Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC

ilustraciones, diagrama, tablas

Autores:
Velasco Muñoz, Hugo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81267
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81267
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Electric motors
Motores eléctricos
Control de velocidad
Filtro Washout
Motor DC
Control en modo deslizante
Speed control
Washout Filter
DC motor
Sliding Mode Control
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_a81606fe2cc0ecc37a40f790b158e354
oai_identifier_str oai:repositorio.unal.edu.co:unal/81267
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
dc.title.translated.eng.fl_str_mv Sliding mode control based on Washout filter for speed control in a DC motor
title Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
spellingShingle Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Electric motors
Motores eléctricos
Control de velocidad
Filtro Washout
Motor DC
Control en modo deslizante
Speed control
Washout Filter
DC motor
Sliding Mode Control
title_short Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
title_full Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
title_fullStr Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
title_full_unstemmed Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
title_sort Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
dc.creator.fl_str_mv Velasco Muñoz, Hugo
dc.contributor.advisor.none.fl_str_mv Candelo Becerra, John Edwin
Rincón Santamaría, Alejandro
dc.contributor.author.none.fl_str_mv Velasco Muñoz, Hugo
dc.contributor.researchgroup.spa.fl_str_mv Procesamiento Digital de Señales Para Sistemas en Tiempo Real
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Electric motors
Motores eléctricos
Control de velocidad
Filtro Washout
Motor DC
Control en modo deslizante
Speed control
Washout Filter
DC motor
Sliding Mode Control
dc.subject.lemb.none.fl_str_mv Electric motors
Motores eléctricos
dc.subject.proposal.spa.fl_str_mv Control de velocidad
Filtro Washout
Motor DC
Control en modo deslizante
dc.subject.proposal.eng.fl_str_mv Speed control
Washout Filter
DC motor
Sliding Mode Control
description ilustraciones, diagrama, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09
dc.date.accessioned.none.fl_str_mv 2022-03-17T14:32:55Z
dc.date.available.none.fl_str_mv 2022-03-17T14:32:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81267
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81267
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv K. Jammousi, M. Bouzguenda, Y. Dhieb, M. Ghariani, and M. Yaich, “Gain optimization of sliding mode speed control for DC motor,” in 2020 6th IEEE International Energy Conference (ENERGYCon), 2020, pp. 159–163, doi: 10.1109/ENERGYCon48941.2020.9236508.
D. Jiang, W. Yu, J. Wang, Y. Zhao, Y. Li, and Y. Lu, “A Speed Disturbance Control Method Based on Sliding Mode Control of Permanent Magnet Synchronous Linear Motor,” IEEE Access, vol. 7, pp. 82424–82433, 2019, doi: 10.1109/ACCESS.2019.2922765.
F. E. Hoyos, J. E. Candelo-Becerra, and A. Rincón, “Zero Average Dynamic Controller for Speed Control of DC Motor,” Applied Sciences , vol. 11, no. 12. 2021, doi: 10.3390/app11125608.
A. Durdu and E. H. Dursun, “Sliding mode control for position tracking of servo system with a variable loaded DC motor,” Elektron. ir Elektrotechnika, vol. 25, no. 4, pp. 8–16, 2019, doi: 10.5755/j01.eie.25.4.23964.
A. Rauf, S. Li, R. Madonski, and J. Yang, “Continuous dynamic sliding mode control of converter-fed DC motor system with high order mismatched disturbance compensation,” Trans. Inst. Meas. Control, vol. 42, no. 14, pp. 2812–2821, 2020, doi: 10.1177/0142331220933415.
A. T. Alexandridis and G. C. Konstantopoulos, “Modified PI speed controllers for series-excited dc motors fed by dc/dc boost converters,” Control Eng. Pract., vol. 23, pp. 14–21, 2014, doi: https://doi.org/10.1016/j.conengprac.2013.10.009.
S. Khubalkar, A. Chopade, A. Junghare, M. Aware, and S. Das, “Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor,” Circuits, Syst. Signal Process., vol. 35, no. 6, pp. 2189–2211, 2016, doi: 10.1007/s00034-016-0262-2.
W. Slotine, J.; Li, Applied Nonlinear Control. NJ, USA, 1991.
A. Wang and S. Wei, “Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law,” IEEE Access, vol. 7, pp. 146866–146875, 2019, doi: 10.1109/ACCESS.2019.2946349.
A. Rauf, J. Yang, R. Madonski, S. Li, and Z. Wang, “Sliding Mode Control of Converter-fed DC Motor with Mismatched Load Torque Compensation,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 653–657, doi: 10.1109/ISIE.2019.8781436.
S. Wu, X. Su, and K. Wang, “Time-Dependent Global Nonsingular Fixed-Time Terminal Sliding Mode Control-Based Speed Tracking of Permanent Magnet Synchronous Motor,” IEEE Access, vol. 8, pp. 186408–186420, 2020, doi: 10.1109/ACCESS.2020.3030279.
A. P. N. Tahim, D. J. Pagano, and E. Ponce, “Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 3068–3073, doi: 10.1109/CDC.2012.6426298.
M. Monsalve-Rueda, E. J. Candelo-Becerra, and E. F. Hoyos, “Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads,” Applied Sciences , vol. 9, no. 21. 2019, doi: 10.3390/app9214548.
S. Bagherwal, M. Badoni, S. Semwal, and S. Singh, “Design and development of standalone solar photovoltaic battery system with adaptive sliding mode controller,” Int. J. Renew. Energy Res., vol. 10, no. 1, pp. 243–250, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085165871&partnerID=40&md5=bf104da2236cc61e167861a447734a6a.
D. J. Pagano and E. Ponce, “On the robustness of the DC-DC boost converter under washout SMC,” in 2009 Brazilian Power Electronics Conference, COBEP2009, 2009, pp. 110–115, doi: 10.1109/COBEP.2009.5347639.
R. Madonski, K. Łakomy, M. Stankovic, S. Shao, J. Yang, and S. Li, “Robust converter-fed motor control based on active rejection of multiple disturbances,” Control Eng. Pract., vol. 107, p. 104696, 2021, doi: https://doi.org/10.1016/j.conengprac.2020.104696.
F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies , vol. 11, no. 12. 2018, doi: 10.3390/en11123388.
L. Setyawan, W. Peng, and X. Jianfang, “Implementation of sliding mode control in DC microgrids,” in 2014 9th IEEE Conference on Industrial Electronics and Applications, 2014, pp. 578–583, doi: 10.1109/ICIEA.2014.6931231.
J. R. Viloria, Motores de corriente continua. Motorización de máquinas y vehículos., Ediciones. 2014.
S. J. Chapman, Máquinas eléctricas, Tercera ed. 2000.
Ned Mohan, Electric Drives an integrative approach. Minneapolis, 2001.
“EE362L, Power Electronics, Lab Experiment 3: DC-DC Buck Converter,” 2008.
A. P. N. Tahim, D. J. Pagano, M. L. Heldwein, and E. Ponce, “Control of interconnected power electronic converters in dc distribution systems,” in XI Brazilian Power Electronics Conference, 2011, pp. 269–274, doi: 10.1109/COBEP.2011.6085269.
K. Ogata, Ingeniería de control moderna, 3a. ed. MADRID: PRENTICE HALL HISPANOAMERICANA, 1998.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 73 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81267/3/1085660973.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81267/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81267/5/1085660973.2021.pdf.jpg
bitstream.checksum.fl_str_mv 4d289be3a46627c8e2d8f45e1d11bc80
8153f7789df02f0a4c9e079953658ab2
371b6c71fe286f6b69591abf8d9a54ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090216982446080
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Candelo Becerra, John Edwinbf134c76c509b4c08e75144d67983d4e600Rincón Santamaría, Alejandroc4e74c524b06ef7eee2e128a4903909bVelasco Muñoz, Hugo0a00f88fe4cc6a07cb85f204cc8b9f7eProcesamiento Digital de Señales Para Sistemas en Tiempo Real2022-03-17T14:32:55Z2022-03-17T14:32:55Z2021-09https://repositorio.unal.edu.co/handle/unal/81267Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagrama, tablasLa precisión de los sistemas de control de motores en campo es influenciada por las incertidumbres y variaciones abruptas de carga y de los parámetros inherentes del sistema [1], [2] y [3]. Con el objetivo de implementar un método de control robusto y de fácil implementación, en este trabajo se presenta la aplicación de un método de control en modo deslizante basado en un filtro washout (SMC-w) para el control de velocidad en un motor DC de imán permanente. Para cumplir con este objetivo, se estudió la respuesta del sistema de control bajo variaciones de la señal de referencia y cambios en el torque de carga. Los resultados se contrastaron con el control convencional proporcional integral derivativo (PID) con el objeto de evaluar la eficiencia y el grado de mejora del control SMC-w frente a arquitecturas de control convencionales y de amplia difusión en la industria como el control PID. (Texto tomado de la fuente)The accuracy of field motor control systems is influenced by uncertainties and abrupt variations in load and inherent system parameters [1], [2] y [3]. In order to implement a robust and easy-to-implement control method, this paper presents the application of a sliding mode control method based on a washout filter (SMC-w) for speed control in a DC motor of permanent magnet. To meet this objective, the response of the control system under variations of the reference signal and changes in load torque was studied. The results were contrasted with the conventional proportional integral derivative (PID) control in order to evaluate the efficiency and degree of improvement of the SMC-w control compared to conventional control architectures and widely distributed in the industry such as PID control.MaestríaMagíster en Ingeniería - Ingeniería EléctricaElectrónica de PotenciaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control73 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería530 - Física::537 - Electricidad y electrónicaElectric motorsMotores eléctricosControl de velocidadFiltro WashoutMotor DCControl en modo deslizanteSpeed controlWashout FilterDC motorSliding Mode ControlControl en modo deslizante basado en filtro Washout para control de velocidad en un motor DCSliding mode control based on Washout filter for speed control in a DC motorTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMK. Jammousi, M. Bouzguenda, Y. Dhieb, M. Ghariani, and M. Yaich, “Gain optimization of sliding mode speed control for DC motor,” in 2020 6th IEEE International Energy Conference (ENERGYCon), 2020, pp. 159–163, doi: 10.1109/ENERGYCon48941.2020.9236508.D. Jiang, W. Yu, J. Wang, Y. Zhao, Y. Li, and Y. Lu, “A Speed Disturbance Control Method Based on Sliding Mode Control of Permanent Magnet Synchronous Linear Motor,” IEEE Access, vol. 7, pp. 82424–82433, 2019, doi: 10.1109/ACCESS.2019.2922765.F. E. Hoyos, J. E. Candelo-Becerra, and A. Rincón, “Zero Average Dynamic Controller for Speed Control of DC Motor,” Applied Sciences , vol. 11, no. 12. 2021, doi: 10.3390/app11125608.A. Durdu and E. H. Dursun, “Sliding mode control for position tracking of servo system with a variable loaded DC motor,” Elektron. ir Elektrotechnika, vol. 25, no. 4, pp. 8–16, 2019, doi: 10.5755/j01.eie.25.4.23964.A. Rauf, S. Li, R. Madonski, and J. Yang, “Continuous dynamic sliding mode control of converter-fed DC motor system with high order mismatched disturbance compensation,” Trans. Inst. Meas. Control, vol. 42, no. 14, pp. 2812–2821, 2020, doi: 10.1177/0142331220933415.A. T. Alexandridis and G. C. Konstantopoulos, “Modified PI speed controllers for series-excited dc motors fed by dc/dc boost converters,” Control Eng. Pract., vol. 23, pp. 14–21, 2014, doi: https://doi.org/10.1016/j.conengprac.2013.10.009.S. Khubalkar, A. Chopade, A. Junghare, M. Aware, and S. Das, “Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor,” Circuits, Syst. Signal Process., vol. 35, no. 6, pp. 2189–2211, 2016, doi: 10.1007/s00034-016-0262-2.W. Slotine, J.; Li, Applied Nonlinear Control. NJ, USA, 1991.A. Wang and S. Wei, “Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law,” IEEE Access, vol. 7, pp. 146866–146875, 2019, doi: 10.1109/ACCESS.2019.2946349.A. Rauf, J. Yang, R. Madonski, S. Li, and Z. Wang, “Sliding Mode Control of Converter-fed DC Motor with Mismatched Load Torque Compensation,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 653–657, doi: 10.1109/ISIE.2019.8781436.S. Wu, X. Su, and K. Wang, “Time-Dependent Global Nonsingular Fixed-Time Terminal Sliding Mode Control-Based Speed Tracking of Permanent Magnet Synchronous Motor,” IEEE Access, vol. 8, pp. 186408–186420, 2020, doi: 10.1109/ACCESS.2020.3030279.A. P. N. Tahim, D. J. Pagano, and E. Ponce, “Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 3068–3073, doi: 10.1109/CDC.2012.6426298.M. Monsalve-Rueda, E. J. Candelo-Becerra, and E. F. Hoyos, “Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads,” Applied Sciences , vol. 9, no. 21. 2019, doi: 10.3390/app9214548.S. Bagherwal, M. Badoni, S. Semwal, and S. Singh, “Design and development of standalone solar photovoltaic battery system with adaptive sliding mode controller,” Int. J. Renew. Energy Res., vol. 10, no. 1, pp. 243–250, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085165871&partnerID=40&md5=bf104da2236cc61e167861a447734a6a.D. J. Pagano and E. Ponce, “On the robustness of the DC-DC boost converter under washout SMC,” in 2009 Brazilian Power Electronics Conference, COBEP2009, 2009, pp. 110–115, doi: 10.1109/COBEP.2009.5347639.R. Madonski, K. Łakomy, M. Stankovic, S. Shao, J. Yang, and S. Li, “Robust converter-fed motor control based on active rejection of multiple disturbances,” Control Eng. Pract., vol. 107, p. 104696, 2021, doi: https://doi.org/10.1016/j.conengprac.2020.104696.F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies , vol. 11, no. 12. 2018, doi: 10.3390/en11123388.L. Setyawan, W. Peng, and X. Jianfang, “Implementation of sliding mode control in DC microgrids,” in 2014 9th IEEE Conference on Industrial Electronics and Applications, 2014, pp. 578–583, doi: 10.1109/ICIEA.2014.6931231.J. R. Viloria, Motores de corriente continua. Motorización de máquinas y vehículos., Ediciones. 2014.S. J. Chapman, Máquinas eléctricas, Tercera ed. 2000.Ned Mohan, Electric Drives an integrative approach. Minneapolis, 2001.“EE362L, Power Electronics, Lab Experiment 3: DC-DC Buck Converter,” 2008.A. P. N. Tahim, D. J. Pagano, M. L. Heldwein, and E. Ponce, “Control of interconnected power electronic converters in dc distribution systems,” in XI Brazilian Power Electronics Conference, 2011, pp. 269–274, doi: 10.1109/COBEP.2011.6085269.K. Ogata, Ingeniería de control moderna, 3a. ed. MADRID: PRENTICE HALL HISPANOAMERICANA, 1998.EstudiantesInvestigadoresORIGINAL1085660973.2021.pdf1085660973.2021.pdfTesis de Maestría en Ingeniería – Ingeniería Eléctricaapplication/pdf2870613https://repositorio.unal.edu.co/bitstream/unal/81267/3/1085660973.2021.pdf4d289be3a46627c8e2d8f45e1d11bc80MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81267/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1085660973.2021.pdf.jpg1085660973.2021.pdf.jpgGenerated Thumbnailimage/jpeg5240https://repositorio.unal.edu.co/bitstream/unal/81267/5/1085660973.2021.pdf.jpg371b6c71fe286f6b69591abf8d9a54baMD55unal/81267oai:repositorio.unal.edu.co:unal/812672023-08-09 08:05:54.221Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK