolas, J. Sharp, and H. G. Thermoelectrics, “Basic principles and new materials developments,” in Thermoelectrics, Springer, 2001.
J. Haˇs´ık, E. Tosatti, and R. Marto˚A´ak, “Quantum and classical ripples in graphene,” Physical Review B, Volume 97, Issue 14, id.140301, vol. 97, p. 140301, apr 2018.
J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys,” Progress of Theoretical Physics, vol. 32, pp. 37–49, July 1964.
J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and kondo hamilto nians,” Phys. Rev., vol. 149, pp. 491–492, Sep 1966.
P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.
D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998.
T. A. Costi, A. C. Hewson, and V. Zlatic, “Transport coefficients of the anderson model via the numerical renormalization group,” Journal of Physics: Condensed Matter, vol. 6, p. 2519–2558, Mar 1994.
M. Yoshida, A. C. Seridonio, and L. N. Oliveira, “Universal zero-bias conductance for the single-electron transistor,” Physical Review B, vol. 80, no. 23, p. 235317, 2009.
A. Seridonio, M. Yoshida, and L. Oliveira, “Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot,” Physical Review B, vol. 80, no. 23, p. 235318, 2009.
E. Ramos, R. Franco, J. Silva-Valencia, and M. Figueira, “Thermoelectric transport properties of a t-coupled quantum dot: Atomic approach for the finite u case,” Physica E: Low-dimensional Systems and Nanostructures, vol. 64, pp. 39–44, 2014.
G. Mahan and J. Sofo, “The best thermoelectric,” Proceedings of the National Academy of Sciences, vol. 93, no. 15, pp. 7436–7439, 1996.
D. Goldhaber-Gordon, J. Gores, H. Shtrikman, D. Mahalu, U. Meirav, and M. Kastner, “The kondo effect in a single-electron transistor,” Materials Science and Engineering: B, vol. 84, no. 1, pp. 17 – 21, 2001.
A. Hewson, “The kondo problem to heavy fermions (cambridge university press, cambridge, 1993).”
H. Krishna-Murthy, J. Wilkins, and K. Wilson, “Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case,” Physical Review B, vol. 21, no. 3, p. 1003, 1980
N. Andrei, K. Furuya, and J. Lowenstein, “Solution of the kondo problem,” Reviews of modern physics, vol. 55, no. 2, p. 331, 1983
D. Stradi, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, “General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green’s function,” Physical Review B, vol. 93, no. 15, p. 155302, 2016
A. Seridonio, M. Yoshida, and L. Oliveira, “Thermal dependence of the zero-bias con ductance through a nanostructure,” EPL (Europhysics Letters), vol. 86, no. 6, p. 67006, 2009
D. Goldhaber-Gordon, J. G¨ores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998
L. N. Oliveira, M. Yoshida, and A. C. Seridonio, “Universal conductance for the anderson model,” Journal of Physics: Conference Series, vol. 200, p. 052020, jan 2010
R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, “Ther mopower of a kondo spin-correlated quantum dot,” Phys. Rev. Lett., vol. 95, p. 176602, Oct 2005
E. A. Hoffmann, H. A. Nilsson, J. E. Matthews, N. Nakpathomkun, A. I. Persson, L. Samuelson, and H. Linke, “Measuring temperature gradients over nanometer length scales,” Nano Letters, vol. 9, no. 2, pp. 779–783, 2009
S. F. Svensson, E. A. Hoffmann, N. Nakpathomkun, P. M. Wu, H. Q. Xu, H. A. Nilsson, D. Sánchez, V. Kashcheyevs, and H. Linke, “Nonlinear thermovoltage and thermocurrent in quantum dots,” New Journal of Physics, vol. 15, p. 105011, oct 2013
B. Dutta, D. Majidi, A. García Corral, P. A. Erdman, S. Florens, T. A. Costi, H. Courtois, and C. B. Winkelmann, “Direct probe of the seebeck coefficient in a kondo correlated single-quantum-dot transistor,” Nano Letters, vol. 19, pp 506–511, Jan 2019
T. Lobo, M. Figueira, and M. Foglio, “The atomic approach to the anderson model for the finite u case: application to a quantum dot,” Nanotechnology, vol. 21, no. 27, p. 274007, 2010
E. Ramos, J. Silva-Valencia, R. Franco, and M. Figueira, “The thermoelectric figure of merit for the single electron transistor,” International journal of thermal sciences, vol. 86, pp. 387–393, 2014
A. Takayama, Basic Principle of Photoemission Spectroscopy and Spin Detector, pp. 15– 30. Tokyo: Springer Japan, 2015
S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, “State-to-state exciton dynamics in semiconductor quantum dots,” Phys. Rev. B, vol. 74, p. 235328, Dec 2006
P. Vitushinsky, Theoretical study of the Kondo effect in the quantum dots. Theses, Université Joseph-Fourier - Grenoble I, Nov. 2005
M. Ternes, A. Heinrich, and W.-D. Schneider, “Spectroscopic manifestations of the kondo effect on single atoms,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 21, p. 053001, 02 2009
S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, “Pseudospin-resolved transport spectroscopy of the kondo effect in a double quantum dot,” Phys. Rev. Lett., vol. 110, p. 046604, Jan 2013
J. Yu, S. Shendre, W.-k. Koh, B. Liu, M. Li, S. Hou, C. Hettiarachchi, S. Delikanli, P. Hernandez Martinez, M. D. Birowosuto, H. Wang, T. Sum, H. Demir, and C. Dang, “Electrically control amplified spontaneous emission in colloidal quantum dots,” Science Advances, vol. 5, p. eaav3140, 10 2019
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nature Reviews Materials, vol. 1, no. 9, pp. 1–13, 2016
J. Von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z, vol. 30, pp. 465–467, 1929
G. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Phys. Rev. A, vol. 73, p. 022113, Feb 2006
G. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Physical Review A, vol. 73, no. 2, p. 022113, 2006
C. S. Kim and A. M. Satanin, “Dynamic confinement of electrons in time-dependent quantum structures,” Physical Review B, vol. 58, no. 23, p. 15389, 1998
A. S. C.S Kim, “Dynamic confinement of electrons in time dependent quantum structures.,” Physical Review B., vol. 58, 1998
R. U. Haq, S. S. Bharadwaj, and T. A. Wani, “An explicit method for schrieffer-wolff transformation,” 2019
R. U. Haq and S. S. Bharadwaj, “Schrieffer-wolff transformation of anderson models,” 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 71 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81751/3/1022361870_2022_07.pdf
https://repositorio.unal.edu.co/bitstream/unal/81751/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81751/5/1022361870_2022_07.pdf.jpg
bitstream.checksum.fl_str_mv c3de0684f2d0f68b476b7db53e6de2e4
8153f7789df02f0a4c9e079953658ab2
836d001e1d4a9124b6a653df0f5e9ca1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089654384721920
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Peñaloza, Robertod33e016a778b648b051c60aff4b33eed600Ramos Rodriguez, Edwin17c10c982f6ce02c8be38ea4c96bf654Aranguren Quintero, Daniel Felipecec2773faa30730711e64024b5862f63Grupo de Sistemas Correlacionados2022-07-26T13:31:09Z2022-07-26T13:31:09Z2022-07https://repositorio.unal.edu.co/handle/unal/81751Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl presente trabajo estudia y extiende, mediante argumentos de universalidad, el comportamiento térmico dentro del régimen Kondo, de las distintas propiedades termoeléctricas tales como: La termopotencia, la conductancia eléctrica y la conductancia térmica, dentro de nanoestructuras semiconductoras comprimidas. Aduciendo, a la fuerte evidencia tanto experimental como teórica de condiciones de universalidad para la conductancia eléctrica zero − bias (sin potencial externo aplicado), en función de la temperatura normalizada T∗ = T/TK, con TK actuando como la temperatura de Kondo. Estudiamos, por medio del modelo de impureza de Anderson SIAM, un sistema idealizado compuesto por un punto cuántico inmerso dentro un canal de conducción balístico (hilos cuánticos). Para este sistema, se establece un mapeo lineal sobre el cual, se pueden expresar los coeficientes de transporte termoeléctrico, en términos de la condición (universal) simétrica partícula-hueco, junto a un cambio fase δ producto de los procesos de dispersión cuánticos. Asimismo, bajo el grupo de renormalización numérica (NRG), se calculan los coeficientes termoeléctricos para este sistema, permitiendo así, ilustrar tanto la física implícita en estos procesos, como la validez del mapeo lineal, dentro de un variado rango de temperaturas. De igual modo, se aplicaron los resultados obtenidos, para los coeficientes termoeléctricos en su forma universal, sobre algunos resultados experimentales recientes, asociados a la conductancia eléctrica y el termo-voltaje Vgate dentro de un rango limitado de temperaturas en el régimen Kondo. Logrando con esto, calcular todas las propiedades termoeléctricas derivadas de los mismos, seguido de la obtención, de algunas expresiones analíticas simples, que pueden ser empleadas para predecir, validar y/o ajustar resultados experimentales. Sin embargo, debido a la ausencia de mediciones experimentales, sobre las otras propiedades termoeléctricas dentro de un rango variado de temperaturas, no fue posible examinar la validez de los resultados para las mismas. Por otro lado, empleando las relaciones universales obtenidas para los coeficientes de transporte termoeléctrico (Onsager), junto al parámetro de Mahan-Sofo. Se logra deducir una expresión tal que permite, obtener condiciones que maximizan la figura térmica de mérito multiplicada por la temperatura ZT en función del cambio de fase δ implícito, dentro del régimen Kondo. Así, al evaluar esta expresión sobre el sistema de un único punto cúantico inmerso entre dos hilos cuánticos, se encuentra que, bajo estas condiciones, es físicamente imposible obtener un cambio de fase, que permita maximizar la eficiencia térmica de este tipo de sistemas. De esta forma, se estudia mediante el método de aproximación atómica, un sistema “mejorado” compuesto por dos puntos cuánticos acoplados no interactuantes entre si, pero con fuerte correlación electrónica en cada punto cuántico. En este sistema, variando la energía del primer punto cuántico (el Vgate en sistemas experimentales), mientras se mantiene el segundo punto cuántico en la condición simétrica (simetría-electrón-hueco), se logra encontrar condiciones que replican el cambio de fase δ necesario para optimizar la figura térmica de mérito ZT y por ende, la eficiencia termoeléctrica del sistema. (Texto tomado de la fuente)The present work studies and extends, by universality arguments, the thermal behavior on the Kondo regime, for the different thermoelectric properties like: Thermopower, electrical conductance and thermal conductance. Within compressed semiconductor nanostructures. Adducing, to the strong experimental and theoretical evidence of universality conditions, for the electrical conductance zero − bias (no external potential applied), as a function of the normalized temperature T∗ =T/TK, where TK is the Kondo temperature. Studying, by the single impurity model SIAM, on an idealized system composed of a quantum dot enbedded in a ballistic conduction channel (quantum wires). For this system, we establish a linear mapping for the thermoelectric transport coefficients, allowing expressed in terms of the universal symmetric particle-hole condition, together with a phase shift δ product of the quantum scattering process. Likewise, under the numerical renormalization group (NRG), the thermoelectric coefficients for this system are calculated, thus allowing to illustrate both the physics implicit in these process, as well as the validity of the linear mapping, within a wide range of temperatures. On the same way, applying the thermoelectric coefficients in their universal form, on some recent experimental results, associated with the electrical conductance and the thermo-voltage Vgate on a limited temperature range in the Kondo regime. Achieving with this, calculate all the thermoelectric properties derived from them, followed by some simple analytical fit expressions, which can be used to predict, validate and/or adjust experimental results. However, due to the absence of experimental measurements for others thermoelectric properties within widdly range of temperatures, it was not possible examine the validity of the results for them. By other way, using the universal