Optimización exergética de una planta de separación de aire en función de la demanda con integración energética

Ilustraciones, diagramas, graficas, tablas

Autores:
Mora Molano, Camilo Andres
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79463
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79463
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Separación de aire criogénico
Análisis de exergía
Método NSGA-II
Demanda variable
Cryogenic air separation
Exergy analysis
NSGA-II method
Variable demand
Tecnología química
Industria química
Gas
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_a79dd9892226f284e04805e7f5f0f2d2
oai_identifier_str oai:repositorio.unal.edu.co:unal/79463
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
dc.title.translated.eng.fl_str_mv Exergetic optimization of a cryogenic air separation plant according to demand with energy integration
title Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
spellingShingle Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
660 - Ingeniería química
Separación de aire criogénico
Análisis de exergía
Método NSGA-II
Demanda variable
Cryogenic air separation
Exergy analysis
NSGA-II method
Variable demand
Tecnología química
Industria química
Gas
title_short Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
title_full Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
title_fullStr Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
title_full_unstemmed Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
title_sort Optimización exergética de una planta de separación de aire en función de la demanda con integración energética
dc.creator.fl_str_mv Mora Molano, Camilo Andres
dc.contributor.advisor.none.fl_str_mv Orjuela, Alvaro
dc.contributor.author.none.fl_str_mv Mora Molano, Camilo Andres
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Separación de aire criogénico
Análisis de exergía
Método NSGA-II
Demanda variable
Cryogenic air separation
Exergy analysis
NSGA-II method
Variable demand
Tecnología química
Industria química
Gas
dc.subject.proposal.spa.fl_str_mv Separación de aire criogénico
Análisis de exergía
Método NSGA-II
Demanda variable
dc.subject.proposal.eng.fl_str_mv Cryogenic air separation
Exergy analysis
NSGA-II method
Variable demand
dc.subject.unesco.none.fl_str_mv Tecnología química
Industria química
Gas
description Ilustraciones, diagramas, graficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-03T16:38:13Z
dc.date.available.none.fl_str_mv 2021-05-03T16:38:13Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79463
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79463
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alsultanny, Y. A., & Al-Shammari, N. N. (2014). Oxygen specific power consumption comparison for air separation units. Engineering Journal, 18(2), 67–80. https://doi.org/10.4186/ej.2014.18.2.67
Anania, B. P. V, & Llc, L. (2006). Mergers & Acquisitions in the US Industrial Gas Business. PART II – THE MAJOR INDUSTRY SHAPERS.
ANDI. (2018). 7 Acciones Prioritarias. Cámara Sectorial de Gases Industriales y Medicinales.
ANDI. (2016). Presentación sector gases industriales y medicinales. In ANDI (Ed.), Cámara sectorial de gases industriales y medicinales.
Banco de la República. (2017). Grupos económicos de Colombia. https://enciclopedia.banrepcultural.org/index.php/Grupos_económicos_en_Colombia
Briones, A., & Gutiérrez, C. (2018). Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen plus. Computacion y Sistemas, 22(4), 1157–1170. https://doi.org/10.13053/CyS-22-4-3087
British Petroleum. (2020). The use of energy within industry shifts towards developing economies and lower carbon energy. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-sector/industry.html
Carlson, E. C. (1996). Don’t gamble with physical properties for simulations. Chemical Engineering Progress, October, 35–46.
Chart. (2020). Brazed Aluminum Heat Exchangers. https://www.chartindustries.com/Energy/Brazed-Aluminum-Heat-Exchangers
Codensa. (2020). Tarifas de energía eléctrica reguladas por la CREG. https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-enero-2020.pdf
Cornelissen, R. . (1997). Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility.
Cornelissen, R. L., & Hirs, G. G. (1998). Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16–18), 1821–1826. https://doi.org/10.1016/s0196-8904(98)00062-4
Corpoema. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia. 1(Contrato UPME C006 – 2014).
Cryogas Grupo Air Prodcuts. (2020). Historia corporativa Cryogas. https://www.cryogas.com.co/web/co/compania/historia#:~:text=Cryogas es una empresa del,15.000 trabajadores en 50 países.&text=Te invitamos a que viajes,desde el nacimiento de Cryogas.
DANE. (2007). Encuesta anual manufacturera. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
Demirel, Y. (2004). Thermodynamic analysis of separation systems. Separation Science and Technology, 39(16), 3897–3942. https://doi.org/10.1081/SS-200041152
Ebrahimi, A., Meratizaman, M., Reyhani, H. A., Pourali, O., & Amidpour, M. (2015). Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy, 90, 1298–1316. https://doi.org/10.1016/j.energy.2015.06.083
Ebrahimi, A., & Ziabasharhagh, M. (2017). Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy, 126, 868–885. https://doi.org/10.1016/j.energy.2017.02.145
European Industrial Gases Association AISBL. (2005). Safe Practices Guide for Cryogenic Air Separation Plants Safe Practices Guide for Cryogenic.
Fernández, D., Pozo, C., Folgado, R., Jiménez, L., & Guillén-Gosálbez, G. (2018). Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied Energy, 212(applied energy), 1563–1577. https://doi.org/10.1016/j.apenergy.2017.12.008 Fu, Q., Zhu, L., & Chen, X. (2015). Complete Equation-Oriented Approach for Process Analysis and Optimization of a Cryogenic Air Separation Unit. Industrial and Engineering Chemistry Research, 54(48), 12096–12107. https://doi.org/10.1021/acs.iecr.5b02768
Garside, M. (2018). Global industrial gases market share by company 2017. Statista. https://www.statista.com/statistics/933494/global-market-share-industrial-gases-by-company/
Ghosh, I., Sarangi, S. K., & Das, P. K. (2006). An alternate algorithm for the analysis of multistream plate fin heat exchangers. International Journal of Heat and Mass Transfer, 49(17–18), 2889–2902. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.022
Grasys. (2020). Tecnología por adsorción. https://www.grasys.com/es/technologies/adsorption/
Guo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter- current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071
Häring, H.-W. (2008). Industrial Gas Processing. WILEY-VCH Verlag GmbH & Co. KGaA. Hill, M., & Technical, G. (1987). Group, Inc.* Group Technical 100 Mountain Avenue Murray Hill, NJ 07974. 37, 153–167.
Index Mundi. (2020). Consumo de electricidad mundial. https://www.indexmundi.com/map/?v=81&l=es
Johansson, T. (2015). Integrated Scheduling and control of Air Separation Unit Subject to Time-Varying Electricity Price.
Kalavani, F., Mohammadi-Ivatloo, B., & Zare, K. (2019). Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program. Renewable Energy, 130, 268–280. https://doi.org/10.1016/j.renene.2018.06.070
Kerry, F. G. (2007). Industrial gas handbook: Gas separation and purification. In Industrial Gas Handbook: Gas Separation and Purification. https://doi.org/10.1201/9781420008265
Khalel, Z., Rabah, A., & Barakat, T. A. M. (2014). Exergy Analysis of Cryogenic Air Separation Unit with Flash Separator. ICASTOR Journal of Engineering, 7(3), 135 – 147.
Kita, H., Tanaka, K., & Koga, T. (2008). Gas Separation Membranes. In Kobunshi (Vol. 57, Issue 11). https://doi.org/10.1295/kobunshi.57.894
Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., & Friend, D. G. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29(3), 331–362. https://doi.org/10.1063/1.1285884
Lin, S. (2011). NGPM — A NSGA-II Program in Matlab. College of Astronautics, Northwestern Polytechnical University, China. https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4
Long, K., & Murphy, M. (2009). World Industrial Gases.
Marshall, R., & Scales, B. (2020). Compressed Air Controls. Compressed Air Challenge. https://www.airbestpractices.com/technology/compressor-controls/compressed-air-controls
Miller, J., Luyben, W. L., Belanger, P., Blouin, S., & Megan, L. (2008). Improving agility of cryogenic air separation plants. Industrial and Engineering Chemistry Research, 47(2), 394–404. https://doi.org/10.1021/ie070975t
Moran, M. J., Shapiro, H. N., Boettner, S., Daisie D., B., & B., M. (2001). Fundamentals of Engineering Thermodynamics. In International Journal of Mechanical Engineering Education (Vol. 29, Issue 1). https://doi.org/10.7227/ijmee.29.1.2
Omar, Q., Mukhtar, A., Shafiq, U., Safdar, F., & Iqbal Ch, S. (2017). Simulation Study for Energy Minimization and Performance Enhancement Using Cryogenic Plate and Packed Bed Column Networks for Air. Austin Chemical Engineering, 4(2), 1053.
Pacio, J. C., & Dorao, C. A. (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 51(7), 366–379. https://doi.org/10.1016/j.cryogenics.2011.04.005
Peng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011
Perry, R. H., & Green, D. W. (2008). Chemical engineer’s handbook. Journal of the Society of Chemical Industry. https://doi.org/10.1002/jctb.5000534310
Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153(June 2018), 275–290. https://doi.org/10.1016/j.applthermaleng.2019.02.106
Ramírez Medina, C. (2008). Modelo y control de una columna de destilación continua. https://doi.org/10.1017/CBO9781107415324.004
Redacción El Tiempo. (1998). Fusión en sector de gases. https://www.eltiempo.com/archivo/documento/MAM-834532
Redacción El Tiempo. (2003). Una empresa con excelencia. https://www.eltiempo.com/archivo/documento/MAM-1017540
Research, G. view. (2020). Industrial Gases Market Size, Share & Trends Analysis Report By Product (Nitrogen, Oxygen), By Application (Healthcare, Manufacturing), By Distribution (Onsite, Bulk), By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/industrial-gases-market
Robert R., S., & F. James, R. (1969). Introduction to Biostatistics (Second). Dover Publications. Inc.
Robeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2), 165–185. https://doi.org/10.1016/0376-7388(91)80060-J
Schmidt, W.Kovak, K. Licht, W., & Feldman, S. (2000). Managing Trace Contaminants in Cryogenic Air Separation.
Schmidt, W. P., Winegardner, K. S., Dennehy, M., & Castle-Smith, H. (2001). Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 20(4), 269–279. https://doi.org/10.1002/prs.680200409
Shanghai T.S. Industrial Co., L. S. I. C. (2015). High flux tube and heat exchanger. http://www.lordfintube.com/productShow.asp?Id=765
Smith, A. ., & Klosek, J. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115–134. https://doi.org/10.1016/S0378-3820(01)00131-X
Sulzer. (2020). Structured Packings Energy-efficient , innovative and profitable Sulzer Chemtech – Mass Transfer Technology. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.ashx?la=enhttps://www.sulzer.com/en/shared/products/2017/03/28/13/27/laboratory-packings
The Linde Group. (2017). Compelling Perspectives. 1–230.
Theophilos, N. P. (1979). Engineering fundamentals analytical design data and cryogenic equipment applications. Union Carbide Corporation.
Van Der Ham, L. V. (2012). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Conversion and Management, 61, 31–42. https://doi.org/10.1016/j.enconman.2012.03.004
Weller, S., & Steiner, W. A. (1950). Separation of Gases by Fractional Permeation through Membranes. Journal of Applied Physics, 21(4), 279–283. https://doi.org/10.1063/1.1699653
Yan, L., Yu, Y., Li, Y., & Zhang, Z. (2010). Energy Saving Opportunities in an Air Separation Process. International Refrigeration and Air Conditioning Conference, 1131.
Yao, L., Tong, L., Zhang, A., Xie, Y., Shen, J., Li, H., Wang, L., & Li, S. (2015). Exergy Analysis for Air Separation Process Under Off-Design Conditions. Journal of Energy Resources Technology, 137(4). https://doi.org/10.1115/1.4029911
Zheng, J., Ye, H., Li, Y., Yang, Y., & Si, B. (2019). A Parametric Sensitivity Study and Comparison Analysis on Multiple Air Separation Processes. Industrial and Engineering Chemistry Research, 58(21), 9087–9098. https://doi.org/10.1021/acs.iecr.8b06046
Zhu, L., Chen, Z., Chen, X., Shao, Z., & Qian, J. (2009). Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method. Separation and Purification Technology, 67(3), 262–270. https://doi.org/10.1016/j.seppur.2009.03.032
Ziębik, A., & Gładysz, P. (2018). Systems approach to energy and exergy analyses. Energy, 165, 396–407. https://doi.org/10.1016/j.energy.2018.08.214
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en linea (167 paginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79463/1/1020736280.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79463/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79463/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79463/4/1020736280.2021.pdf.jpg
bitstream.checksum.fl_str_mv 41b72b7190038db7a08835c3903a7ff0
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
aa829cbf8cf7c3c71ef334b330815b3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886083804266496
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela, Alvaroff44bad1ff384660b8cd40bd903846edMora Molano, Camilo Andresddc41de1a0d77b7d7243ca2df8cd64e8Grupo de Investigación en Procesos Químicos y Bioquímicos2021-05-03T16:38:13Z2021-05-03T16:38:13Z2021https://repositorio.unal.edu.co/handle/unal/79463Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, diagramas, graficas, tablasLa tecnología de separación criogénica de aire es el método común para la producción de oxígeno, nitrógeno y argón puro a escala industrial. Sin embargo, el alto consumo de energía es el problema más importante para una operación rentable. El objetivo de este trabajo es realizar una simulación y optimización de una planta de destilación criogénica existente, ubicada en Tocancipá – Colombia, la cual presenta una alta integración térmica en su diseño, minimizando la intensidad de energía por kilogramo de productos líquidos. La comparación del consumo específico de energía entre la simulación y las condiciones industriales reales mostró errores relativos absolutos inferiores al 10.4% y respecto al manual de operación (EDM) del 9.4%, validando así el modelo simulado. Para identificar las principales variables que afectan la intensidad energética del proceso, se realizó un análisis de exergía de los principales equipos (intercambiador de múltiples etapas, compresor y columnas de destilación). La optimización empleó el método NSGA-II, utilizando de forma combinada el modelo simulado en Aspen Hysys y la optimización en Matlab. La optimización se realizó resolviendo el problema multiobjetivo de maximizar la eficiencia exergética y la relación de producción de argón, considerando una demanda variable. Finalmente se generan sugerencias basadas en criterios de seguridad, operacionales y financieras para mejorar el desempeño de la planta.The cryogenic air separation process is the most common technique for the production of pure oxygen, nitrogen and argon on an industrial scale. However, high energy consumption is a major problem for a profitable operation. The aim of this work is to perform a simulation and optimization from an existing air separation facility, located in Tocancipá - Colombia, with a high thermal integration in its design, that intends to minimize energy intensity per standard volume of the current processed air stream. The comparison of the specific energy consumption between simulation and real industrial conditions showed absolute relative error lower than 10.4% and regard to engineering manual (EDM) of 9.4%, thus validating the developed model. In order to identify the main variables affecting energy intensity, an exergy analysis of the main equipment (multi-stage exchanger, compressor and distillation columns). The optimization employs the NSGA-II method, carrying out a combination between the simulated model in Aspen Hysys and an optimization in MATLAB. The optimization involved solving a multi-objective problem of maximizing exergy efficiency and argon production ratio, considering a variable demand. Finally, suggestions are generated based on safety, operational and financial criteria to improve the performance of the plant.MaestríaSimulación y Optimización de Procesos1 recurso en linea (167 paginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería químicaSeparación de aire criogénicoAnálisis de exergíaMétodo NSGA-IIDemanda variableCryogenic air separationExergy analysisNSGA-II methodVariable demandTecnología químicaIndustria químicaGasOptimización exergética de una planta de separación de aire en función de la demanda con integración energéticaExergetic optimization of a cryogenic air separation plant according to demand with energy integrationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionImageTexthttp://purl.org/redcol/resource_type/TMAlsultanny, Y. A., & Al-Shammari, N. N. (2014). Oxygen specific power consumption comparison for air separation units. Engineering Journal, 18(2), 67–80. https://doi.org/10.4186/ej.2014.18.2.67Anania, B. P. V, & Llc, L. (2006). Mergers & Acquisitions in the US Industrial Gas Business. PART II – THE MAJOR INDUSTRY SHAPERS.ANDI. (2018). 7 Acciones Prioritarias. Cámara Sectorial de Gases Industriales y Medicinales.ANDI. (2016). Presentación sector gases industriales y medicinales. In ANDI (Ed.), Cámara sectorial de gases industriales y medicinales.Banco de la República. (2017). Grupos económicos de Colombia. https://enciclopedia.banrepcultural.org/index.php/Grupos_económicos_en_ColombiaBriones, A., & Gutiérrez, C. (2018). Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen plus. Computacion y Sistemas, 22(4), 1157–1170. https://doi.org/10.13053/CyS-22-4-3087British Petroleum. (2020). The use of energy within industry shifts towards developing economies and lower carbon energy. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-sector/industry.htmlCarlson, E. C. (1996). Don’t gamble with physical properties for simulations. Chemical Engineering Progress, October, 35–46.Chart. (2020). Brazed Aluminum Heat Exchangers. https://www.chartindustries.com/Energy/Brazed-Aluminum-Heat-ExchangersCodensa. (2020). Tarifas de energía eléctrica reguladas por la CREG. https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-enero-2020.pdfCornelissen, R. . (1997). Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility.Cornelissen, R. L., & Hirs, G. G. (1998). Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16–18), 1821–1826. https://doi.org/10.1016/s0196-8904(98)00062-4Corpoema. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia. 1(Contrato UPME C006 – 2014).Cryogas Grupo Air Prodcuts. (2020). Historia corporativa Cryogas. https://www.cryogas.com.co/web/co/compania/historia#:~:text=Cryogas es una empresa del,15.000 trabajadores en 50 países.&text=Te invitamos a que viajes,desde el nacimiento de Cryogas.DANE. (2007). Encuesta anual manufacturera. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enamDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017Demirel, Y. (2004). Thermodynamic analysis of separation systems. Separation Science and Technology, 39(16), 3897–3942. https://doi.org/10.1081/SS-200041152Ebrahimi, A., Meratizaman, M., Reyhani, H. A., Pourali, O., & Amidpour, M. (2015). Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy, 90, 1298–1316. https://doi.org/10.1016/j.energy.2015.06.083Ebrahimi, A., & Ziabasharhagh, M. (2017). Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy, 126, 868–885. https://doi.org/10.1016/j.energy.2017.02.145European Industrial Gases Association AISBL. (2005). Safe Practices Guide for Cryogenic Air Separation Plants Safe Practices Guide for Cryogenic.Fernández, D., Pozo, C., Folgado, R., Jiménez, L., & Guillén-Gosálbez, G. (2018). Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied Energy, 212(applied energy), 1563–1577. https://doi.org/10.1016/j.apenergy.2017.12.008 Fu, Q., Zhu, L., & Chen, X. (2015). Complete Equation-Oriented Approach for Process Analysis and Optimization of a Cryogenic Air Separation Unit. Industrial and Engineering Chemistry Research, 54(48), 12096–12107. https://doi.org/10.1021/acs.iecr.5b02768Garside, M. (2018). Global industrial gases market share by company 2017. Statista. https://www.statista.com/statistics/933494/global-market-share-industrial-gases-by-company/Ghosh, I., Sarangi, S. K., & Das, P. K. (2006). An alternate algorithm for the analysis of multistream plate fin heat exchangers. International Journal of Heat and Mass Transfer, 49(17–18), 2889–2902. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.022Grasys. (2020). Tecnología por adsorción. https://www.grasys.com/es/technologies/adsorption/Guo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter- current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071Häring, H.-W. (2008). Industrial Gas Processing. WILEY-VCH Verlag GmbH & Co. KGaA. Hill, M., & Technical, G. (1987). Group, Inc.* Group Technical 100 Mountain Avenue Murray Hill, NJ 07974. 37, 153–167.Index Mundi. (2020). Consumo de electricidad mundial. https://www.indexmundi.com/map/?v=81&l=esJohansson, T. (2015). Integrated Scheduling and control of Air Separation Unit Subject to Time-Varying Electricity Price.Kalavani, F., Mohammadi-Ivatloo, B., & Zare, K. (2019). Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program. Renewable Energy, 130, 268–280. https://doi.org/10.1016/j.renene.2018.06.070Kerry, F. G. (2007). Industrial gas handbook: Gas separation and purification. In Industrial Gas Handbook: Gas Separation and Purification. https://doi.org/10.1201/9781420008265Khalel, Z., Rabah, A., & Barakat, T. A. M. (2014). Exergy Analysis of Cryogenic Air Separation Unit with Flash Separator. ICASTOR Journal of Engineering, 7(3), 135 – 147.Kita, H., Tanaka, K., & Koga, T. (2008). Gas Separation Membranes. In Kobunshi (Vol. 57, Issue 11). https://doi.org/10.1295/kobunshi.57.894Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., & Friend, D. G. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29(3), 331–362. https://doi.org/10.1063/1.1285884Lin, S. (2011). NGPM — A NSGA-II Program in Matlab. College of Astronautics, Northwestern Polytechnical University, China. https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4Long, K., & Murphy, M. (2009). World Industrial Gases.Marshall, R., & Scales, B. (2020). Compressed Air Controls. Compressed Air Challenge. https://www.airbestpractices.com/technology/compressor-controls/compressed-air-controlsMiller, J., Luyben, W. L., Belanger, P., Blouin, S., & Megan, L. (2008). Improving agility of cryogenic air separation plants. Industrial and Engineering Chemistry Research, 47(2), 394–404. https://doi.org/10.1021/ie070975tMoran, M. J., Shapiro, H. N., Boettner, S., Daisie D., B., & B., M. (2001). Fundamentals of Engineering Thermodynamics. In International Journal of Mechanical Engineering Education (Vol. 29, Issue 1). https://doi.org/10.7227/ijmee.29.1.2Omar, Q., Mukhtar, A., Shafiq, U., Safdar, F., & Iqbal Ch, S. (2017). Simulation Study for Energy Minimization and Performance Enhancement Using Cryogenic Plate and Packed Bed Column Networks for Air. Austin Chemical Engineering, 4(2), 1053.Pacio, J. C., & Dorao, C. A. (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 51(7), 366–379. https://doi.org/10.1016/j.cryogenics.2011.04.005Peng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011Perry, R. H., & Green, D. W. (2008). Chemical engineer’s handbook. Journal of the Society of Chemical Industry. https://doi.org/10.1002/jctb.5000534310Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153(June 2018), 275–290. https://doi.org/10.1016/j.applthermaleng.2019.02.106Ramírez Medina, C. (2008). Modelo y control de una columna de destilación continua. https://doi.org/10.1017/CBO9781107415324.004Redacción El Tiempo. (1998). Fusión en sector de gases. https://www.eltiempo.com/archivo/documento/MAM-834532Redacción El Tiempo. (2003). Una empresa con excelencia. https://www.eltiempo.com/archivo/documento/MAM-1017540Research, G. view. (2020). Industrial Gases Market Size, Share & Trends Analysis Report By Product (Nitrogen, Oxygen), By Application (Healthcare, Manufacturing), By Distribution (Onsite, Bulk), By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/industrial-gases-marketRobert R., S., & F. James, R. (1969). Introduction to Biostatistics (Second). Dover Publications. Inc.Robeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2), 165–185. https://doi.org/10.1016/0376-7388(91)80060-JSchmidt, W.Kovak, K. Licht, W., & Feldman, S. (2000). Managing Trace Contaminants in Cryogenic Air Separation.Schmidt, W. P., Winegardner, K. S., Dennehy, M., & Castle-Smith, H. (2001). Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 20(4), 269–279. https://doi.org/10.1002/prs.680200409Shanghai T.S. Industrial Co., L. S. I. C. (2015). High flux tube and heat exchanger. http://www.lordfintube.com/productShow.asp?Id=765Smith, A. ., & Klosek, J. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115–134. https://doi.org/10.1016/S0378-3820(01)00131-XSulzer. (2020). Structured Packings Energy-efficient , innovative and profitable Sulzer Chemtech – Mass Transfer Technology. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.ashx?la=enhttps://www.sulzer.com/en/shared/products/2017/03/28/13/27/laboratory-packingsThe Linde Group. (2017). Compelling Perspectives. 1–230.Theophilos, N. P. (1979). Engineering fundamentals analytical design data and cryogenic equipment applications. Union Carbide Corporation.Van Der Ham, L. V. (2012). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Conversion and Management, 61, 31–42. https://doi.org/10.1016/j.enconman.2012.03.004Weller, S., & Steiner, W. A. (1950). Separation of Gases by Fractional Permeation through Membranes. Journal of Applied Physics, 21(4), 279–283. https://doi.org/10.1063/1.1699653Yan, L., Yu, Y., Li, Y., & Zhang, Z. (2010). Energy Saving Opportunities in an Air Separation Process. International Refrigeration and Air Conditioning Conference, 1131.Yao, L., Tong, L., Zhang, A., Xie, Y., Shen, J., Li, H., Wang, L., & Li, S. (2015). Exergy Analysis for Air Separation Process Under Off-Design Conditions. Journal of Energy Resources Technology, 137(4). https://doi.org/10.1115/1.4029911Zheng, J., Ye, H., Li, Y., Yang, Y., & Si, B. (2019). A Parametric Sensitivity Study and Comparison Analysis on Multiple Air Separation Processes. Industrial and Engineering Chemistry Research, 58(21), 9087–9098. https://doi.org/10.1021/acs.iecr.8b06046Zhu, L., Chen, Z., Chen, X., Shao, Z., & Qian, J. (2009). Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method. Separation and Purification Technology, 67(3), 262–270. https://doi.org/10.1016/j.seppur.2009.03.032Ziębik, A., & Gładysz, P. (2018). Systems approach to energy and exergy analyses. Energy, 165, 396–407. https://doi.org/10.1016/j.energy.2018.08.214ORIGINAL1020736280.2021.pdf1020736280.2021.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf3984845https://repositorio.unal.edu.co/bitstream/unal/79463/1/1020736280.2021.pdf41b72b7190038db7a08835c3903a7ff0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79463/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79463/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1020736280.2021.pdf.jpg1020736280.2021.pdf.jpgGenerated Thumbnailimage/jpeg5429https://repositorio.unal.edu.co/bitstream/unal/79463/4/1020736280.2021.pdf.jpgaa829cbf8cf7c3c71ef334b330815b3bMD54unal/79463oai:repositorio.unal.edu.co:unal/794632024-07-30 23:11:22.145Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==