Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios

ilustraciones, diagramas

Autores:
Lozano Vargas, Germán Alberto
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84773
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84773
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Uso de la tierra -planificación
Espacios abiertos
Land use
Open spaces
Variabilidad espacial
Variabilidad inherente
Escala de fluctuación
Sabana de Bogotá
Teoría de los campos aleatorios
Modelo y función de autocorrelación
Análisis de tendencias
Spatial variability
Inherent variability
Autocorrelation function
Bogota savanna
Random field theory
Trend analysis
Scale of fluctuation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a84d4cab80fbd8517bb0101fb6fba42e
oai_identifier_str oai:repositorio.unal.edu.co:unal/84773
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
dc.title.translated.eng.fl_str_mv Analysis of the inherent variability of some soil profiles of the Bogota Savanna based on random field theory
title Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
spellingShingle Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Uso de la tierra -planificación
Espacios abiertos
Land use
Open spaces
Variabilidad espacial
Variabilidad inherente
Escala de fluctuación
Sabana de Bogotá
Teoría de los campos aleatorios
Modelo y función de autocorrelación
Análisis de tendencias
Spatial variability
Inherent variability
Autocorrelation function
Bogota savanna
Random field theory
Trend analysis
Scale of fluctuation
title_short Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
title_full Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
title_fullStr Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
title_full_unstemmed Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
title_sort Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios
dc.creator.fl_str_mv Lozano Vargas, Germán Alberto
dc.contributor.advisor.none.fl_str_mv Barbosa Cruz, Edgard Robert
Tapias Camacho, Mauricio Alberto
dc.contributor.author.none.fl_str_mv Lozano Vargas, Germán Alberto
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Uso de la tierra -planificación
Espacios abiertos
Land use
Open spaces
Variabilidad espacial
Variabilidad inherente
Escala de fluctuación
Sabana de Bogotá
Teoría de los campos aleatorios
Modelo y función de autocorrelación
Análisis de tendencias
Spatial variability
Inherent variability
Autocorrelation function
Bogota savanna
Random field theory
Trend analysis
Scale of fluctuation
dc.subject.lemb.spa.fl_str_mv Uso de la tierra -planificación
Espacios abiertos
dc.subject.lemb.end.fl_str_mv Land use
dc.subject.lemb.eng.fl_str_mv Open spaces
dc.subject.proposal.spa.fl_str_mv Variabilidad espacial
Variabilidad inherente
Escala de fluctuación
Sabana de Bogotá
Teoría de los campos aleatorios
Modelo y función de autocorrelación
Análisis de tendencias
dc.subject.proposal.eng.fl_str_mv Spatial variability
Inherent variability
Autocorrelation function
Bogota savanna
Random field theory
Trend analysis
Scale of fluctuation
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-05T20:15:42Z
dc.date.available.none.fl_str_mv 2023-10-05T20:15:42Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84773
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84773
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agterberg, F.B. (1970). Autocorrelation Functions in Geology. In Geostatistics – a colloquium: Proceedings of a Colloquium on Geostatistics. University of Kansas.
Alonso, E. E., Krizek, R.J (1975). Stochastic formulation of soil properties. Proceedings of the 2nd International Conference on Applications of Statistics and Probability to Soil and Structural Engineering, Vol.1, Aachen Germany, pp. 9 – 32.
Baecher, G.B. (1987). Statistical Analysis of Geotechnical Data. Report No. GL-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, VA.
Barón, M. (2021). Calibración del ensayo CPTu para el depósito lacustre de Bogotá. Maestría en Geotecnia. Universidad Nacional de Colombia. Sede Bogotá.
Biswas, A., Si, B. C. (2011). Application of continuous wavelet transform in examining soil spatial variation: A review. In Mathematical Geosciences (Vol. 43, Issue 3, pp. 379–396).
Stuedlein, A. & Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.
Brockwell, P.J., Davis, R.A. (1991). ITSM: An interactive time series modeling package for the PC, Springer-Verlag, New York, 104 p.
Bury, K.V. (1975). Statistical Models in Applied Science. John Wiley, Hoboken Campanella, R.G., Wickremesinghe, D.S., Robertson, P.K. (1987). Statistical Treatment of Cone Penetrometer Test Data. Proceedings of the 5th International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver, BC, Canada, Vol. 2, 1011-1019.
Cami, B. and Javankhoshdel, S. (2020). ARMA Models to Measure the Scale of Fluctuation from CPT Data. The Open Construction and Building Technology Journal, 14(1), pp. 230–236.
Cao, Z. and Wang, Y. (2014). Bayesian model comparison and selection of spatial correlation functions for soil parameters, Structural Safety, 49, pp. 10–17
Chenari, R. Seyedeyn M.S., Faraji, S. and Kenarsari, A. (2012). Investigation on inherent variability of soil properties from cone penetration test.
Chiles, J. P., y Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty (Vol. 497). John Wiley y Sons
Dasaka, S.M. and Zhang, L.M. (2012). Spatial variability of in situ weathered soil. Geotechnique, 62(5).
Degroot, D.J., Baecher, G.B. (1993). Estimating Autocovariances of In-Situ Soil Properties. Journal of Geotechnical Engineering, Vol. 119, No. 1, 147-166.
Diaz, J., Vanmarcke E.H. (1974). Settlement of Structures on Shallow Foundations: A Probabilistic Analysis. Massachusetts Institute of Technology. Department of Civil Engineering, National Science Foundation (U.S.), United States.
Díaz Méndez, L. A., Manrique, Á. (2020). Caracterización de la variabilidad espacial de la resistencia al corte no drenado del depósito lacustre “A” ubicado en la escuela colombiana de ingeniería Julio Garavito. Maestría en Ingeniería Civil. Escuela Colombiana Julio Garavito. Bogotá, Colombia.
Douglas, B.J. and Olsen, R.S. (1981). Soil Classification Using Electric Cone Penetrometer. Proceedings of Conference on Cone Penetration Testing and Experience, St. Louis, 209-227.
Fenton, G.A. (1999a). Estimation for Stochastic Soil Models. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 470-485.
Fenton, G.A. (1999b). Random Field Modeling of CPT Data. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 486-498.
Fenton, G.A., Vanmarcke, E.H. (2003). Random Field Characterization of NGES Data. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication. No. 121, 61-78.
FOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones. Fondo de Prevención y Atención de Emergencias. Bogotá, Colombia.
Garzón, L. X., Caicedo, B., Sánchez-Silva, M., y Phoon, K. K. (2015). Physical modelling of soil uncertainty. International Journal of Physical Modelling in Geotechnics, 15(1), 19–34.
Garzón, L. X. (2019). Physical modeling of soil spatial variability: application to shallow foundation. Doctoral dissertation, Universidad de los Andes, Bogotá, Colombia.
Hegazy, Y.A. and Mayne, Paul and Rouhani, Shahrok (1996). Geostatistical assessment of spatial variability in piezocone tests. Geotechnical Special Publication. 254-267.
INGEOMINAS y Universidad de los Andes (1997). Microzonificacion sismica de santa fe de Bogotá. Bogotá, Colombia.
Jaksa, M. B. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff Overconsolidated Clay. Ph.D. thesis. The university of Adelaide, Australia.
Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401
Kulatilake, P.H., Ghosh, A. (1988). An Investigation Into Accuracy of Spatial Variation Estimation Using Static Cone Penetrometer Data. Proceedings of the 1st International Symposium on Penetration Testing (ISOPT-1). Orlando, FL, U.S.A.
Kulatilake, P.H. (1991). Discussion on “Probabilistic Potentiometric Surface Mapping.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1458-1459.
Kulatilake, P.H., UM, J.G. (2003). Spatial Variation of Cone Tip Resistance for the Clay Site at Texas AyM University. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 41-60.
Kulhawy, F.H., Birgisson, B., Grigoriu, M.D. (1992). Reliability-Based Foundation Design for Transmission Line Structures: Transformation Models for In-Situ Tests. Report No. EL-5507(4), Electric Power Research Institute, Palo Alto, CA.
Lacasse, S., Nadim, F. (1996). Uncertainties in Characterizing Soil Properties. Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, U.S.A., 49-75.
Li, K. S. and Lee, I. K. (1991). The Assessment of Geotechnical Safety. In Selected Topics in Geotechnical Engineering - Lumb Volume, Li, K. S. (ed.), Dept. Civil and Maritime Engrg., UNSW, ADFA, Canberra, pp. 195-229.
Li, K.S. (1991). Probabilistic Potentiometric Surface Mapping. Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1457-1458.
Spacagna, L., de Fouquet, C., y Russo, G. (2015). Interpretation of CPTU Tests with Statistical and Geostatistical Methods.
Lumb. P. (1966). The variability of Natural Soils. Canadian Geotechnical Journal. 3. 74-97.
Lumb, P. and Holt, J. K. (1968). The Undrained Shear Strength of a Soft Marine Clay from Hong Kong. Geotechnique, Vol. 18, pp. 25-36.
Lumb, P. (1971). Precision and Accuracy of Soil Tests. Proceedings of the 1st International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Hong Kong, 329-345.
Lumb, P. (1974). Application of Statistics in Soil Mechanics, chapter 3 in Soil Mechanics – New Horizons, I.K. Lee (ed.), Newnes-Butterworths, London, U.K., 44-111.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V. (2016). Toward more realistic projections of soil carbondynamics by Earth system models, Global Biogeochem. Cy., 30,40–56.
Matheron, G. (1963). Principles of Geostatistics. Economic Geology, 58, 1246-1266.
Montenegro, A. (1989). La Función de Autocorrelación y su Empleo en el Análisis de Series de Tiempo. Revista Desarrollo Y Sociedad, 1(23), 117–132.
Moya, J., y Rodriguez, J. (1987). El Subsuelo de Bogotá y los Problemas de Cimentaciones The Subsoil of Bogotá and the Problems in Foundations. VIII CPSIF-PCSMFE, Cartagena, Colombia.
NSR-10. (marzo de 2010). Reglamento Colombiano de Construcción Sismo Resistente. Bogotá D.C.
Onyejekwe, S. (2012). Characterization of soil variability for reliability-based design. Doctoral Dissertations. Missouri University of Science and Technology
Onyejekwe, S. and Ge, L. (2013). Scale of Fluctuation of Geotechnical Parameters Estimated from CPTu and Laboratory Test Data. American Society of Civil Engineers (ASCE).
Parra L. J. (2019). Spatial geotechnical modeling of a lacustrine deposit using functional geostatistical análisis of CPTu tests. Maestría en Geotecnia. Universidad Nacional de Colombia, Sede Bogotá
Pieczyńska-Kozłowska, J. M. (2015). Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems, Studia Geotechnica et Mechanica, 37(4), pp. 95–103
Phoon, K.K., Kulhawy, F.H. (1999). Characterization of Geotechnical Variability. Canadian Geotechnical Journal, Vol. 36, No. 4, 612-624.
Phoon, K.-K., Asce, M., Quek, Ser-Tong, and An, P. (2003). Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics. Journal of Geotechnical and Geoenvironmental Engineering. Vol 129 Issue 7.
Púa, L. M. (2020). Reproducing the inherent variability of soils using a three-dimensional printer. International Journal of Physical Modelling in Geotechnics. Universidad de los Andes, Colombia.
Ripley, B.D. (1981). Spatial statistics, John Wiley y Sons, New York.
Robertson, P.K., Campanella, R.G. (1983). Interpretation of Cone Penetration Tests Sands and Clays. Canadian Geotechnical Journal, 20, 719-745.
Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986) Use of Piezometer Cone Data. Proceedings of American Society of Civil Engineers, ASCE, In-Situ 86 Specialty Conference, Blacksburg, 23-25 June 1986, 1263-1280.
Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158.
Robertson, P.K. (2010). Soil behaviour type from the CPT: an update. Geotechnical News, 28(1), 35-41.
Robertson, P. K. (2013). The James K. Mitchell Lecture: Interpretation of in-situ tests some insights. En C. y. Mayne (Ed.), Geotechnical and Geophysical Site Characterization 4. London: Taylor y Francis Group.
Rodriguez, J. A., y Azuaje, J. G. (2018). Determinación de perfiles de velocidad de ondas de corte en la Ciudad de Bogotá, a partir de registros acelerográficos. XVI Congreso Colombiano de Geotecnia y IV Seminario Internacional de ingeniería Sismo Geotécnica. Paipa, Colombia
Schnaid, F. (2009). In Situ Testing in Geomechanics: The Main Tests. Taylor and Francis.
Shinozuka, M. and Deodatis, G. (1991). Simulation of Stochastic Processes by Spectral Representation. American Society of Mechanical Engineers.
Song, Y., Shen, Z., Wu, P., y Viscarra Rossel, R. A. (2021). Wavelet geographically weighted regression for spectroscopic modelling of soil properties. Scientific Reports, 11(1).
Soulié, M. (1983). Geostatistical applications in geotechnics. In Geostatistics for natural resources characterisation, Part 2, NATO ASI Series: 703-730.
Spry, M.J., Kulhawy, F.H., Grigoriu, M.D. (1988). Reliability-Based Foundation Design for Transmission Line Structures: Geotechnical Site Characterization Strategy. Electric Power Research Institute Rpt. EL-5507(1), EPRI, Palo Alto.
Stuedlein, A., Kramer, S.,Arduino, P & Holtz, R. (2012). Geotechnical Characterization and Random Field Modeling of Desiccated Clay. Journal of Geotechnical and Geoenvironmental Engineering
Stuedlein, A. and Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.
Sulikowska, I., Mlynarek, Z. and Tschuschke, W. (1991). Measurement Errors inEvaluating Relative Density of Postflotation Sediment Using the CPT Method. Proc. 6th Int. Conf. Statistics and Probability in Soil and Struct. Eng., Mexico City, pp. 676-682.
Torres, V., Vandenberghe, J., Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, 127–148.
Uzielli, M. (2004). Variability of stress-normalized CPT parameters and application to seismic liquefaction initiation analysis. Ph.D. thesis. University of Florence, Italy.
Uzielli, M., Vannucchi, G. and Phoon, K.K. (2005). Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique No. 1, 55.
Uzielli, Marco y Lacasse, Suzanne y Nadim, Farrokh y Phoon, Kok-Kwang. (2006). Soil variability analysis for geotechnical practice. 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. 3. 1653-1752.
Vanmarcke, E. H. (1977a). Probabilistic Modeling of Soil Profiles. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1227-1246.
Vanmarcke, E. H. (1977b). Reliability of Earth Slopes. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1247-1265.
Vanmarcke, E.H. (1978). Probabilistic Characterization of Soil Profiles. In Site Characterization and Exploration. Proceedings of the ASCE Specialty Workshop, Nothwestern University, Evanston, Illinois, 199-216.
Vanmarcke, E. H. (1983). Random Fields: Analysis and Synthesis, M.I.T. Press, Cambridge, Mass., 382 p.
Vanmarcke, E. H. (1984). Random Fields: New Concepts and Engineering Applications. Proc. of 4th ASCE Specialty Conf. on Probabilistic Mechanics and Structural Reliability, ASCE, Berkeley, California, pp. 7-17.
Vivatrat, V. (1978). Cone Penetration in Clays, Doctoral Dissertation, MIT, Massachussettes, USA.
Webster, R. y Beckett, P.H.T. (1968). Quality and Usefulness of Soil Maps. Nature, 219: 680-682.
Wickremesinghe, Damika Sampath. (1989). Statistical Characterization of Soil Profiles Using in Situ Tests. Retrospective Theses and Dissertations, 1919-2007. T, University of British Columbia.
Wickremesinghe D.S. and Campanella, R.G. (1991). Statistical methods of soil layer boundary location using the cone penetration test. Proc.: 6th Int. Conf. on Application of Statistics and Probability in Civil Engineering, pp. 636-644.
Wickremesinghe D.S. and Campanella, R.G. (1993). Scale of Fluctuation as a Descriptor of Soil Variability. Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering, Canberra, Australia, February 10-12, 1993, ed. K.S. Li y S.-C. Lo, Balkema, Rotterdam, 233-239.
Wu, T.H. (2003). Variations in Clay Deposits of Chicago. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 13-28.
Xiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R. A., Davis, K. J., Li, L. (2019). Predominant control of soil properties in storage-discharge relationship and threshold behavior in catchments derived from contrasting lithologies. Water Resources Research. U.S.A.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxvii, 220 + Anexos( )
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Bogotá
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84773/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84773/19/1024509332.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/3/ANEXO%20A%20Recopilaci%c3%b3n%20de%20sondeos.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/4/ANEXO%20B%20Registros%20de%20exploraci%c3%b3n.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/5/ANEXO%20C%20Perfiles%20de%20datos%20crudos.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/6/ANEXO%20D%20Funci%c3%b3n%20autocorrelaci%c3%b3n%20ancho%20de%20ventana.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/7/ANEXO%20E%20Semivariogramas.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/8/ANEXO%20F%20Suavizado%20de%20datos.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/9/ANEXO%20G%20Unidades%20homog%c3%a9neas%20de%20suelo.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/10/ANEXO%20H%20Perfiles%20de%20unidades%20homog%c3%a9neas%20de%20suelo.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/11/ANEXO%20I%20An%c3%a1lisis%20de%20tendencias.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/12/ANEXO%20J%20Escala%20de%20fluctuaci%c3%b3n%20m%c3%a9todo%20AMA%20y%20l%c3%admite%20de%20Bartlett.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/13/ANEXO%20K%20Estad%c3%adstico%20de%20Bartlett%20modificado.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/14/ANEXO%20L%20Escala%20de%20fluctuaci%c3%b3n.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/15/ANEXO%20M%20DATOS%20DE%20UNIDADES%20HOMOG%c3%89NEAS%20DE%20SUELO.pdf
https://repositorio.unal.edu.co/bitstream/unal/84773/16/ANEXO%20N%20Tipo%20de%20comportamiento%20del%20suelo.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/17/ANEXO%20O%20An%c3%a1lisis%20estad%c3%adstico%20de%20resultados.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/18/ANEXO%20P%20C%c3%b3digos%20en%20Python.rar
https://repositorio.unal.edu.co/bitstream/unal/84773/20/1024509332.2023.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84773/21/ANEXO%20A%20Recopilaci%c3%b3n%20de%20sondeos.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84773/22/ANEXO%20C%20Perfiles%20de%20datos%20crudos.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84773/23/ANEXO%20D%20Funci%c3%b3n%20autocorrelaci%c3%b3n%20ancho%20de%20ventana.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84773/24/ANEXO%20G%20Unidades%20homog%c3%a9neas%20de%20suelo.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/84773/25/ANEXO%20M%20DATOS%20DE%20UNIDADES%20HOMOG%c3%89NEAS%20DE%20SUELO.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e9b814f581f4f98356d45d58e93254a3
6484514366f5872940c5767df3fda19e
4c0189fa22cb8be8347d4977480ec3f2
146043fcbed6cd1c5a8cdb42e94addf3
42df587f1aad7c43ba2d0819c7996526
95ea40de7135702a9e1a35c2941487fc
8d5ffb780e1db9fa0f49cbcfd99370b5
4bb54b802d071fd01a1ea215ac25ac1e
772639250c44c67d578c1a2103be90ae
d9a36ded83229ca195c0d8f2f64fe636
dadeef3200bc701aeadcecdd17f5a366
55f9997fa08093c848df16cf5f2e1c5e
07e1e30fc3f87a1011074638aea707d7
47d4931b07ec96e946f949f654e1695e
cda866cf55564d1eaa167c620e75b928
3bfa17151ab7352d347005f068520b10
0c3fe3c788c25c163d611d5d204227e4
73c16062d5f34c0783ccd2f4d4a1538a
9ccbdb02bb8c43b14fcb9462474f9615
c9901c8ef97b851c928bd526ec4c350e
4fd227017cbec687b2a838fcf6dee36d
ff131dcebad1fb5072cdc64319710959
17c3061a7321873fd46626211a7bee71
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090032449847296
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barbosa Cruz, Edgard Robertdac4c2e6acf210f1a8a8bc41ceddd170Tapias Camacho, Mauricio Albertoa5e78c45e55469191484a108aae2e0e9Lozano Vargas, Germán Alberto94f1bb0d4750f8698dad61fa01acd4f52023-10-05T20:15:42Z2023-10-05T20:15:42Z2023https://repositorio.unal.edu.co/handle/unal/84773Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa variación espacial de las propiedades medidas de los suelos se debe principalmente a tres causas: la variabilidad inherente del suelo, los errores en la medición y la incertidumbre en la transformación de los datos. El presente trabajo fue enfocado en la variabilidad espacial inherente del suelo. Para estimar esta variabilidad en algunos suelos de la Sabana de Bogotá, fue necesario recolectar y analizar datos continuos de algunas de las zonas geotécnicas existentes en Bogotá, Colombia. Uno de los ensayos in situ que permite la estimación de la variabilidad, debido a la continuidad de sus registros, es el ensayo de penetración con cono (CPT), y por esta razón se recopilaron 487 sondeos de este tipo. Mediante métodos estadísticos como el coeficiente de correlación intraclase CCI, el estadístico T y el estadístico D² se definieron unidades homogéneas de suelo (UHS) para los tres datos de salida del ensayo CPT: la resistencia por punta, la resistencia por fuste y la presión de poros. Cada UHS fue sometida a un análisis de regresión que permitió obtener la línea de tendencia óptima. A partir de los residuales generados del análisis de tendencias y por medio de la teoría de los campos aleatorios, fue posible calcular la función de autocorrelación, generar modelos de autocorrelación y posteriormente estimar la escala de fluctuación de los datos de CPT, mediante la aplicación de los métodos más usuales publicados en la literatura geotécnica. La estacionariedad de cada una de las UHS fue comprobada por medio del estadístico de Bartlett modificado y su validez fue confirmada mediante el ensayo Tau de Kendall y mediante la prueba de rachas. Se definió que la escala de fluctuación de la resistencia por punta, la resistencia por fuste y la presión de poros de CPT para algunos suelos de la Sabana de Bogotá está en un rango entre 0.10 m y 0.40 m. (Texto tomado de la fuente)The spatial variation of soil properties is mainly due to three causes: inherent soil variability, errors in data measurement, and uncertainty in data transformation. This study focused on the inherent spatial variability of soil. To estimate this variability in some soils of the Bogota Savanna (Colombia), continuous data from some of the Bogotá’s geotechnical zones were collected and assessed. One of the tests that allows the estimation of variability, due to the continuity of its records, is the cone penetration test (CPT). In consequence, 487 CPT soundings were collected. Homogeneous soil units (UHS) were defined for the output CPT data: tip resistance, sleeve friction, and pore pressure, based on statistical method such as the intraclass correlation coefficient CCI, the statistic T, and the statistic D². Employing regression analysis, the optimal trendline for each UHS was obtained. From the residuals generated from the trend analysis, using the Random Field Theory, and applying the most common methods published in geotechnical literature, it was possible to calculate the autocorrelation function, generate autocorrelation models, and subsequently estimate the scale of fluctuation of CPT data. The stationarity of each UHS was verified using the modified Bartlett statistic, and their validity was confirmed by the Kendall Tau test and by the runs test. It was determined that the scale of fluctuation of CPT tip resistance, sleeve friction, and pore pressure for some soils of the Bogota Savanna ranges from 0.10 m to 0.40 m.MaestríaMagíster en Ingeniería - GeotecniaModelación y análisis en geotecniaxxvii, 220 + Anexos( )application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilUso de la tierra -planificaciónEspacios abiertosLand useOpen spacesVariabilidad espacialVariabilidad inherenteEscala de fluctuaciónSabana de BogotáTeoría de los campos aleatoriosModelo y función de autocorrelaciónAnálisis de tendenciasSpatial variabilityInherent variabilityAutocorrelation functionBogota savannaRandom field theoryTrend analysisScale of fluctuationAnálisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatoriosAnalysis of the inherent variability of some soil profiles of the Bogota Savanna based on random field theoryTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_b1a7d7d4d402bcceTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaAgterberg, F.B. (1970). Autocorrelation Functions in Geology. In Geostatistics – a colloquium: Proceedings of a Colloquium on Geostatistics. University of Kansas.Alonso, E. E., Krizek, R.J (1975). Stochastic formulation of soil properties. Proceedings of the 2nd International Conference on Applications of Statistics and Probability to Soil and Structural Engineering, Vol.1, Aachen Germany, pp. 9 – 32.Baecher, G.B. (1987). Statistical Analysis of Geotechnical Data. Report No. GL-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, VA.Barón, M. (2021). Calibración del ensayo CPTu para el depósito lacustre de Bogotá. Maestría en Geotecnia. Universidad Nacional de Colombia. Sede Bogotá.Biswas, A., Si, B. C. (2011). Application of continuous wavelet transform in examining soil spatial variation: A review. In Mathematical Geosciences (Vol. 43, Issue 3, pp. 379–396).Stuedlein, A. & Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.Brockwell, P.J., Davis, R.A. (1991). ITSM: An interactive time series modeling package for the PC, Springer-Verlag, New York, 104 p.Bury, K.V. (1975). Statistical Models in Applied Science. John Wiley, Hoboken Campanella, R.G., Wickremesinghe, D.S., Robertson, P.K. (1987). Statistical Treatment of Cone Penetrometer Test Data. Proceedings of the 5th International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver, BC, Canada, Vol. 2, 1011-1019.Cami, B. and Javankhoshdel, S. (2020). ARMA Models to Measure the Scale of Fluctuation from CPT Data. The Open Construction and Building Technology Journal, 14(1), pp. 230–236.Cao, Z. and Wang, Y. (2014). Bayesian model comparison and selection of spatial correlation functions for soil parameters, Structural Safety, 49, pp. 10–17Chenari, R. Seyedeyn M.S., Faraji, S. and Kenarsari, A. (2012). Investigation on inherent variability of soil properties from cone penetration test.Chiles, J. P., y Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty (Vol. 497). John Wiley y SonsDasaka, S.M. and Zhang, L.M. (2012). Spatial variability of in situ weathered soil. Geotechnique, 62(5).Degroot, D.J., Baecher, G.B. (1993). Estimating Autocovariances of In-Situ Soil Properties. Journal of Geotechnical Engineering, Vol. 119, No. 1, 147-166.Diaz, J., Vanmarcke E.H. (1974). Settlement of Structures on Shallow Foundations: A Probabilistic Analysis. Massachusetts Institute of Technology. Department of Civil Engineering, National Science Foundation (U.S.), United States.Díaz Méndez, L. A., Manrique, Á. (2020). Caracterización de la variabilidad espacial de la resistencia al corte no drenado del depósito lacustre “A” ubicado en la escuela colombiana de ingeniería Julio Garavito. Maestría en Ingeniería Civil. Escuela Colombiana Julio Garavito. Bogotá, Colombia.Douglas, B.J. and Olsen, R.S. (1981). Soil Classification Using Electric Cone Penetrometer. Proceedings of Conference on Cone Penetration Testing and Experience, St. Louis, 209-227.Fenton, G.A. (1999a). Estimation for Stochastic Soil Models. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 470-485.Fenton, G.A. (1999b). Random Field Modeling of CPT Data. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 486-498.Fenton, G.A., Vanmarcke, E.H. (2003). Random Field Characterization of NGES Data. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication. No. 121, 61-78.FOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones. Fondo de Prevención y Atención de Emergencias. Bogotá, Colombia.Garzón, L. X., Caicedo, B., Sánchez-Silva, M., y Phoon, K. K. (2015). Physical modelling of soil uncertainty. International Journal of Physical Modelling in Geotechnics, 15(1), 19–34.Garzón, L. X. (2019). Physical modeling of soil spatial variability: application to shallow foundation. Doctoral dissertation, Universidad de los Andes, Bogotá, Colombia.Hegazy, Y.A. and Mayne, Paul and Rouhani, Shahrok (1996). Geostatistical assessment of spatial variability in piezocone tests. Geotechnical Special Publication. 254-267.INGEOMINAS y Universidad de los Andes (1997). Microzonificacion sismica de santa fe de Bogotá. Bogotá, Colombia.Jaksa, M. B. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff Overconsolidated Clay. Ph.D. thesis. The university of Adelaide, Australia.Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401Kulatilake, P.H., Ghosh, A. (1988). An Investigation Into Accuracy of Spatial Variation Estimation Using Static Cone Penetrometer Data. Proceedings of the 1st International Symposium on Penetration Testing (ISOPT-1). Orlando, FL, U.S.A.Kulatilake, P.H. (1991). Discussion on “Probabilistic Potentiometric Surface Mapping.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1458-1459.Kulatilake, P.H., UM, J.G. (2003). Spatial Variation of Cone Tip Resistance for the Clay Site at Texas AyM University. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 41-60.Kulhawy, F.H., Birgisson, B., Grigoriu, M.D. (1992). Reliability-Based Foundation Design for Transmission Line Structures: Transformation Models for In-Situ Tests. Report No. EL-5507(4), Electric Power Research Institute, Palo Alto, CA.Lacasse, S., Nadim, F. (1996). Uncertainties in Characterizing Soil Properties. Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, U.S.A., 49-75.Li, K. S. and Lee, I. K. (1991). The Assessment of Geotechnical Safety. In Selected Topics in Geotechnical Engineering - Lumb Volume, Li, K. S. (ed.), Dept. Civil and Maritime Engrg., UNSW, ADFA, Canberra, pp. 195-229.Li, K.S. (1991). Probabilistic Potentiometric Surface Mapping. Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1457-1458.Spacagna, L., de Fouquet, C., y Russo, G. (2015). Interpretation of CPTU Tests with Statistical and Geostatistical Methods.Lumb. P. (1966). The variability of Natural Soils. Canadian Geotechnical Journal. 3. 74-97.Lumb, P. and Holt, J. K. (1968). The Undrained Shear Strength of a Soft Marine Clay from Hong Kong. Geotechnique, Vol. 18, pp. 25-36.Lumb, P. (1971). Precision and Accuracy of Soil Tests. Proceedings of the 1st International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Hong Kong, 329-345.Lumb, P. (1974). Application of Statistics in Soil Mechanics, chapter 3 in Soil Mechanics – New Horizons, I.K. Lee (ed.), Newnes-Butterworths, London, U.K., 44-111.Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V. (2016). Toward more realistic projections of soil carbondynamics by Earth system models, Global Biogeochem. Cy., 30,40–56.Matheron, G. (1963). Principles of Geostatistics. Economic Geology, 58, 1246-1266.Montenegro, A. (1989). La Función de Autocorrelación y su Empleo en el Análisis de Series de Tiempo. Revista Desarrollo Y Sociedad, 1(23), 117–132.Moya, J., y Rodriguez, J. (1987). El Subsuelo de Bogotá y los Problemas de Cimentaciones The Subsoil of Bogotá and the Problems in Foundations. VIII CPSIF-PCSMFE, Cartagena, Colombia.NSR-10. (marzo de 2010). Reglamento Colombiano de Construcción Sismo Resistente. Bogotá D.C.Onyejekwe, S. (2012). Characterization of soil variability for reliability-based design. Doctoral Dissertations. Missouri University of Science and TechnologyOnyejekwe, S. and Ge, L. (2013). Scale of Fluctuation of Geotechnical Parameters Estimated from CPTu and Laboratory Test Data. American Society of Civil Engineers (ASCE).Parra L. J. (2019). Spatial geotechnical modeling of a lacustrine deposit using functional geostatistical análisis of CPTu tests. Maestría en Geotecnia. Universidad Nacional de Colombia, Sede BogotáPieczyńska-Kozłowska, J. M. (2015). Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems, Studia Geotechnica et Mechanica, 37(4), pp. 95–103Phoon, K.K., Kulhawy, F.H. (1999). Characterization of Geotechnical Variability. Canadian Geotechnical Journal, Vol. 36, No. 4, 612-624.Phoon, K.-K., Asce, M., Quek, Ser-Tong, and An, P. (2003). Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics. Journal of Geotechnical and Geoenvironmental Engineering. Vol 129 Issue 7.Púa, L. M. (2020). Reproducing the inherent variability of soils using a three-dimensional printer. International Journal of Physical Modelling in Geotechnics. Universidad de los Andes, Colombia.Ripley, B.D. (1981). Spatial statistics, John Wiley y Sons, New York.Robertson, P.K., Campanella, R.G. (1983). Interpretation of Cone Penetration Tests Sands and Clays. Canadian Geotechnical Journal, 20, 719-745.Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986) Use of Piezometer Cone Data. Proceedings of American Society of Civil Engineers, ASCE, In-Situ 86 Specialty Conference, Blacksburg, 23-25 June 1986, 1263-1280.Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158.Robertson, P.K. (2010). Soil behaviour type from the CPT: an update. Geotechnical News, 28(1), 35-41.Robertson, P. K. (2013). The James K. Mitchell Lecture: Interpretation of in-situ tests some insights. En C. y. Mayne (Ed.), Geotechnical and Geophysical Site Characterization 4. London: Taylor y Francis Group.Rodriguez, J. A., y Azuaje, J. G. (2018). Determinación de perfiles de velocidad de ondas de corte en la Ciudad de Bogotá, a partir de registros acelerográficos. XVI Congreso Colombiano de Geotecnia y IV Seminario Internacional de ingeniería Sismo Geotécnica. Paipa, ColombiaSchnaid, F. (2009). In Situ Testing in Geomechanics: The Main Tests. Taylor and Francis.Shinozuka, M. and Deodatis, G. (1991). Simulation of Stochastic Processes by Spectral Representation. American Society of Mechanical Engineers.Song, Y., Shen, Z., Wu, P., y Viscarra Rossel, R. A. (2021). Wavelet geographically weighted regression for spectroscopic modelling of soil properties. Scientific Reports, 11(1).Soulié, M. (1983). Geostatistical applications in geotechnics. In Geostatistics for natural resources characterisation, Part 2, NATO ASI Series: 703-730.Spry, M.J., Kulhawy, F.H., Grigoriu, M.D. (1988). Reliability-Based Foundation Design for Transmission Line Structures: Geotechnical Site Characterization Strategy. Electric Power Research Institute Rpt. EL-5507(1), EPRI, Palo Alto.Stuedlein, A., Kramer, S.,Arduino, P & Holtz, R. (2012). Geotechnical Characterization and Random Field Modeling of Desiccated Clay. Journal of Geotechnical and Geoenvironmental EngineeringStuedlein, A. and Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.Sulikowska, I., Mlynarek, Z. and Tschuschke, W. (1991). Measurement Errors inEvaluating Relative Density of Postflotation Sediment Using the CPT Method. Proc. 6th Int. Conf. Statistics and Probability in Soil and Struct. Eng., Mexico City, pp. 676-682.Torres, V., Vandenberghe, J., Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, 127–148.Uzielli, M. (2004). Variability of stress-normalized CPT parameters and application to seismic liquefaction initiation analysis. Ph.D. thesis. University of Florence, Italy.Uzielli, M., Vannucchi, G. and Phoon, K.K. (2005). Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique No. 1, 55.Uzielli, Marco y Lacasse, Suzanne y Nadim, Farrokh y Phoon, Kok-Kwang. (2006). Soil variability analysis for geotechnical practice. 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. 3. 1653-1752.Vanmarcke, E. H. (1977a). Probabilistic Modeling of Soil Profiles. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1227-1246.Vanmarcke, E. H. (1977b). Reliability of Earth Slopes. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1247-1265.Vanmarcke, E.H. (1978). Probabilistic Characterization of Soil Profiles. In Site Characterization and Exploration. Proceedings of the ASCE Specialty Workshop, Nothwestern University, Evanston, Illinois, 199-216.Vanmarcke, E. H. (1983). Random Fields: Analysis and Synthesis, M.I.T. Press, Cambridge, Mass., 382 p.Vanmarcke, E. H. (1984). Random Fields: New Concepts and Engineering Applications. Proc. of 4th ASCE Specialty Conf. on Probabilistic Mechanics and Structural Reliability, ASCE, Berkeley, California, pp. 7-17.Vivatrat, V. (1978). Cone Penetration in Clays, Doctoral Dissertation, MIT, Massachussettes, USA.Webster, R. y Beckett, P.H.T. (1968). Quality and Usefulness of Soil Maps. Nature, 219: 680-682.Wickremesinghe, Damika Sampath. (1989). Statistical Characterization of Soil Profiles Using in Situ Tests. Retrospective Theses and Dissertations, 1919-2007. T, University of British Columbia.Wickremesinghe D.S. and Campanella, R.G. (1991). Statistical methods of soil layer boundary location using the cone penetration test. Proc.: 6th Int. Conf. on Application of Statistics and Probability in Civil Engineering, pp. 636-644.Wickremesinghe D.S. and Campanella, R.G. (1993). Scale of Fluctuation as a Descriptor of Soil Variability. Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering, Canberra, Australia, February 10-12, 1993, ed. K.S. Li y S.-C. Lo, Balkema, Rotterdam, 233-239.Wu, T.H. (2003). Variations in Clay Deposits of Chicago. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 13-28.Xiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R. A., Davis, K. J., Li, L. (2019). Predominant control of soil properties in storage-discharge relationship and threshold behavior in catchments derived from contrasting lithologies. Water Resources Research. U.S.A.BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84773/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024509332.2023.pdf1024509332.2023.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf9954192https://repositorio.unal.edu.co/bitstream/unal/84773/19/1024509332.2023.pdfe9b814f581f4f98356d45d58e93254a3MD519ANEXO A Recopilación de sondeos.pdfANEXO A Recopilación de sondeos.pdfAnexo A. Recopilación de sondeosapplication/pdf940909https://repositorio.unal.edu.co/bitstream/unal/84773/3/ANEXO%20A%20Recopilaci%c3%b3n%20de%20sondeos.pdf6484514366f5872940c5767df3fda19eMD53ANEXO B Registros de exploración.rarANEXO B Registros de exploración.rarAnexo B. Registros de exploraciónapplication/octet-stream2554760808https://repositorio.unal.edu.co/bitstream/unal/84773/4/ANEXO%20B%20Registros%20de%20exploraci%c3%b3n.rar4c0189fa22cb8be8347d4977480ec3f2MD54ANEXO C Perfiles de datos crudos.pdfANEXO C Perfiles de datos crudos.pdfAnexo C. Perfiles de datos crudosapplication/pdf18242850https://repositorio.unal.edu.co/bitstream/unal/84773/5/ANEXO%20C%20Perfiles%20de%20datos%20crudos.pdf146043fcbed6cd1c5a8cdb42e94addf3MD55ANEXO D Función autocorrelación ancho de ventana.pdfANEXO D Función autocorrelación ancho de ventana.pdfAnexo D. Función autocorrelación ancho de ventanaapplication/pdf14487196https://repositorio.unal.edu.co/bitstream/unal/84773/6/ANEXO%20D%20Funci%c3%b3n%20autocorrelaci%c3%b3n%20ancho%20de%20ventana.pdf42df587f1aad7c43ba2d0819c7996526MD56ANEXO E Semivariogramas.rarANEXO E Semivariogramas.rarAnexo E. Semivariogramasapplication/octet-stream14005656https://repositorio.unal.edu.co/bitstream/unal/84773/7/ANEXO%20E%20Semivariogramas.rar95ea40de7135702a9e1a35c2941487fcMD57ANEXO F Suavizado de datos.rarANEXO F Suavizado de datos.rarAnexo F. Suavizado de datosapplication/octet-stream85154676https://repositorio.unal.edu.co/bitstream/unal/84773/8/ANEXO%20F%20Suavizado%20de%20datos.rar8d5ffb780e1db9fa0f49cbcfd99370b5MD58ANEXO G Unidades homogéneas de suelo.pdfANEXO G Unidades homogéneas de suelo.pdfAnexo G. Unidades homogéneas de sueloapplication/pdf2009775https://repositorio.unal.edu.co/bitstream/unal/84773/9/ANEXO%20G%20Unidades%20homog%c3%a9neas%20de%20suelo.pdf4bb54b802d071fd01a1ea215ac25ac1eMD59ANEXO H Perfiles de unidades homogéneas de suelo.rarANEXO H Perfiles de unidades homogéneas de suelo.rarAnexo H. Perfiles de unidades homogéneas de sueloapplication/octet-stream100212195https://repositorio.unal.edu.co/bitstream/unal/84773/10/ANEXO%20H%20Perfiles%20de%20unidades%20homog%c3%a9neas%20de%20suelo.rar772639250c44c67d578c1a2103be90aeMD510ANEXO I Análisis de tendencias.rarANEXO I Análisis de tendencias.rarAnexo I Análisis de tendenciasapplication/octet-stream403541854https://repositorio.unal.edu.co/bitstream/unal/84773/11/ANEXO%20I%20An%c3%a1lisis%20de%20tendencias.rard9a36ded83229ca195c0d8f2f64fe636MD511ANEXO J Escala de fluctuación método AMA y límite de Bartlett.rarANEXO J Escala de fluctuación método AMA y límite de Bartlett.rarAnexo J. Escala de fluctuación método AMA y límite de Bartlettapplication/octet-stream517225546https://repositorio.unal.edu.co/bitstream/unal/84773/12/ANEXO%20J%20Escala%20de%20fluctuaci%c3%b3n%20m%c3%a9todo%20AMA%20y%20l%c3%admite%20de%20Bartlett.rardadeef3200bc701aeadcecdd17f5a366MD512ANEXO K Estadístico de Bartlett modificado.rarANEXO K Estadístico de Bartlett modificado.rarAnexo K. Estadístico de Bartlett modificadoapplication/octet-stream197391519https://repositorio.unal.edu.co/bitstream/unal/84773/13/ANEXO%20K%20Estad%c3%adstico%20de%20Bartlett%20modificado.rar55f9997fa08093c848df16cf5f2e1c5eMD513ANEXO L Escala de fluctuación.rarANEXO L Escala de fluctuación.rarAnexo L. Escala de fluctuaciónapplication/octet-stream103252690https://repositorio.unal.edu.co/bitstream/unal/84773/14/ANEXO%20L%20Escala%20de%20fluctuaci%c3%b3n.rar07e1e30fc3f87a1011074638aea707d7MD514ANEXO M DATOS DE UNIDADES HOMOGÉNEAS DE SUELO.pdfANEXO M DATOS DE UNIDADES HOMOGÉNEAS DE SUELO.pdfAnexo M. Datos de unidades homogéneas de sueloapplication/pdf6975287https://repositorio.unal.edu.co/bitstream/unal/84773/15/ANEXO%20M%20DATOS%20DE%20UNIDADES%20HOMOG%c3%89NEAS%20DE%20SUELO.pdf47d4931b07ec96e946f949f654e1695eMD515ANEXO N Tipo de comportamiento del suelo.rarANEXO N Tipo de comportamiento del suelo.rarAnexo N. Tipo de comportamiento del sueloapplication/octet-stream109444626https://repositorio.unal.edu.co/bitstream/unal/84773/16/ANEXO%20N%20Tipo%20de%20comportamiento%20del%20suelo.rarcda866cf55564d1eaa167c620e75b928MD516ANEXO O Análisis estadístico de resultados.rarANEXO O Análisis estadístico de resultados.rarAnexo O. Análisis estadístico de resultadosapplication/octet-stream17336208https://repositorio.unal.edu.co/bitstream/unal/84773/17/ANEXO%20O%20An%c3%a1lisis%20estad%c3%adstico%20de%20resultados.rar3bfa17151ab7352d347005f068520b10MD517ANEXO P Códigos en Python.rarANEXO P Códigos en Python.rarAnexo P. Códigos en Pythonapplication/octet-stream24024118https://repositorio.unal.edu.co/bitstream/unal/84773/18/ANEXO%20P%20C%c3%b3digos%20en%20Python.rar0c3fe3c788c25c163d611d5d204227e4MD518THUMBNAIL1024509332.2023.pdf.jpg1024509332.2023.pdf.jpgGenerated Thumbnailimage/jpeg5757https://repositorio.unal.edu.co/bitstream/unal/84773/20/1024509332.2023.pdf.jpg73c16062d5f34c0783ccd2f4d4a1538aMD520ANEXO A Recopilación de sondeos.pdf.jpgANEXO A Recopilación de sondeos.pdf.jpgGenerated Thumbnailimage/jpeg5033https://repositorio.unal.edu.co/bitstream/unal/84773/21/ANEXO%20A%20Recopilaci%c3%b3n%20de%20sondeos.pdf.jpg9ccbdb02bb8c43b14fcb9462474f9615MD521ANEXO C Perfiles de datos crudos.pdf.jpgANEXO C Perfiles de datos crudos.pdf.jpgGenerated Thumbnailimage/jpeg5661https://repositorio.unal.edu.co/bitstream/unal/84773/22/ANEXO%20C%20Perfiles%20de%20datos%20crudos.pdf.jpgc9901c8ef97b851c928bd526ec4c350eMD522ANEXO D Función autocorrelación ancho de ventana.pdf.jpgANEXO D Función autocorrelación ancho de ventana.pdf.jpgGenerated Thumbnailimage/jpeg5354https://repositorio.unal.edu.co/bitstream/unal/84773/23/ANEXO%20D%20Funci%c3%b3n%20autocorrelaci%c3%b3n%20ancho%20de%20ventana.pdf.jpg4fd227017cbec687b2a838fcf6dee36dMD523ANEXO G Unidades homogéneas de suelo.pdf.jpgANEXO G Unidades homogéneas de suelo.pdf.jpgGenerated Thumbnailimage/jpeg5659https://repositorio.unal.edu.co/bitstream/unal/84773/24/ANEXO%20G%20Unidades%20homog%c3%a9neas%20de%20suelo.pdf.jpgff131dcebad1fb5072cdc64319710959MD524ANEXO M DATOS DE UNIDADES HOMOGÉNEAS DE SUELO.pdf.jpgANEXO M DATOS DE UNIDADES HOMOGÉNEAS DE SUELO.pdf.jpgGenerated Thumbnailimage/jpeg5332https://repositorio.unal.edu.co/bitstream/unal/84773/25/ANEXO%20M%20DATOS%20DE%20UNIDADES%20HOMOG%c3%89NEAS%20DE%20SUELO.pdf.jpg17c3061a7321873fd46626211a7bee71MD525unal/84773oai:repositorio.unal.edu.co:unal/847732023-10-05 23:03:50.327Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=