relationships obtained for the thermoelectric transport coefficients (Onsager), together with the Mahan-Sofo parameter. It is possible to deduce an expression such that it allows obtaining conditions that maximize the thermal figure of merit multiplied by the temperature ZT as a function of the implicit phase shift δ. Thus, when we evaluatate this expression on the system of a single quantum dot immersed between two quantum wires, in the Kondo regime. We found that, under these conditions, it is physically impossible to obtain a phase shift that allows maximizing the thermal efficiency for this type of system. Then, using the atomic approximation method, on a “tuned” system composed of two coupled quantum dots whitout interdot correlation, but strongly correlated in each quantum dot. On which, varying the energy level on the first quantum dot (the Vgate in experimental systems), while maintaining the second quantum dot in the symmetric electron-hole condition. It’s possible find, conditions that replicate the phase shift δ necessary to optimize the thermal figure of merit ZT and therefore, the thermodynamic efficiency of these type systemsMaestríaMagíster en Ciencias - FísicaSistemas nanoestructuradosxiv, 71 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernasingle-electron transistorTransistor de electrón únicoUniversalidadTemperatura KondoPuntos cuánticosModelo de AndersonGrupo de renormalización numéricoTermoelectricidadFigura térmica de méritoEficiencia termoeléctricaCoeficientes de transporteEfecto SeebeckAproximación atómicaSETUniversalityKondo TemperatureQuantum DotsAnderson ModelNumerical Renormalization GroupAtomic Approximation for the Anderson ModelThermoelectricityThermal Figure of MeritThermoelectric EfficiencyTransport CoefficientsSeebeck EffectEstudio de propiedades termoeléctricas en sistemas nanoestructurados: posibles condiciones para optimizar la eficienciaStudy of thermoelectric properties in nanostructured systems: possible conditions to optimize efficiencyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaM. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, “Observation of the fano kondo antiresonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. Lett., vol. 95, p. 066801, Aug 2005.A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijn se, “Thermoelectric characterization of the kondo resonance in nanowire quantum dots,” Phys. Rev. Lett., vol. 121, p. 206801, Nov 2018.J. He and T. Tritt, “Advances in thermoelectric materials research: Looking back and moving forward,” Science, vol. 357, p. eaak9997, 09 2017.C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, “Nanostructured ther moelectrics: Big efficiency gains from small features,” Advanced Materials, vol. 22, no. 36, pp. 3970–3980, 2010.Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Progress in Natural Science: Mate rials International, vol. 22, no. 6, pp. 535–549, 2012.T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum dot superlattice thermoelectric materials and devices,” Science, vol. 297, no. 5590, pp. 2229–2232, 2002.J. Parks, A. Champagne, T. Costi, W. Shum, A. Pasupathy, E. Neuscamman, S. Flores Torres, P. Cornaglia, A. Aligia, C. Balseiro, et al., “Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect,” Science, vol. 328, no. 5984, pp. 1370–1373, 2010.C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal rectifier,” Science, vol. 314, no. 5802, pp. 1121–1124, 2006.R. Scheibner, H. Buhmann, D. Reuter, M. Kiselev, and L. Molenkamp, “Thermopower of a kondo spin-correlated quantum dot,” Physical review letters, vol. 95, no. 17, p. 176602, 2005.R. Scheibner, E. Novik, T. Borzenko, M. K¨onig, D. Reuter, A. Wieck, H. Buhmann, and L. Molenkamp, “Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots,” Physical Review B, vol. 75, no. 4, p. 041301, 2007.O.-P. Saira, M. Meschke, F. Giazotto, A. M. Savin, M. M¨ott¨onen, and J. P. Pekola, “Heat transistor: Demonstration of gate-controlled electronic refrigeration,” Physical review letters, vol. 99, no. 2, p. 027203, 2007.N. Linden, S. Popescu, and P. Skrzypczyk, “How small can thermal machines be? the smallest possible refrigerator,” Physical review letters, vol. 105, no. 13, p. 130401, 2010.M. Grobis, I. Rau, R. Potok, H. Shtrikman, and D. Goldhaber-Gordon, “Universal scaling in nonequilibrium transport through a single channel kondo dot,” Physical review letters, vol. 100, no. 24, p. 246601, 2008.A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, and D. Mahalu, “Spin-1 2 kondo effect in an inas nanowire quantum dot: Unitary limit, conductance scaling, and zeeman splitting,” Physical Review B, vol. 84, no. 24, p. 245316, 2011.T. Costi and V. Zlati´c, “Thermoelectric transport through strongly correlated quantum dots,” Physical Review B, vol. 81, no. 23, p. 235127, 2010.M. Yoshida and L. N. d. Oliveira, “Thermoelectric effects in quantum dots,” Physica B: Condensed Matter, vol. 404, no. 19, pp. 3312–3315, 2009.D. Boese and R. Fazio, “Thermoelectric effects in kondo-correlated quantum dots,” EPL (Europhysics Letters), vol. 56, no. 4, p. 576, 2001.B. Dong and X. Lei, “Effect of the kondo correlation on the thermopower in a quantum dot,” Journal of Physics: Condensed Matter, vol. 14, no. 45, p. 11747, 2002.D. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, 1997.G. S. Nolas, J. Sharp, and H. G. Thermoelectrics, “Basic principles and new materials developments,” in Thermoelectrics, Springer, 2001.J. Haˇs´ık, E. Tosatti, and R. Marto˚A´ak, “Quantum and classical ripples in graphene,” Physical Review B, Volume 97, Issue 14, id.140301, vol. 97, p. 140301, apr 2018.J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys,” Progress of Theoretical Physics, vol. 32, pp. 37–49, July 1964.J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and kondo hamilto nians,” Phys. Rev., vol. 149, pp. 491–492, Sep 1966.P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998.T. A. Costi, A. C. Hewson, and V. Zlatic, “Transport coefficients of the anderson model via the numerical renormalization group,” Journal of Physics: Condensed Matter, vol. 6, p. 2519–2558, Mar 1994.M. Yoshida, A. C. Seridonio, and L. N. Oliveira, “Universal zero-bias conductance for the single-electron transistor,” Physical Review B, vol. 80, no. 23, p. 235317, 2009.A. Seridonio, M. Yoshida, and L. Oliveira, “Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot,” Physical Review B, vol. 80, no. 23, p. 235318, 2009.E. Ramos, R. Franco, J. Silva-Valencia, and M. Figueira, “Thermoelectric transport properties of a t-coupled quantum dot: Atomic approach for the finite u case,” Physica E: Low-dimensional Systems and Nanostructures, vol. 64, pp. 39–44, 2014.G. Mahan and J. Sofo, “The best thermoelectric,” Proceedings of the National Academy of Sciences, vol. 93, no. 15, pp. 7436–7439, 1996.D. Goldhaber-Gordon, J. Gores, H. Shtrikman, D. Mahalu, U. Meirav, and M. Kastner, “The kondo effect in a single-electron transistor,” Materials Science and Engineering: B, vol. 84, no. 1, pp. 17 – 21, 2001.A. Hewson, “The kondo problem to heavy fermions (cambridge university press, cambridge, 1993).”H. Krishna-Murthy, J. Wilkins, and K. Wilson, “Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case,” Physical Review B, vol. 21, no. 3, p. 1003, 1980N. Andrei, K. Furuya, and J. Lowenstein, “Solution of the kondo problem,” Reviews of modern physics, vol. 55, no. 2, p. 331, 1983D. Stradi, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, “General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green’s function,” Physical Review B, vol. 93, no. 15, p. 155302, 2016A. Seridonio, M. Yoshida, and L. Oliveira, “Thermal dependence of the zero-bias con ductance through a nanostructure,” EPL (Europhysics Letters), vol. 86, no. 6, p. 67006, 2009D. Goldhaber-Gordon, J. G¨ores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Mei rav, “From the kondo regime to the mixed-valence regime in a single-electron transistor,” Phys. Rev. Lett., vol. 81, pp. 5225–5228, Dec 1998L. N. Oliveira, M. Yoshida, and A. C. Seridonio, “Universal conductance for the anderson model,” Journal of Physics: Conference Series, vol. 200, p. 052020, jan 2010R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, “Ther mopower of a kondo spin-correlated quantum dot,” Phys. Rev. Lett., vol. 95, p. 176602, Oct 2005E. A. Hoffmann, H. A. Nilsson, J. E. Matthews, N. Nakpathomkun, A. I. Persson, L. Samuelson, and H. Linke, “Measuring temperature gradients over nanometer length scales,” Nano Letters, vol. 9, no. 2, pp. 779–783, 2009S. F. Svensson, E. A. Hoffmann, N. Nakpathomkun, P. M. Wu, H. Q. Xu, H. A. Nilsson, D. Sánchez, V. Kashcheyevs, and H. Linke, “Nonlinear thermovoltage and thermocurrent in quantum dots,” New Journal of Physics, vol. 15, p. 105011, oct 2013B. Dutta, D. Majidi, A. García Corral, P. A. Erdman, S. Florens, T. A. Costi, H. Courtois, and C. B. Winkelmann, “Direct probe of the seebeck coefficient in a kondo correlated single-quantum-dot transistor,” Nano Letters, vol. 19, pp 506–511, Jan 2019T. Lobo, M. Figueira, and M. Foglio, “The atomic approach to the anderson model for the finite u case: application to a quantum dot,” Nanotechnology, vol. 21, no. 27, p. 274007, 2010E. Ramos, J. Silva-Valencia, R. Franco, and M. Figueira, “The thermoelectric figure of merit for the single electron transistor,” International journal of thermal sciences, vol. 86, pp. 387–393, 2014A. Takayama, Basic Principle of Photoemission Spectroscopy and Spin Detector, pp. 15– 30. Tokyo: Springer Japan, 2015S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, “State-to-state exciton dynamics in semiconductor quantum dots,” Phys. Rev. B, vol. 74, p. 235328, Dec 2006P. Vitushinsky, Theoretical study of the Kondo effect in the quantum dots. Theses, Université Joseph-Fourier - Grenoble I, Nov. 2005M. Ternes, A. Heinrich, and W.-D. Schneider, “Spectroscopic manifestations of the kondo effect on single atoms,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 21, p. 053001, 02 2009S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, “Pseudospin-resolved transport spectroscopy of the kondo effect in a double quantum dot,” Phys. Rev. Lett., vol. 110, p. 046604, Jan 2013J. Yu, S. Shendre, W.-k. Koh, B. Liu, M. Li, S. Hou, C. Hettiarachchi, S. Delikanli, P. Hernandez Martinez, M. D. Birowosuto, H. Wang, T. Sum, H. Demir, and C. Dang, “Electrically control amplified spontaneous emission in colloidal quantum dots,” Science Advances, vol. 5, p. eaav3140, 10 2019C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nature Reviews Materials, vol. 1, no. 9, pp. 1–13, 2016J. Von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z, vol. 30, pp. 465–467, 1929G. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Phys. Rev. A, vol. 73, p. 022113, Feb 2006G. Ordonez, K. Na, and S. Kim, “Bound states in the continuum in quantum-dot pairs,” Physical Review A, vol. 73, no. 2, p. 022113, 2006C. S. Kim and A. M. Satanin, “Dynamic confinement of electrons in time-dependent quantum structures,” Physical Review B, vol. 58, no. 23, p. 15389, 1998A. S. C.S Kim, “Dynamic confinement of electrons in time dependent quantum structures.,” Physical Review B., vol. 58, 1998R. U. Haq, S. S. Bharadwaj, and T. A. Wani, “An explicit method for schrieffer-wolff transformation,” 2019R. U. Haq and S. S. Bharadwaj, “Schrieffer-wolff transformation of anderson models,” 2018EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1022361870_2022_07.pdf1022361870_2022_07.pdfTesis de Maestría en Ciencias - Físicasapplication/pdf5375732https://repositorio.unal.edu.co/bitstream/unal/81751/3/1022361870_2022_07.pdfc3de0684f2d0f68b476b7db53e6de2e4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81751/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1022361870_2022_07.pdf.jpg1022361870_2022_07.pdf.jpgGenerated Thumbnailimage/jpeg4458https://repositorio.unal.edu.co/bitstream/unal/81751/5/1022361870_2022_07.pdf.jpg836d001e1d4a9124b6a653df0f5e9ca1MD55unal/81751oai:repositorio.unal.edu.co:unal/817512024-08-07 23:10:37.074Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK