Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela

ilustraciones, diagramas, fotografías

Autores:
Cortés Tovar, Giovanni Andrés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82174
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82174
https://repositorio.unal.edu.co/
Palabra clave:
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Producción industrial
Industria azucarera
Edificios industriales
Industrial production
Sugar industry
Industrial buildings
Confort térmico
Simulación computacional
Bioclimática
Eficiencia energética
Thermal comfort
Computational simulation
Bioclimatic
Energy efficiency
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_a7ccab9bbe8c21462e7f5bc8d2960599
oai_identifier_str oai:repositorio.unal.edu.co:unal/82174
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
dc.title.translated.eng.fl_str_mv Constructive proposal based on the bioclimatic analysis of the envelope of agro-industrial plants for the production of panela
title Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
spellingShingle Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Producción industrial
Industria azucarera
Edificios industriales
Industrial production
Sugar industry
Industrial buildings
Confort térmico
Simulación computacional
Bioclimática
Eficiencia energética
Thermal comfort
Computational simulation
Bioclimatic
Energy efficiency
title_short Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
title_full Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
title_fullStr Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
title_full_unstemmed Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
title_sort Propuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
dc.creator.fl_str_mv Cortés Tovar, Giovanni Andrés
dc.contributor.advisor.spa.fl_str_mv Osorio Hernández, Robinson
Osorio Saraz, Jairo Alexander
dc.contributor.author.spa.fl_str_mv Cortés Tovar, Giovanni Andrés
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería de Biosistemas
Gesa: Grupo de Estudios en Sostenibilidad Ambiental
dc.subject.ddc.spa.fl_str_mv 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
topic 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Producción industrial
Industria azucarera
Edificios industriales
Industrial production
Sugar industry
Industrial buildings
Confort térmico
Simulación computacional
Bioclimática
Eficiencia energética
Thermal comfort
Computational simulation
Bioclimatic
Energy efficiency
dc.subject.agrovoc.spa.fl_str_mv Producción industrial
Industria azucarera
Edificios industriales
dc.subject.agrovoc.eng.fl_str_mv Industrial production
Sugar industry
Industrial buildings
dc.subject.proposal.spa.fl_str_mv Confort térmico
Simulación computacional
Bioclimática
Eficiencia energética
dc.subject.proposal.eng.fl_str_mv Thermal comfort
Computational simulation
Bioclimatic
Energy efficiency
description ilustraciones, diagramas, fotografías
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-29T18:07:21Z
dc.date.available.none.fl_str_mv 2022-08-29T18:07:21Z
dc.date.issued.none.fl_str_mv 2022-06-28
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82174
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82174
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755. https://doi.org/10.1016/j.enbuild.2021.111755
Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138(May 2020), 110669. https://doi.org/10.1016/j.rser.2020.110669
Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020), 128183. https://doi.org/10.1016/j.foodchem.2020.128183
Alsharif, R., Arashpour, M., Chang, V., & Zhou, J. (2021). A review of building parameters’ roles in conserving energy versus maintaining comfort. Journal of Building Engineering, 35(December 2020), 102087. https://doi.org/10.1016/j.jobe.2020.102087
Altan, H., Hajibandeh, M., Tabet Aoul, K. A., & Deep, A. (2016). Passive Design. In M. Noguchi (Ed.), ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes (pp. 209–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-31967-4_8
Amaro, A. L. N., Junior, T. Y., Yanagi, S. de N. M., Ferraz, G. A. E. S., & Campos, A. T. (2018). Climate change and rural workers thermal comfort: Historical and future impacts. Engenharia Agricola, 38(2), 173–179. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n2p173-179/2018
American Society of Heating Refrigerating and Air Conditioning Engineers - ASHRAE Standard 55. (2017). Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE 55-2017.
Andrade, M., Johanna, M., Torres, G., & Nelson, E. (2020). La panela del Catatumbo , una alternativa agroindustrial con perfil Internacional. Revista Espacios, 41(25), 159–170. http://sistemasblandosxd.revistaespacios.com/a20v41n25/a20v41n25p13.pdf
Bjerg, B., Cascone, G., Lee, I. B., Bartzanas, T., Norton, T., Hong, S. W., Seo, I. H., Banhazi, T., Liberati, P., Marucci, A., & Zhang, G. (2013). Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosystems Engineering, 116(3), 259–275. https://doi.org/10.1016/j.biosystemseng.2013.06.012
Buriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015a). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciencia Rural, 45(2), 223–230. https://doi.org/10.1590/0103-8478cr20131537
Buriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015b). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciência Rural, 45, 223–230.
Camara, T., Kamsu-Foguem, B., Diourte, B., Maiga, A. I., & Habbadi, A. (2017). Management and assessment of performance risks for bioclimatic buildings. Journal of Cleaner Production, 147, 654–667. https://doi.org/10.1016/j.jclepro.2017.01.063
Carlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194–205. https://doi.org/10.1016/j.enbuild.2012.06.015
Castillo, J., & Orozco, A. (2010). Evaluación de un método de cálculo para estimar la carga de trabajo en trabajadores expuestos a condiciones térmicas extremas. Salud de Los Trabajadores, 18, 17–33. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-01382010000100003&nrm=iso
Chen Austin, M., Castillo, M., De Mendes Da Silva, Á., & Mora, D. (2020). Numerical Assessment of Bioclimatic Architecture Strategies for Buildings Design in Tropical Climates: A Case of Study in Panama. E3S Web of Conferences, 197, 1–10. https://doi.org/10.1051/e3sconf/202019702006
Chong, A., Gu, Y., & Jia, H. (2021). Calibrating building energy simulation models: A review of the basics to guide future work. Energy and Buildings, 253, 111533. https://doi.org/10.1016/j.enbuild.2021.111533
Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007
Dacanal, C., Luz, S. do N., Turco, S. H. N., & Vasconcelos, O. C. d. M. (2018). Diagnosis and recommendations for the bioclimatic design of grape packing houses in hot and dry climate. Engenharia Agricola, 38(1), 1–6. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p1-6/2018
De Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., Li, B., Nishihara, N., Sekhar, S. C., Tanabe, S., Toftum, J., Zhang, H., & Zhu, Y. (2013). Progress in thermal comfort research over the last twenty years. Indoor Air, 23(6), 442–461. https://doi.org/10.1111/ina.12046
de Oliveira, C. C., Rupp, R. F., & Ghisi, E. (2021). Influence of environmental variables on thermal comfort and air quality perception in office buildings in the humid subtropical climate zone of Brazil. Energy and Buildings, 243, 110982. https://doi.org/10.1016/j.enbuild.2021.110982
Dhaka, S., Mathur, J., & Garg, V. (2014). Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 35(3), 280–295. https://doi.org/10.1177/0143624413490177
Dianat, I., Vahedi, A., & Dehnavi, S. (2016). Association between objective and subjective assessments of environmental ergonomic factors in manufacturing plants. International Journal of Industrial Ergonomics, 54, 26–31. https://doi.org/10.1016/j.ergon.2015.12.004
El-Darwish, I., & Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579–589. https://doi.org/10.1016/j.aej.2017.05.011
Eli, L. G., Krelling, A. F., Olinger, M. S., Melo, A. P., & Lamberts, R. (2021). Thermal performance of residential building with mixed-mode and passive cooling strategies: The Brazilian context. Energy and Buildings, 244, 111047. https://doi.org/10.1016/j.enbuild.2021.111047
Elshafei, G., Vilcekova, S., Zelenakova, M., & Negm, A. M. (2021). Towards an adaptation of efficient passive design for thermal comfort buildings. Sustainability (Switzerland), 13(17), 1–23. https://doi.org/10.3390/su13179570
Enander, A. E. (1989). Effects of thermal stress on human performance. Scandinavian Journal of Work, Environment & Health, 15, 27–33. http://www.jstor.org/stable/40965606
Esteves, D., Silva, J., Martins, L., Teixeira, J., & Teixeira, S. (2021). Building Energy Performance: Comparison Between EnergyPlus and Other Certified Tools. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Eds.), Computational Science and Its Applications -- ICCSA 2021 (pp. 493–503). Springer International Publishing.
FAO - Food and Agriculture Organization. (1994). Sugar crops and sweeteners and derived products. https://www.fao.org/es/faodef/fdef03e.htm
Gaitani, N., Mihalakakou, G., & Santamouris, M. (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, 42(1), 317–324. https://doi.org/10.1016/j.buildenv.2005.08.018
Gan, G. (2013). CFD Simulation for Sustainable Building Design. In R. Yao (Ed.), Design and Management of Sustainable Built Environments (pp. 253–277). Springer London. https://doi.org/10.1007/978-1-4471-4781-7_13
García, H. R. (2013). Guía Constructiva para trapiches con 100 kg/h de capacidad. https://doi.org/10.13140/RG.2.2.32052.86406
García, H. R., Albarracín, L. C., Toscano LaTorre, A., Santana, N., & Insuasty, O. (2007). Guía tecnológica para el manejo integral del sistema productivo de la caña panelera. Produmedios.
García, H. R., & Cortés, G. (2010). Hornillas para la producción de panela. Cursos sobre producción de Panela en: Mariquita, Tolima; Sandoná, Nariño; Angostura, Antioquia; Isnos, Huila; Nocaima, Cundinamarca. https://www.researchgate.net/publication/306375186_Hornillas_para_la_produccion_de_panela#:~:text=El horno usado en la,azúcares%2C hasta el “punto de
García, J. M., Narváez, P. C., Heredia, F. J., Orjuela, Á., & Osorio, C. (2017). Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. https://doi.org/10.1016/j.foodchem.2017.01.134
Gordillo, G., & García, H. R. (1992). Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera ICA – HOLANDA CIMPA.
Gou, Z., Gamage, W., Lau, S. S. Y., & Lau, S. S. Y. (2018). An investigation of thermal comfort and adaptive behaviors in naturally ventilated residential buildings in tropical climates: A pilot study. Buildings, 8(1). https://doi.org/10.3390/buildings8010005
Gungor, S., Cetin, M., & Adiguzel, F. (2021). Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere and Health, 14(4), 515–522. https://doi.org/10.1007/s11869-020-00955-y
Gutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018a). Actualidad del sistema productivo tradicional de panela en Colombia: análisis de mejoras y alternativas tecnológicas. Ingeniería Y Competitividad, 20(1), 107. https://doi.org/10.25100/iyc.v20i1.6190
Gutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018b). Energy and Productivity Yield Assessment of a Traditional Furnace for Noncentrifugal Brown Sugar (Panela) Production. International Journal of Chemical Engineering, 2018. https://doi.org/10.1155/2018/6841975
Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. https://doi.org/10.1016/j.energy.2018.09.019
He, Y., Liu, X. H., Zhang, H. L., Zheng, W., Zhao, F. Y., Aurel Schnabel, M., & Mei, Y. (2021). Hybrid framework for rapid evaluation of wind environment around buildings through parametric design, CFD simulation, image processing and machine learning. Sustainable Cities and Society, 73(April). https://doi.org/10.1016/j.scs.2021.103092
Hellwig, R. T., Teli, D., Schweiker, M., Choi, J. H., Lee, M. C. J., Mora, R., Rawal, R., Wang, Z., & Al-Atrash, F. (2019). A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 205, 109476. https://doi.org/10.1016/j.enbuild.2019.109476
Holstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability (Switzerland), 9(3). https://doi.org/10.3390/su9030435
Ismail, A. R., Rani, M., Mohd Makhbul, Z., Mohd Nor, J., & Rahman, M. (2009). A Study of Relationship Between WGBT and Relative Humidity to Worker of Performance. Journal of World Academy of Science, Engineering and Technology (WASET), 51, 209–214.
Kiki, G., Kouchadé, C., Houngan, A., Zannou-Tchoko, S. J., & André, P. (2020). Evaluation of thermal comfort in an office building in the humid tropical climate of Benin. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107277
Kini, P. G., Garg, N. K., & Kamath, K. (2017). To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate. IOP Conference Series: Earth and Environmental Science, 73(1), 0–6. https://doi.org/10.1088/1755-1315/73/1/012031
Kralikova, R., Sokolova, H., & Wessely, E. (2014). Thermal environment evaluation according to indices in industrial workplaces. Procedia Engineering, 69, 158–167. https://doi.org/10.1016/j.proeng.2014.02.216
Kükrer, E., & Eskin, N. (2021). Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building. Journal of Building Engineering, 44(April). https://doi.org/10.1016/j.jobe.2021.102697
Kumar, P., & Sharma, A. (2021). Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.06.292
Lamberts, R., Xavier, A. A., & Goulart, S. (2011). Conforto e Stress Térmico. Laboratório de Eficiência Energética em Edificações Santa Catarina: Departamento de Engenharia Cívil, Centro Tecnológico, Universidade Federal de Santa Catarina. http://www.labeee.ufsc.br/antigo/arquivos/publicacoes/Apconforto.pdf
Latha, P. K., Darshana, Y., & Venugopal, V. (2015). Role of building material in thermal comfort in tropical climates - A review. Journal of Building Engineering, 3, 104–113. https://doi.org/10.1016/j.jobe.2015.06.003
Manzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755. https://doi.org/10.1016/j.rser.2015.04.095
Marchante González, G., & González Santos, A. I. (2020). Evaluación del confort y disconfort térmico. Ingeniería Electrónica, Automática y Comunicaciones, 41(3), 21–40.
Meggers, F. (2015). Hidden Surface Effects: Radiant Temperature as an Urban and Architectural Comfort Culprit. In S. T. Rassia & P. M. Pardalos (Eds.), Future City Architecture for Optimal Living (pp. 201–220). Springer International Publishing. https://doi.org/10.1007/978-3-319-15030-7_11
Ministerio de Agricultura y Desarrollo Rural de Colombia. (2019). Cadena Agroindustrial de la panela Dirección de Cadenas Agrícolas y Forestales. https://sioc.minagricultura.gov.co/Panela/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf.
Ministerio de la Protección Social de Colombia. (2016). Resolución Numero 779 de 2006, del 17 de marzo. Por la cual se establece el reglamento técnico sobre los requisitos sanitarios que se deben cumplir en la producción y comercialización de la panela para consumo humano y se dictan otras disposiciones. Diario Oficial de la Republica de Colombia N° 46.223 del 17 de marzo de 2006.
Ministerio de Trabajo y Seguridad Social de Colombia. (1979). Resolución 2400 de 1979. Por el cual se establecen disposiciones sobre vivienda, higiene y seguridad industrial en los establecimientos de trabajo. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=53565
Ministério do Trabalho e Emprego. (2013). Portaria SEPRT n.o 1.359, de 09 de dezembro de 2019 que altera a Norma Regulamentadora 15 - ANEXO 3 - Limites de tolerância para exposição ao calor. https://www.gov.br/trabalho-e-previdencia/pt-br/search?SearchableText=nr 15-anexo-03
Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055
Naboni, E., Lee, D. S. H., & Fabbri, K. (2017). Thermal Comfort-CFD maps for Architectural Interior Design. Procedia Engineering, 180, 110–117. https://doi.org/10.1016/j.proeng.2017.04.170
Nasrollahzadeh, N. (2021). Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit. Journal of Building Engineering, 44(October), 103418. https://doi.org/10.1016/j.jobe.2021.103418
Nedel, A. S., Alonso, M. F., de Freitas, R. A. P., da Costa Trassante, F., da Silva, H. N., De Bortolli, E., de Medeiros, M. A. F., Hallal, P. C., & Vianna, J. C. T. (2021). Analysis of indoor human thermal comfort in Pelotas municipality, extreme southern Brazil. International Journal of Biometeorology, 65(3), 419–428. https://doi.org/10.1007/s00484-020-02015-7
Norton, T., Grant, J., Fallon, R., & Sun, D. W. (2009). Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Engineering, 103(1), 78–99. https://doi.org/10.1016/j.biosystemseng.2009.02.007
Pajek, L., & Košir, M. (2021). Exploring climate-change impacts on energy efficiency and overheating vulnerability of bioclimatic residential buildings under central european climate. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126791
Pereira, F. O. R., & Toledo, A. M. (2004). Analogical Visualization of Natural Ventilation in Buildings due to Wind Action. Plea2004 - The 21 Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 19 - 22 September 2004.
Piña, E. (2018). Prototipo de vivienda vertical social sustentable, enfoque en resistencia al cambio climático. Revista INVI, 33(92), 213–237.
Pina, E. A., Lozano, M. A., & Serra, L. M. (2021). Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings. Renewable and Sustainable Energy Reviews, 149(May), 111382. https://doi.org/10.1016/j.rser.2021.111382
Prada Forero, L., Sánchez Castro, Z., García Bernal, H., & Rojas Ávila, H. (2012). Hornillas paneleras Ward-CIMPA: Validación de los modelos matemáticos de diseño Corpoica-UIS. Fuentes: El Reventón Energético, 10(2), 6.
Ramírez Gil, J. G. (2017). Characterization of traditional production systems of sugarcane for panela and some prospects for improving their sustainability. Revista Facultad Nacional de Agronomia Medellin, 70(1), 8045–8055. https://doi.org/10.15446/rfna.v70n1.61763
Rashad, M., Khordehgah, N., Żabnieńska-Góra, A., Ahmad, L., & Jouhara, H. (2021). The utilisation of useful ambient energy in residential dwellings to improve thermal comfort and reduce energy consumption. International Journal of Thermofluids, 9. https://doi.org/10.1016/j.ijft.2020.100059
Ribeiro, P. V. S., & Bittencourt, L. S. (2016). Contribuição da mesa d’agua na análise da geometria de sheds extratores e captadores de ar para ventilação natural. ENTAC 2016 - XVI ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, Desafios e Perspectivas da Internacionalização da Construção, São Paulo, Brasil, 21 a 23 de Setembro de 2016.
Rossi, M. M., Vale, F. I., Shimomura, A. P. R., & Chvatal, K. M. S. (2019). A mesa d’ água como ferramenta de apoio para a caracterização de um modelo genérico a ser ensaiado em túnel de vent. Revista IPT| Tecnologia e Inovação, 2(10), 70–80.
Salazar, L. L., & Alves da Silva, J. L. (2019). A mesa d ’ água como método de análise e entendimento para os conceitos de ventilação natural. IV SIMPAC: Simpósio de pessoas, arquitetura e cidade, São Paulo(SP) UAM, Brasil, 23 a 25 de Outubro de 2019. https//www.even3.com.br/anais/artigos_ivsimpac/212479-A-MESA-DAGUA-COMO-METODO-DE-ANALISE-E-ENTENDIMENTO-PARA-OS-CONCEITOS-DE-VENTILACAO-NATURAL%3E. Acesso em: 27/10/2021 15:25
Semahi, S., Zemmouri, N., Singh, M. K., & Attia, S. (2019). Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 161(July), 106271. https://doi.org/10.1016/j.buildenv.2019.106271
Shan, X., Luo, N., Sun, K., Hong, T., Lee, Y. K., & Lu, W. Z. (2020). Coupling CFD and building energy modelling to optimize the operation of a large open office space for occupant comfort. Sustainable Cities and Society, 60(September 2019), 102257. https://doi.org/10.1016/j.scs.2020.102257
Shin, M., & Haberl, J. S. (2022). A procedure for automating thermal zoning for building energy simulation. Journal of Building Engineering, 46(December 2021), 103780. https://doi.org/10.1016/j.jobe.2021.103780
Taleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215. https://doi.org/10.1016/j.rser.2013.05.050
Tang, L., Ai, Z., Song, C., Zhang, G., & Liu, Z. (2021). A strategy to maximally utilize outdoor air for indoor thermal environment. Energies, 14(13), 1–13. https://doi.org/10.3390/en14133987
Taylor, M., Brown, N. C., & Rim, D. (2021). Optimizing thermal comfort and energy use for learning environments. Energy and Buildings, 248, 111181. https://doi.org/10.1016/j.enbuild.2021.111181
Teixeira, L., Talaia, M., & Meles, B. (2018). Assessment of thermal comfort in a Portuguese metalworking industry. Occupational Ergonomics, 13(S1), S59–S70. https://doi.org/10.3233/OER-170254
Toledo, A. M., & Pereira, F. O. R. (2003). Potencial da Mesa d’ água para a visualização analógica da ventilação natural em edifícios. ENCAC 2003 - ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, Curitiba, Porto Alegre, Brasil, 5 a 7 de novembro de 2003.
Torres, H. A., & Osorio, R. (2020). Evaluación de las condiciones de secado del bagazo usado como combustible en trapiche panelero en el municipio de Nocaima Cundinamarca. I Congreso Colombiano de Estudiantes de Ingeniería Agrícola CEIA 2020 - Innovación y Desarrollo Avanzando Hacia Una Agricultura Sostenible. Congreso dirigido por la Asociación Colombiana de Estudiantes de Ingeniería Agrícola - ACEIA, Bogotá.
Tsitoura, M., Michailidou, M., & Tsoutsos, T. (2017). A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153, 368–381. https://doi.org/10.1016/j.enbuild.2017.07.079
Vellei, M., Herrera, M., Fosas, D., & Natarajan, S. (2017). The influence of relative humidity on adaptive thermal comfort. Building and Environment, 124, 171–185. https://doi.org/10.1016/j.buildenv.2017.08.005
Volverás-Mambuscay, B., González-Chavarro, C. F., Huertas, B., Kopp-Sanabria, E., & Ramírez-Durán, J. (2020). Effect of the organic and mineral fertilizer on the performance of sugarcane yield in Nariño, Colombia. Agronomy Mesoamerican, 31(3), 547–565. https://doi.org/10.15517/AM.V31I3.37334
Xie, J., Li, H., Li, C., Zhang, J., & Luo, M. (2020). Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 226, 110392. https://doi.org/10.1016/j.enbuild.2020.110392
Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54, 243–251. https://doi.org/10.1016/j.enbuild.2012.07.042
Yasmeen, S., Liu, H., Wu, Y., & Li, B. (2020). Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China. Journal of Building Engineering, 30(February), 101281. https://doi.org/10.1016/j.jobe.2020.101281
Yuan, C., & Ng, E. (2014). Practical application of CFD on environmentally sensitive architectural design at high density cities: A case study in Hong Kong. Urban Climate, 8, 57–77. https://doi.org/10.1016/j.uclim.2013.12.001
Yüksel, A., Arıcı, M., Krajčík, M., Civan, M., & Karabay, H. (2021). A review on thermal comfort, indoor air quality and energy consumption in temples. Journal of Building Engineering, 35(November 2020). https://doi.org/10.1016/j.jobe.2020.102013
Zhai, Z. J., & Chen, Q. Y. (2005). Performance of coupled building energy and CFD simulations. Energy and Buildings, 37(4), 333–344. https://doi.org/10.1016/j.enbuild.2004.07.001
Zhang, R., Zhang, Y., Lam, K. P., & Archer, D. H. (2010). A prototype mesh generation tool for CFD simulations in architecture domain. Building and Environment, 45(10), 2253–2262. https://doi.org/10.1016/j.buildenv.2010.04.007
Zhang, X., Weerasuriya, A. U., Wang, J., Li, C. Y., Chen, Z., Tse, K. T., & Hang, J. (2022). Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment, 207(PA), 108447. https://doi.org/10.1016/j.buildenv.2021.108447
Zhong, W., Zhang, T., & Tamura, T. (2019). CFD simulation of convective heat transfer on vernacular sustainable architecture: Validation and application of methodology. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154231
Zoras, S., Veranoudis, S., & Dimoudi, A. (2017). Micro- climate adaptation of whole building energy simulation in large complexes. Energy and Buildings, 150, 81–89. https://doi.org/10.1016/j.enbuild.2017.05.060
Zr, D. L., & Mochtar, S. (2013). Application of Bioclimatic Parameter as Sustainability Approach on Multi-story Building Design in Tropical Area. Procedia Environmental Sciences, 17, 822–830. https://doi.org/10.1016/j.proenv.2013.02.100
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx,ii 251 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Artes - Maestría en Construcción
dc.publisher.faculty.spa.fl_str_mv Facultad de Artes
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82174/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82174/2/80218698.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82174/3/80218698.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
66a54a6205b0f37a8651024db67e7eef
7b704e5dc0bc684a542c9761ffe3417d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090204923822080
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Hernández, Robinsonc82e0cb32dbd36ba22e76468ec60cc49Osorio Saraz, Jairo Alexander93075c8ef7e485f88a2db8981e3b16a0Cortés Tovar, Giovanni Andrés673512e57acc7a306f489325a1fc27bfIngeniería de BiosistemasGesa: Grupo de Estudios en Sostenibilidad Ambiental2022-08-29T18:07:21Z2022-08-29T18:07:21Z2022-06-28https://repositorio.unal.edu.co/handle/unal/82174Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn esta tesis se contribuye al entendimiento de las condiciones microclimaticas adecuadas al interior de las instalaciones agroindustriales para la producción Azúcar de Caña no Centrifugada, en inglés: Non-centrifugal Cane Sugar (NCS), conocida en Colombia como “Panela” en regiones tropicales, utilizando las estrategias del diseño bioclimático en la envolvente, garantizando condiciones de confort térmico para los trabajadores y optimizando el uso de la energía para el funcionamiento de la edificación, que se logra a través de la combustión del bagazo, obteniendo como resultado menos emisión de CO2, lo cual contribuye a la disminución de la huella de carbono y por ende la protección del medio ambiente. A partir de la simulación Dinámica de Fluidos Computacional (CFD) y Simulación Energética de Edificios (BES) se describió el comportamiento fluidodinámico e higrotérmico dentro de la edificación, se modelaron doce tratamientos analizando el efecto de las aberturas en las paredes y en la ventana cenital, junto con el uso de tres tipos de materiales de cubierta. Además, se determinaron los índices de confort térmico: temperatura efectiva y el índice de temperatura del globo y bulbo húmedo en inglés: Wet Bulb Globe Temperatures (WBGT), así como el confort térmico adaptativo en cada tratamiento. Posteriormente se simuló la ventilación natural para un modelo de la instalación con el equipo de la mesa de agua. Con esta investigación se realizan aportes en el área del diseño y análisis bioclimático de envolventes de instalaciones agroindustriales por medio de herramientas de simulación computacional enfocadas en optimizar el microambiente al interior de la edificación, mejorando el bienestar del trabajador y las condiciones de eficiencia energética del proceso de producción. (Texto tomado de la fuente).This thesis contributes to the understanding of the appropriate microclimatic conditions within the agroindustrial facilities for the production of Non Centrifuged Cane Sugar (ACNC), known in Colombia as "Panela" in tropical regions, using bioclimatic design strategies in the envelope, ensuring thermal comfort conditions for workers and optimizing the use of energy for the operation of the building that is achieved through the combustion of bagasse, resulting in lower CO2 emissions contributing to the reduction of the carbon footprint and therefore to the protection of the environment. From Computational Fluid Dynamics (CFD) and Building Energy Simulation (BES), the fluid dynamic and hygrothermal behavior inside the building is described, twelve treatments were modeled analyzing the effect of the openings. on the walls and in the zenithal window, together with the use of three types of roofing materials, in addition, the thermal comfort indexes were determined: effective temperature and WBGT, and the adaptive thermal comfort model in each treatment. Subsequently, natural ventilation was simulated for a scale model of the installation with the water table equipment. With this research, contributions are made in the field of bioclimatic design and analysis of agroindustrial facility envelopes by means of computational simulation tools focused on optimizing the microenvironment inside the building, improving the worker's well-being and the energy efficiency conditions of the production process.MaestríaMagíster en ConstrucciónEdificaciones sosteniblesArquitectura y Urbanismoxx,ii 251 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Artes - Maestría en ConstrucciónFacultad de ArtesBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosProducción industrialIndustria azucareraEdificios industrialesIndustrial productionSugar industryIndustrial buildingsConfort térmicoSimulación computacionalBioclimáticaEficiencia energéticaThermal comfortComputational simulationBioclimaticEnergy efficiencyPropuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panelaConstructive proposal based on the bioclimatic analysis of the envelope of agro-industrial plants for the production of panelaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755. https://doi.org/10.1016/j.enbuild.2021.111755Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138(May 2020), 110669. https://doi.org/10.1016/j.rser.2020.110669Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020), 128183. https://doi.org/10.1016/j.foodchem.2020.128183Alsharif, R., Arashpour, M., Chang, V., & Zhou, J. (2021). A review of building parameters’ roles in conserving energy versus maintaining comfort. Journal of Building Engineering, 35(December 2020), 102087. https://doi.org/10.1016/j.jobe.2020.102087Altan, H., Hajibandeh, M., Tabet Aoul, K. A., & Deep, A. (2016). Passive Design. In M. Noguchi (Ed.), ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes (pp. 209–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-31967-4_8Amaro, A. L. N., Junior, T. Y., Yanagi, S. de N. M., Ferraz, G. A. E. S., & Campos, A. T. (2018). Climate change and rural workers thermal comfort: Historical and future impacts. Engenharia Agricola, 38(2), 173–179. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n2p173-179/2018American Society of Heating Refrigerating and Air Conditioning Engineers - ASHRAE Standard 55. (2017). Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE 55-2017.Andrade, M., Johanna, M., Torres, G., & Nelson, E. (2020). La panela del Catatumbo , una alternativa agroindustrial con perfil Internacional. Revista Espacios, 41(25), 159–170. http://sistemasblandosxd.revistaespacios.com/a20v41n25/a20v41n25p13.pdfBjerg, B., Cascone, G., Lee, I. B., Bartzanas, T., Norton, T., Hong, S. W., Seo, I. H., Banhazi, T., Liberati, P., Marucci, A., & Zhang, G. (2013). Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosystems Engineering, 116(3), 259–275. https://doi.org/10.1016/j.biosystemseng.2013.06.012Buriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015a). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciencia Rural, 45(2), 223–230. https://doi.org/10.1590/0103-8478cr20131537Buriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015b). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciência Rural, 45, 223–230.Camara, T., Kamsu-Foguem, B., Diourte, B., Maiga, A. I., & Habbadi, A. (2017). Management and assessment of performance risks for bioclimatic buildings. Journal of Cleaner Production, 147, 654–667. https://doi.org/10.1016/j.jclepro.2017.01.063Carlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194–205. https://doi.org/10.1016/j.enbuild.2012.06.015Castillo, J., & Orozco, A. (2010). Evaluación de un método de cálculo para estimar la carga de trabajo en trabajadores expuestos a condiciones térmicas extremas. Salud de Los Trabajadores, 18, 17–33. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-01382010000100003&nrm=isoChen Austin, M., Castillo, M., De Mendes Da Silva, Á., & Mora, D. (2020). Numerical Assessment of Bioclimatic Architecture Strategies for Buildings Design in Tropical Climates: A Case of Study in Panama. E3S Web of Conferences, 197, 1–10. https://doi.org/10.1051/e3sconf/202019702006Chong, A., Gu, Y., & Jia, H. (2021). Calibrating building energy simulation models: A review of the basics to guide future work. Energy and Buildings, 253, 111533. https://doi.org/10.1016/j.enbuild.2021.111533Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007Dacanal, C., Luz, S. do N., Turco, S. H. N., & Vasconcelos, O. C. d. M. (2018). Diagnosis and recommendations for the bioclimatic design of grape packing houses in hot and dry climate. Engenharia Agricola, 38(1), 1–6. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p1-6/2018De Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., Li, B., Nishihara, N., Sekhar, S. C., Tanabe, S., Toftum, J., Zhang, H., & Zhu, Y. (2013). Progress in thermal comfort research over the last twenty years. Indoor Air, 23(6), 442–461. https://doi.org/10.1111/ina.12046de Oliveira, C. C., Rupp, R. F., & Ghisi, E. (2021). Influence of environmental variables on thermal comfort and air quality perception in office buildings in the humid subtropical climate zone of Brazil. Energy and Buildings, 243, 110982. https://doi.org/10.1016/j.enbuild.2021.110982Dhaka, S., Mathur, J., & Garg, V. (2014). Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 35(3), 280–295. https://doi.org/10.1177/0143624413490177Dianat, I., Vahedi, A., & Dehnavi, S. (2016). Association between objective and subjective assessments of environmental ergonomic factors in manufacturing plants. International Journal of Industrial Ergonomics, 54, 26–31. https://doi.org/10.1016/j.ergon.2015.12.004El-Darwish, I., & Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579–589. https://doi.org/10.1016/j.aej.2017.05.011Eli, L. G., Krelling, A. F., Olinger, M. S., Melo, A. P., & Lamberts, R. (2021). Thermal performance of residential building with mixed-mode and passive cooling strategies: The Brazilian context. Energy and Buildings, 244, 111047. https://doi.org/10.1016/j.enbuild.2021.111047Elshafei, G., Vilcekova, S., Zelenakova, M., & Negm, A. M. (2021). Towards an adaptation of efficient passive design for thermal comfort buildings. Sustainability (Switzerland), 13(17), 1–23. https://doi.org/10.3390/su13179570Enander, A. E. (1989). Effects of thermal stress on human performance. Scandinavian Journal of Work, Environment & Health, 15, 27–33. http://www.jstor.org/stable/40965606Esteves, D., Silva, J., Martins, L., Teixeira, J., & Teixeira, S. (2021). Building Energy Performance: Comparison Between EnergyPlus and Other Certified Tools. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Eds.), Computational Science and Its Applications -- ICCSA 2021 (pp. 493–503). Springer International Publishing.FAO - Food and Agriculture Organization. (1994). Sugar crops and sweeteners and derived products. https://www.fao.org/es/faodef/fdef03e.htmGaitani, N., Mihalakakou, G., & Santamouris, M. (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, 42(1), 317–324. https://doi.org/10.1016/j.buildenv.2005.08.018Gan, G. (2013). CFD Simulation for Sustainable Building Design. In R. Yao (Ed.), Design and Management of Sustainable Built Environments (pp. 253–277). Springer London. https://doi.org/10.1007/978-1-4471-4781-7_13García, H. R. (2013). Guía Constructiva para trapiches con 100 kg/h de capacidad. https://doi.org/10.13140/RG.2.2.32052.86406García, H. R., Albarracín, L. C., Toscano LaTorre, A., Santana, N., & Insuasty, O. (2007). Guía tecnológica para el manejo integral del sistema productivo de la caña panelera. Produmedios.García, H. R., & Cortés, G. (2010). Hornillas para la producción de panela. Cursos sobre producción de Panela en: Mariquita, Tolima; Sandoná, Nariño; Angostura, Antioquia; Isnos, Huila; Nocaima, Cundinamarca. https://www.researchgate.net/publication/306375186_Hornillas_para_la_produccion_de_panela#:~:text=El horno usado en la,azúcares%2C hasta el “punto deGarcía, J. M., Narváez, P. C., Heredia, F. J., Orjuela, Á., & Osorio, C. (2017). Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. https://doi.org/10.1016/j.foodchem.2017.01.134Gordillo, G., & García, H. R. (1992). Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera ICA – HOLANDA CIMPA.Gou, Z., Gamage, W., Lau, S. S. Y., & Lau, S. S. Y. (2018). An investigation of thermal comfort and adaptive behaviors in naturally ventilated residential buildings in tropical climates: A pilot study. Buildings, 8(1). https://doi.org/10.3390/buildings8010005Gungor, S., Cetin, M., & Adiguzel, F. (2021). Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere and Health, 14(4), 515–522. https://doi.org/10.1007/s11869-020-00955-yGutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018a). Actualidad del sistema productivo tradicional de panela en Colombia: análisis de mejoras y alternativas tecnológicas. Ingeniería Y Competitividad, 20(1), 107. https://doi.org/10.25100/iyc.v20i1.6190Gutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018b). Energy and Productivity Yield Assessment of a Traditional Furnace for Noncentrifugal Brown Sugar (Panela) Production. International Journal of Chemical Engineering, 2018. https://doi.org/10.1155/2018/6841975Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. https://doi.org/10.1016/j.energy.2018.09.019He, Y., Liu, X. H., Zhang, H. L., Zheng, W., Zhao, F. Y., Aurel Schnabel, M., & Mei, Y. (2021). Hybrid framework for rapid evaluation of wind environment around buildings through parametric design, CFD simulation, image processing and machine learning. Sustainable Cities and Society, 73(April). https://doi.org/10.1016/j.scs.2021.103092Hellwig, R. T., Teli, D., Schweiker, M., Choi, J. H., Lee, M. C. J., Mora, R., Rawal, R., Wang, Z., & Al-Atrash, F. (2019). A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 205, 109476. https://doi.org/10.1016/j.enbuild.2019.109476Holstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability (Switzerland), 9(3). https://doi.org/10.3390/su9030435Ismail, A. R., Rani, M., Mohd Makhbul, Z., Mohd Nor, J., & Rahman, M. (2009). A Study of Relationship Between WGBT and Relative Humidity to Worker of Performance. Journal of World Academy of Science, Engineering and Technology (WASET), 51, 209–214.Kiki, G., Kouchadé, C., Houngan, A., Zannou-Tchoko, S. J., & André, P. (2020). Evaluation of thermal comfort in an office building in the humid tropical climate of Benin. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107277Kini, P. G., Garg, N. K., & Kamath, K. (2017). To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate. IOP Conference Series: Earth and Environmental Science, 73(1), 0–6. https://doi.org/10.1088/1755-1315/73/1/012031Kralikova, R., Sokolova, H., & Wessely, E. (2014). Thermal environment evaluation according to indices in industrial workplaces. Procedia Engineering, 69, 158–167. https://doi.org/10.1016/j.proeng.2014.02.216Kükrer, E., & Eskin, N. (2021). Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building. Journal of Building Engineering, 44(April). https://doi.org/10.1016/j.jobe.2021.102697Kumar, P., & Sharma, A. (2021). Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.06.292Lamberts, R., Xavier, A. A., & Goulart, S. (2011). Conforto e Stress Térmico. Laboratório de Eficiência Energética em Edificações Santa Catarina: Departamento de Engenharia Cívil, Centro Tecnológico, Universidade Federal de Santa Catarina. http://www.labeee.ufsc.br/antigo/arquivos/publicacoes/Apconforto.pdfLatha, P. K., Darshana, Y., & Venugopal, V. (2015). Role of building material in thermal comfort in tropical climates - A review. Journal of Building Engineering, 3, 104–113. https://doi.org/10.1016/j.jobe.2015.06.003Manzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755. https://doi.org/10.1016/j.rser.2015.04.095Marchante González, G., & González Santos, A. I. (2020). Evaluación del confort y disconfort térmico. Ingeniería Electrónica, Automática y Comunicaciones, 41(3), 21–40.Meggers, F. (2015). Hidden Surface Effects: Radiant Temperature as an Urban and Architectural Comfort Culprit. In S. T. Rassia & P. M. Pardalos (Eds.), Future City Architecture for Optimal Living (pp. 201–220). Springer International Publishing. https://doi.org/10.1007/978-3-319-15030-7_11Ministerio de Agricultura y Desarrollo Rural de Colombia. (2019). Cadena Agroindustrial de la panela Dirección de Cadenas Agrícolas y Forestales. https://sioc.minagricultura.gov.co/Panela/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf.Ministerio de la Protección Social de Colombia. (2016). Resolución Numero 779 de 2006, del 17 de marzo. Por la cual se establece el reglamento técnico sobre los requisitos sanitarios que se deben cumplir en la producción y comercialización de la panela para consumo humano y se dictan otras disposiciones. Diario Oficial de la Republica de Colombia N° 46.223 del 17 de marzo de 2006.Ministerio de Trabajo y Seguridad Social de Colombia. (1979). Resolución 2400 de 1979. Por el cual se establecen disposiciones sobre vivienda, higiene y seguridad industrial en los establecimientos de trabajo. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=53565Ministério do Trabalho e Emprego. (2013). Portaria SEPRT n.o 1.359, de 09 de dezembro de 2019 que altera a Norma Regulamentadora 15 - ANEXO 3 - Limites de tolerância para exposição ao calor. https://www.gov.br/trabalho-e-previdencia/pt-br/search?SearchableText=nr 15-anexo-03Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055Naboni, E., Lee, D. S. H., & Fabbri, K. (2017). Thermal Comfort-CFD maps for Architectural Interior Design. Procedia Engineering, 180, 110–117. https://doi.org/10.1016/j.proeng.2017.04.170Nasrollahzadeh, N. (2021). Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit. Journal of Building Engineering, 44(October), 103418. https://doi.org/10.1016/j.jobe.2021.103418Nedel, A. S., Alonso, M. F., de Freitas, R. A. P., da Costa Trassante, F., da Silva, H. N., De Bortolli, E., de Medeiros, M. A. F., Hallal, P. C., & Vianna, J. C. T. (2021). Analysis of indoor human thermal comfort in Pelotas municipality, extreme southern Brazil. International Journal of Biometeorology, 65(3), 419–428. https://doi.org/10.1007/s00484-020-02015-7Norton, T., Grant, J., Fallon, R., & Sun, D. W. (2009). Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Engineering, 103(1), 78–99. https://doi.org/10.1016/j.biosystemseng.2009.02.007Pajek, L., & Košir, M. (2021). Exploring climate-change impacts on energy efficiency and overheating vulnerability of bioclimatic residential buildings under central european climate. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126791Pereira, F. O. R., & Toledo, A. M. (2004). Analogical Visualization of Natural Ventilation in Buildings due to Wind Action. Plea2004 - The 21 Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 19 - 22 September 2004.Piña, E. (2018). Prototipo de vivienda vertical social sustentable, enfoque en resistencia al cambio climático. Revista INVI, 33(92), 213–237.Pina, E. A., Lozano, M. A., & Serra, L. M. (2021). Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings. Renewable and Sustainable Energy Reviews, 149(May), 111382. https://doi.org/10.1016/j.rser.2021.111382Prada Forero, L., Sánchez Castro, Z., García Bernal, H., & Rojas Ávila, H. (2012). Hornillas paneleras Ward-CIMPA: Validación de los modelos matemáticos de diseño Corpoica-UIS. Fuentes: El Reventón Energético, 10(2), 6.Ramírez Gil, J. G. (2017). Characterization of traditional production systems of sugarcane for panela and some prospects for improving their sustainability. Revista Facultad Nacional de Agronomia Medellin, 70(1), 8045–8055. https://doi.org/10.15446/rfna.v70n1.61763Rashad, M., Khordehgah, N., Żabnieńska-Góra, A., Ahmad, L., & Jouhara, H. (2021). The utilisation of useful ambient energy in residential dwellings to improve thermal comfort and reduce energy consumption. International Journal of Thermofluids, 9. https://doi.org/10.1016/j.ijft.2020.100059Ribeiro, P. V. S., & Bittencourt, L. S. (2016). Contribuição da mesa d’agua na análise da geometria de sheds extratores e captadores de ar para ventilação natural. ENTAC 2016 - XVI ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, Desafios e Perspectivas da Internacionalização da Construção, São Paulo, Brasil, 21 a 23 de Setembro de 2016.Rossi, M. M., Vale, F. I., Shimomura, A. P. R., & Chvatal, K. M. S. (2019). A mesa d’ água como ferramenta de apoio para a caracterização de um modelo genérico a ser ensaiado em túnel de vent. Revista IPT| Tecnologia e Inovação, 2(10), 70–80.Salazar, L. L., & Alves da Silva, J. L. (2019). A mesa d ’ água como método de análise e entendimento para os conceitos de ventilação natural. IV SIMPAC: Simpósio de pessoas, arquitetura e cidade, São Paulo(SP) UAM, Brasil, 23 a 25 de Outubro de 2019. https//www.even3.com.br/anais/artigos_ivsimpac/212479-A-MESA-DAGUA-COMO-METODO-DE-ANALISE-E-ENTENDIMENTO-PARA-OS-CONCEITOS-DE-VENTILACAO-NATURAL%3E. Acesso em: 27/10/2021 15:25Semahi, S., Zemmouri, N., Singh, M. K., & Attia, S. (2019). Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 161(July), 106271. https://doi.org/10.1016/j.buildenv.2019.106271Shan, X., Luo, N., Sun, K., Hong, T., Lee, Y. K., & Lu, W. Z. (2020). Coupling CFD and building energy modelling to optimize the operation of a large open office space for occupant comfort. Sustainable Cities and Society, 60(September 2019), 102257. https://doi.org/10.1016/j.scs.2020.102257Shin, M., & Haberl, J. S. (2022). A procedure for automating thermal zoning for building energy simulation. Journal of Building Engineering, 46(December 2021), 103780. https://doi.org/10.1016/j.jobe.2021.103780Taleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215. https://doi.org/10.1016/j.rser.2013.05.050Tang, L., Ai, Z., Song, C., Zhang, G., & Liu, Z. (2021). A strategy to maximally utilize outdoor air for indoor thermal environment. Energies, 14(13), 1–13. https://doi.org/10.3390/en14133987Taylor, M., Brown, N. C., & Rim, D. (2021). Optimizing thermal comfort and energy use for learning environments. Energy and Buildings, 248, 111181. https://doi.org/10.1016/j.enbuild.2021.111181Teixeira, L., Talaia, M., & Meles, B. (2018). Assessment of thermal comfort in a Portuguese metalworking industry. Occupational Ergonomics, 13(S1), S59–S70. https://doi.org/10.3233/OER-170254Toledo, A. M., & Pereira, F. O. R. (2003). Potencial da Mesa d’ água para a visualização analógica da ventilação natural em edifícios. ENCAC 2003 - ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, Curitiba, Porto Alegre, Brasil, 5 a 7 de novembro de 2003.Torres, H. A., & Osorio, R. (2020). Evaluación de las condiciones de secado del bagazo usado como combustible en trapiche panelero en el municipio de Nocaima Cundinamarca. I Congreso Colombiano de Estudiantes de Ingeniería Agrícola CEIA 2020 - Innovación y Desarrollo Avanzando Hacia Una Agricultura Sostenible. Congreso dirigido por la Asociación Colombiana de Estudiantes de Ingeniería Agrícola - ACEIA, Bogotá.Tsitoura, M., Michailidou, M., & Tsoutsos, T. (2017). A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153, 368–381. https://doi.org/10.1016/j.enbuild.2017.07.079Vellei, M., Herrera, M., Fosas, D., & Natarajan, S. (2017). The influence of relative humidity on adaptive thermal comfort. Building and Environment, 124, 171–185. https://doi.org/10.1016/j.buildenv.2017.08.005Volverás-Mambuscay, B., González-Chavarro, C. F., Huertas, B., Kopp-Sanabria, E., & Ramírez-Durán, J. (2020). Effect of the organic and mineral fertilizer on the performance of sugarcane yield in Nariño, Colombia. Agronomy Mesoamerican, 31(3), 547–565. https://doi.org/10.15517/AM.V31I3.37334Xie, J., Li, H., Li, C., Zhang, J., & Luo, M. (2020). Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 226, 110392. https://doi.org/10.1016/j.enbuild.2020.110392Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54, 243–251. https://doi.org/10.1016/j.enbuild.2012.07.042Yasmeen, S., Liu, H., Wu, Y., & Li, B. (2020). Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China. Journal of Building Engineering, 30(February), 101281. https://doi.org/10.1016/j.jobe.2020.101281Yuan, C., & Ng, E. (2014). Practical application of CFD on environmentally sensitive architectural design at high density cities: A case study in Hong Kong. Urban Climate, 8, 57–77. https://doi.org/10.1016/j.uclim.2013.12.001Yüksel, A., Arıcı, M., Krajčík, M., Civan, M., & Karabay, H. (2021). A review on thermal comfort, indoor air quality and energy consumption in temples. Journal of Building Engineering, 35(November 2020). https://doi.org/10.1016/j.jobe.2020.102013Zhai, Z. J., & Chen, Q. Y. (2005). Performance of coupled building energy and CFD simulations. Energy and Buildings, 37(4), 333–344. https://doi.org/10.1016/j.enbuild.2004.07.001Zhang, R., Zhang, Y., Lam, K. P., & Archer, D. H. (2010). A prototype mesh generation tool for CFD simulations in architecture domain. Building and Environment, 45(10), 2253–2262. https://doi.org/10.1016/j.buildenv.2010.04.007Zhang, X., Weerasuriya, A. U., Wang, J., Li, C. Y., Chen, Z., Tse, K. T., & Hang, J. (2022). Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment, 207(PA), 108447. https://doi.org/10.1016/j.buildenv.2021.108447Zhong, W., Zhang, T., & Tamura, T. (2019). CFD simulation of convective heat transfer on vernacular sustainable architecture: Validation and application of methodology. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154231Zoras, S., Veranoudis, S., & Dimoudi, A. (2017). Micro- climate adaptation of whole building energy simulation in large complexes. Energy and Buildings, 150, 81–89. https://doi.org/10.1016/j.enbuild.2017.05.060Zr, D. L., & Mochtar, S. (2013). Application of Bioclimatic Parameter as Sustainability Approach on Multi-story Building Design in Tropical Area. Procedia Environmental Sciences, 17, 822–830. https://doi.org/10.1016/j.proenv.2013.02.100Mesa de agua para la simulación de fluidodinámica aplicada a la ventilación natural en edificaciones ruralesUN INNOVA": CONVOCATORIA DE PROYECTOS PARA EL FORTALECIMIENTO DE LA INNOVACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA A PARTIR DEL DESARROLLO DE PROTOTIPOS Y EXPERIENCIAS PILOTO 2019-2021 (PRIMERA COHORTE)"InvestigadoresInvestigadoresEstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82174/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL80218698.2022.pdf80218698.2022.pdfTesis de Maestría en Construcciónapplication/pdf7475824https://repositorio.unal.edu.co/bitstream/unal/82174/2/80218698.2022.pdf66a54a6205b0f37a8651024db67e7eefMD52THUMBNAIL80218698.2022.pdf.jpg80218698.2022.pdf.jpgGenerated Thumbnailimage/jpeg5454https://repositorio.unal.edu.co/bitstream/unal/82174/3/80218698.2022.pdf.jpg7b704e5dc0bc684a542c9761ffe3417dMD53unal/82174oai:repositorio.unal.edu.co:unal/821742024-03-04 14:47:28.611Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=