Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC
ilustraciones, diagrama, tablas
- Autores:
-
Velasco Muñoz, Hugo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81267
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
530 - Física::537 - Electricidad y electrónica
Electric motors
Motores eléctricos
Control de velocidad
Filtro Washout
Motor DC
Control en modo deslizante
Speed control
Washout Filter
DC motor
Sliding Mode Control
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_a81606fe2cc0ecc37a40f790b158e354 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81267 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
dc.title.translated.eng.fl_str_mv |
Sliding mode control based on Washout filter for speed control in a DC motor |
title |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
spellingShingle |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 530 - Física::537 - Electricidad y electrónica Electric motors Motores eléctricos Control de velocidad Filtro Washout Motor DC Control en modo deslizante Speed control Washout Filter DC motor Sliding Mode Control |
title_short |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
title_full |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
title_fullStr |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
title_full_unstemmed |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
title_sort |
Control en modo deslizante basado en filtro Washout para control de velocidad en un motor DC |
dc.creator.fl_str_mv |
Velasco Muñoz, Hugo |
dc.contributor.advisor.none.fl_str_mv |
Candelo Becerra, John Edwin Rincón Santamaría, Alejandro |
dc.contributor.author.none.fl_str_mv |
Velasco Muñoz, Hugo |
dc.contributor.researchgroup.spa.fl_str_mv |
Procesamiento Digital de Señales Para Sistemas en Tiempo Real |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 530 - Física::537 - Electricidad y electrónica |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 530 - Física::537 - Electricidad y electrónica Electric motors Motores eléctricos Control de velocidad Filtro Washout Motor DC Control en modo deslizante Speed control Washout Filter DC motor Sliding Mode Control |
dc.subject.lemb.none.fl_str_mv |
Electric motors Motores eléctricos |
dc.subject.proposal.spa.fl_str_mv |
Control de velocidad Filtro Washout Motor DC Control en modo deslizante |
dc.subject.proposal.eng.fl_str_mv |
Speed control Washout Filter DC motor Sliding Mode Control |
description |
ilustraciones, diagrama, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-09 |
dc.date.accessioned.none.fl_str_mv |
2022-03-17T14:32:55Z |
dc.date.available.none.fl_str_mv |
2022-03-17T14:32:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81267 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81267 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
K. Jammousi, M. Bouzguenda, Y. Dhieb, M. Ghariani, and M. Yaich, “Gain optimization of sliding mode speed control for DC motor,” in 2020 6th IEEE International Energy Conference (ENERGYCon), 2020, pp. 159–163, doi: 10.1109/ENERGYCon48941.2020.9236508. D. Jiang, W. Yu, J. Wang, Y. Zhao, Y. Li, and Y. Lu, “A Speed Disturbance Control Method Based on Sliding Mode Control of Permanent Magnet Synchronous Linear Motor,” IEEE Access, vol. 7, pp. 82424–82433, 2019, doi: 10.1109/ACCESS.2019.2922765. F. E. Hoyos, J. E. Candelo-Becerra, and A. Rincón, “Zero Average Dynamic Controller for Speed Control of DC Motor,” Applied Sciences , vol. 11, no. 12. 2021, doi: 10.3390/app11125608. A. Durdu and E. H. Dursun, “Sliding mode control for position tracking of servo system with a variable loaded DC motor,” Elektron. ir Elektrotechnika, vol. 25, no. 4, pp. 8–16, 2019, doi: 10.5755/j01.eie.25.4.23964. A. Rauf, S. Li, R. Madonski, and J. Yang, “Continuous dynamic sliding mode control of converter-fed DC motor system with high order mismatched disturbance compensation,” Trans. Inst. Meas. Control, vol. 42, no. 14, pp. 2812–2821, 2020, doi: 10.1177/0142331220933415. A. T. Alexandridis and G. C. Konstantopoulos, “Modified PI speed controllers for series-excited dc motors fed by dc/dc boost converters,” Control Eng. Pract., vol. 23, pp. 14–21, 2014, doi: https://doi.org/10.1016/j.conengprac.2013.10.009. S. Khubalkar, A. Chopade, A. Junghare, M. Aware, and S. Das, “Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor,” Circuits, Syst. Signal Process., vol. 35, no. 6, pp. 2189–2211, 2016, doi: 10.1007/s00034-016-0262-2. W. Slotine, J.; Li, Applied Nonlinear Control. NJ, USA, 1991. A. Wang and S. Wei, “Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law,” IEEE Access, vol. 7, pp. 146866–146875, 2019, doi: 10.1109/ACCESS.2019.2946349. A. Rauf, J. Yang, R. Madonski, S. Li, and Z. Wang, “Sliding Mode Control of Converter-fed DC Motor with Mismatched Load Torque Compensation,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 653–657, doi: 10.1109/ISIE.2019.8781436. S. Wu, X. Su, and K. Wang, “Time-Dependent Global Nonsingular Fixed-Time Terminal Sliding Mode Control-Based Speed Tracking of Permanent Magnet Synchronous Motor,” IEEE Access, vol. 8, pp. 186408–186420, 2020, doi: 10.1109/ACCESS.2020.3030279. A. P. N. Tahim, D. J. Pagano, and E. Ponce, “Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 3068–3073, doi: 10.1109/CDC.2012.6426298. M. Monsalve-Rueda, E. J. Candelo-Becerra, and E. F. Hoyos, “Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads,” Applied Sciences , vol. 9, no. 21. 2019, doi: 10.3390/app9214548. S. Bagherwal, M. Badoni, S. Semwal, and S. Singh, “Design and development of standalone solar photovoltaic battery system with adaptive sliding mode controller,” Int. J. Renew. Energy Res., vol. 10, no. 1, pp. 243–250, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085165871&partnerID=40&md5=bf104da2236cc61e167861a447734a6a. D. J. Pagano and E. Ponce, “On the robustness of the DC-DC boost converter under washout SMC,” in 2009 Brazilian Power Electronics Conference, COBEP2009, 2009, pp. 110–115, doi: 10.1109/COBEP.2009.5347639. R. Madonski, K. Łakomy, M. Stankovic, S. Shao, J. Yang, and S. Li, “Robust converter-fed motor control based on active rejection of multiple disturbances,” Control Eng. Pract., vol. 107, p. 104696, 2021, doi: https://doi.org/10.1016/j.conengprac.2020.104696. F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies , vol. 11, no. 12. 2018, doi: 10.3390/en11123388. L. Setyawan, W. Peng, and X. Jianfang, “Implementation of sliding mode control in DC microgrids,” in 2014 9th IEEE Conference on Industrial Electronics and Applications, 2014, pp. 578–583, doi: 10.1109/ICIEA.2014.6931231. J. R. Viloria, Motores de corriente continua. Motorización de máquinas y vehículos., Ediciones. 2014. S. J. Chapman, Máquinas eléctricas, Tercera ed. 2000. Ned Mohan, Electric Drives an integrative approach. Minneapolis, 2001. “EE362L, Power Electronics, Lab Experiment 3: DC-DC Buck Converter,” 2008. A. P. N. Tahim, D. J. Pagano, M. L. Heldwein, and E. Ponce, “Control of interconnected power electronic converters in dc distribution systems,” in XI Brazilian Power Electronics Conference, 2011, pp. 269–274, doi: 10.1109/COBEP.2011.6085269. K. Ogata, Ingeniería de control moderna, 3a. ed. MADRID: PRENTICE HALL HISPANOAMERICANA, 1998. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
73 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81267/3/1085660973.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81267/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81267/5/1085660973.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d289be3a46627c8e2d8f45e1d11bc80 8153f7789df02f0a4c9e079953658ab2 371b6c71fe286f6b69591abf8d9a54ba |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090216982446080 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Candelo Becerra, John Edwinbf134c76c509b4c08e75144d67983d4e600Rincón Santamaría, Alejandroc4e74c524b06ef7eee2e128a4903909bVelasco Muñoz, Hugo0a00f88fe4cc6a07cb85f204cc8b9f7eProcesamiento Digital de Señales Para Sistemas en Tiempo Real2022-03-17T14:32:55Z2022-03-17T14:32:55Z2021-09https://repositorio.unal.edu.co/handle/unal/81267Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagrama, tablasLa precisión de los sistemas de control de motores en campo es influenciada por las incertidumbres y variaciones abruptas de carga y de los parámetros inherentes del sistema [1], [2] y [3]. Con el objetivo de implementar un método de control robusto y de fácil implementación, en este trabajo se presenta la aplicación de un método de control en modo deslizante basado en un filtro washout (SMC-w) para el control de velocidad en un motor DC de imán permanente. Para cumplir con este objetivo, se estudió la respuesta del sistema de control bajo variaciones de la señal de referencia y cambios en el torque de carga. Los resultados se contrastaron con el control convencional proporcional integral derivativo (PID) con el objeto de evaluar la eficiencia y el grado de mejora del control SMC-w frente a arquitecturas de control convencionales y de amplia difusión en la industria como el control PID. (Texto tomado de la fuente)The accuracy of field motor control systems is influenced by uncertainties and abrupt variations in load and inherent system parameters [1], [2] y [3]. In order to implement a robust and easy-to-implement control method, this paper presents the application of a sliding mode control method based on a washout filter (SMC-w) for speed control in a DC motor of permanent magnet. To meet this objective, the response of the control system under variations of the reference signal and changes in load torque was studied. The results were contrasted with the conventional proportional integral derivative (PID) control in order to evaluate the efficiency and degree of improvement of the SMC-w control compared to conventional control architectures and widely distributed in the industry such as PID control.MaestríaMagíster en Ingeniería - Ingeniería EléctricaElectrónica de PotenciaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control73 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería530 - Física::537 - Electricidad y electrónicaElectric motorsMotores eléctricosControl de velocidadFiltro WashoutMotor DCControl en modo deslizanteSpeed controlWashout FilterDC motorSliding Mode ControlControl en modo deslizante basado en filtro Washout para control de velocidad en un motor DCSliding mode control based on Washout filter for speed control in a DC motorTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMK. Jammousi, M. Bouzguenda, Y. Dhieb, M. Ghariani, and M. Yaich, “Gain optimization of sliding mode speed control for DC motor,” in 2020 6th IEEE International Energy Conference (ENERGYCon), 2020, pp. 159–163, doi: 10.1109/ENERGYCon48941.2020.9236508.D. Jiang, W. Yu, J. Wang, Y. Zhao, Y. Li, and Y. Lu, “A Speed Disturbance Control Method Based on Sliding Mode Control of Permanent Magnet Synchronous Linear Motor,” IEEE Access, vol. 7, pp. 82424–82433, 2019, doi: 10.1109/ACCESS.2019.2922765.F. E. Hoyos, J. E. Candelo-Becerra, and A. Rincón, “Zero Average Dynamic Controller for Speed Control of DC Motor,” Applied Sciences , vol. 11, no. 12. 2021, doi: 10.3390/app11125608.A. Durdu and E. H. Dursun, “Sliding mode control for position tracking of servo system with a variable loaded DC motor,” Elektron. ir Elektrotechnika, vol. 25, no. 4, pp. 8–16, 2019, doi: 10.5755/j01.eie.25.4.23964.A. Rauf, S. Li, R. Madonski, and J. Yang, “Continuous dynamic sliding mode control of converter-fed DC motor system with high order mismatched disturbance compensation,” Trans. Inst. Meas. Control, vol. 42, no. 14, pp. 2812–2821, 2020, doi: 10.1177/0142331220933415.A. T. Alexandridis and G. C. Konstantopoulos, “Modified PI speed controllers for series-excited dc motors fed by dc/dc boost converters,” Control Eng. Pract., vol. 23, pp. 14–21, 2014, doi: https://doi.org/10.1016/j.conengprac.2013.10.009.S. Khubalkar, A. Chopade, A. Junghare, M. Aware, and S. Das, “Design and Realization of Stand-Alone Digital Fractional Order PID Controller for Buck Converter Fed DC Motor,” Circuits, Syst. Signal Process., vol. 35, no. 6, pp. 2189–2211, 2016, doi: 10.1007/s00034-016-0262-2.W. Slotine, J.; Li, Applied Nonlinear Control. NJ, USA, 1991.A. Wang and S. Wei, “Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law,” IEEE Access, vol. 7, pp. 146866–146875, 2019, doi: 10.1109/ACCESS.2019.2946349.A. Rauf, J. Yang, R. Madonski, S. Li, and Z. Wang, “Sliding Mode Control of Converter-fed DC Motor with Mismatched Load Torque Compensation,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 653–657, doi: 10.1109/ISIE.2019.8781436.S. Wu, X. Su, and K. Wang, “Time-Dependent Global Nonsingular Fixed-Time Terminal Sliding Mode Control-Based Speed Tracking of Permanent Magnet Synchronous Motor,” IEEE Access, vol. 8, pp. 186408–186420, 2020, doi: 10.1109/ACCESS.2020.3030279.A. P. N. Tahim, D. J. Pagano, and E. Ponce, “Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 3068–3073, doi: 10.1109/CDC.2012.6426298.M. Monsalve-Rueda, E. J. Candelo-Becerra, and E. F. Hoyos, “Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads,” Applied Sciences , vol. 9, no. 21. 2019, doi: 10.3390/app9214548.S. Bagherwal, M. Badoni, S. Semwal, and S. Singh, “Design and development of standalone solar photovoltaic battery system with adaptive sliding mode controller,” Int. J. Renew. Energy Res., vol. 10, no. 1, pp. 243–250, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085165871&partnerID=40&md5=bf104da2236cc61e167861a447734a6a.D. J. Pagano and E. Ponce, “On the robustness of the DC-DC boost converter under washout SMC,” in 2009 Brazilian Power Electronics Conference, COBEP2009, 2009, pp. 110–115, doi: 10.1109/COBEP.2009.5347639.R. Madonski, K. Łakomy, M. Stankovic, S. Shao, J. Yang, and S. Li, “Robust converter-fed motor control based on active rejection of multiple disturbances,” Control Eng. Pract., vol. 107, p. 104696, 2021, doi: https://doi.org/10.1016/j.conengprac.2020.104696.F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies , vol. 11, no. 12. 2018, doi: 10.3390/en11123388.L. Setyawan, W. Peng, and X. Jianfang, “Implementation of sliding mode control in DC microgrids,” in 2014 9th IEEE Conference on Industrial Electronics and Applications, 2014, pp. 578–583, doi: 10.1109/ICIEA.2014.6931231.J. R. Viloria, Motores de corriente continua. Motorización de máquinas y vehículos., Ediciones. 2014.S. J. Chapman, Máquinas eléctricas, Tercera ed. 2000.Ned Mohan, Electric Drives an integrative approach. Minneapolis, 2001.“EE362L, Power Electronics, Lab Experiment 3: DC-DC Buck Converter,” 2008.A. P. N. Tahim, D. J. Pagano, M. L. Heldwein, and E. Ponce, “Control of interconnected power electronic converters in dc distribution systems,” in XI Brazilian Power Electronics Conference, 2011, pp. 269–274, doi: 10.1109/COBEP.2011.6085269.K. Ogata, Ingeniería de control moderna, 3a. ed. MADRID: PRENTICE HALL HISPANOAMERICANA, 1998.EstudiantesInvestigadoresORIGINAL1085660973.2021.pdf1085660973.2021.pdfTesis de Maestría en Ingeniería – Ingeniería Eléctricaapplication/pdf2870613https://repositorio.unal.edu.co/bitstream/unal/81267/3/1085660973.2021.pdf4d289be3a46627c8e2d8f45e1d11bc80MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81267/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1085660973.2021.pdf.jpg1085660973.2021.pdf.jpgGenerated Thumbnailimage/jpeg5240https://repositorio.unal.edu.co/bitstream/unal/81267/5/1085660973.2021.pdf.jpg371b6c71fe286f6b69591abf8d9a54baMD55unal/81267oai:repositorio.unal.edu.co:unal/812672023-08-09 08:05:54.221Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |