Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá

ilustraciones, diagramas, fotografías

Autores:
Blanco Fajardo, Karen Johanna
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86034
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86034
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Distribución de tamaño de partícula
Concentración de número de partícula
Análisis de Componentes Principales
Calidad del aire
Particle number concentration
Particle number size distribution
Principal Components Analysis
Air quality
Contaminación atmosférica
Air pollution
Calidad del aire
Partículas en suspensión
air quality
particulates
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a7100422bf1d5a1e6ff370ae6f298115
oai_identifier_str oai:repositorio.unal.edu.co:unal/86034
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
dc.title.translated.eng.fl_str_mv Characterization of the particle size distribution of particulate matter present in air at two sites in Bogotá
title Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
spellingShingle Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Distribución de tamaño de partícula
Concentración de número de partícula
Análisis de Componentes Principales
Calidad del aire
Particle number concentration
Particle number size distribution
Principal Components Analysis
Air quality
Contaminación atmosférica
Air pollution
Calidad del aire
Partículas en suspensión
air quality
particulates
title_short Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
title_full Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
title_fullStr Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
title_full_unstemmed Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
title_sort Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
dc.creator.fl_str_mv Blanco Fajardo, Karen Johanna
dc.contributor.advisor.spa.fl_str_mv Rojas Roa, Néstor Yezid
Mateus Fontecha, Lady
dc.contributor.author.spa.fl_str_mv Blanco Fajardo, Karen Johanna
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Distribución de tamaño de partícula
Concentración de número de partícula
Análisis de Componentes Principales
Calidad del aire
Particle number concentration
Particle number size distribution
Principal Components Analysis
Air quality
Contaminación atmosférica
Air pollution
Calidad del aire
Partículas en suspensión
air quality
particulates
dc.subject.proposal.spa.fl_str_mv Distribución de tamaño de partícula
Concentración de número de partícula
Análisis de Componentes Principales
Calidad del aire
dc.subject.proposal.eng.fl_str_mv Particle number concentration
Particle number size distribution
Principal Components Analysis
Air quality
dc.subject.unesco.spa.fl_str_mv Contaminación atmosférica
dc.subject.unesco.eng.fl_str_mv Air pollution
dc.subject.wikidata.spa.fl_str_mv Calidad del aire
Partículas en suspensión
dc.subject.wikidata.eng.fl_str_mv air quality
particulates
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-06T20:02:14Z
dc.date.available.none.fl_str_mv 2024-05-06T20:02:14Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86034
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86034
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agudelo-Castañeda, D. M., Teixeira, E. C., Braga, M., Rolim, S. B. A., Silva, L. F. O., Beddows, D. C. S., Harrison, R. M., & Querol, X. (2019). Cluster analysis of urban ultrafine particles size distributions. Atmospheric Pollution Research, 10(1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006
Avila Prada, L. (2016). Determinación del nivel de exposición de viajeros pendulares a partículas ultrafinas según el modo de transporte en la ciudad de Bogotá. Universidad Nacional de Colombia.
Beddows, D. C. S., Harrison, R. M., Green, D. C., & Fuller, G. W. (2015). Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmospheric Chemistry and Physics, 15(17), 10107–10125. https://doi.org/10.5194/acp-15-10107-2015
Chan, T. W., & Mozurkewich, M. (2007). Atmospheric Chemistry and Physics Application of absolute principal component analysis to size distribution data: identification of particle origins. En Atmos. Chem. Phys (Vol. 7). www.atmos-chem-phys.net/7/887/2007/
Colbeck, I., & Lazaridis, M. (2014b). Aerosol Science: Technology and Application.
Dekati Ltd. (2011). ELPI Plus User Manual (1.12).
Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2015). OpenIntro Statistics (4a ed.). Duke University.
España, G. DE, & Pindado Ma Pérez S García, O. R. (2013). Informes Técnicos Ciemat Desarrollo del Modelo de Factorización de la Matriz Positiva (PMF) al Estudio Anual de la Composición Orgánica del PM2.5 en Chapinería. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/060/44060243.pdf
Finlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the Upper and Lower Atmosphere (1a ed.). Academic Press.
Friedlander, S. K. (2000). Smoke, dust, and haze. Fundamentals of Aerosols Dynamics (2a ed.). Oxford University Press.
Fults, S. L., Massmann, A. K., Montecinos, A., Andrews, E., Kingsmill, D. E., Minder, J. R., Garreaud, R. D., & Snider, J. R. (2019). Wintertime aerosol measurements during the Chilean Coastal Orographic Precipitation Experiment. Atmospheric Chemistry and Physics, 19(19), 12377–12396. https://doi.org/10.5194/acp-19-12377-2019
Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., & Apte, J. S. (2020). Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 20(14), 8533–8549. https://doi.org/10.5194/acp-20-8533-2020
Guarieiro, L. L. N., & Guarieiro, A. L. N. (2015). Impact of the Biofuels Burning on Particle Emissions from the Vehicular Exhaust. En Biofuels - Status and Perspective. InTech. https://doi.org/10.5772/60110
Hama, S. M. L., Cordell, R. L., Kos, G. P. A., Weijers, E. P., & Monks, P. S. (2017). Sub-micron particle number size distribution characteristics at two urban locations in Leicester. Atmospheric Research, 194, 1–16. https://doi.org/10.1016/j.atmosres.2017.04.021
Harrison, R. M., & Jones, M. (1995). The chemical composition of airborne particles in the UK atmosphere. Science of The Total Environment, 168(3), 195–214. https://doi.org/10.1016/0048-9697(95)04536-A
Hopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255–265. https://doi.org/10.1002/cem.796
IDEAM. (2021). Informe de Calidad del Aire de Colombia.
Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637–14656. https://doi.org/10.1007/s11356-017-8925-5
Jancsek-Turóczi, B., Hoffer, A., Nyírö-Kósa, I., & Gelencsér, A. (2013). Sampling and characterization of resuspended and respirable road dust. Journal of Aerosol Science, 65, 69–76. https://doi.org/10.1016/j.jaerosci.2013.07.006
Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of The Total Environment, 326(1–3), 151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021
Kassambara, A. (2017). Multivariate Analisys .
Kasumba, J., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2009). Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Science of the Total Environment, 407(18), 5071–5084. https://doi.org/10.1016/j.scitotenv.2009.05.040
Kleinman, L. I., Springston, S. R., Wang, J., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Zaveri, R. A., Canagaratna, M. R., & Jayne, J. (2009). The time evolution of aerosol size distribution over the Mexico City plateau. Atmospheric Chemistry and Physics, 9(13), 4261–4278. https://doi.org/10.5194/acp-9-4261-2009
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., & McMurry, P. H. (2004). Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35(2), 143–176. https://doi.org/10.1016/j.jaerosci.2003.10.003
Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., Křůmal, K., Cliff, S., Mikuška, P., & Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097
Li, Q.-F., Wang-Li, L., Jayanty, R. K. M., & Shah, S. B. (2013). Organic and Elemental Carbon in Atmospheric Fine Particulate Matter in an Animal Agriculture Intensive Area in North Carolina: Estimation of Secondary Organic Carbon Concentrations. Open Journal of Air Pollution, 02(01), 7–18. https://doi.org/10.4236/ojap.2013.21002
Miller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36(22), 3629–3641. https://doi.org/10.1016/S1352-2310(02)00279-0
Minitab Statistical Software. (2023). Modelos ANOVA.
Monteiro dos Santos, D., Rizzo, L. V., Carbone, S., Schlag, P., & Artaxo, P. (2021). Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 21(11), 8761–8773. https://doi.org/10.5194/acp-21-8761-2021
Na, K., Sawant, A. A., Song, C., & Cocker, D. R. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355. https://doi.org/10.1016/j.atmosenv.2003.11.023
Ogulei, D., Hopke, P. K., Ferro, A. R., & Jaques, P. a. (2007). Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. Journal of the Air & Waste Management Association (1995), 57(2), 190–203. https://doi.org/10.1080/10473289.2007.10465316
OMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire.
Pekkanen, Juha., & Kuopio University Printing Office). (2000). Ultra : exposure and risk assessment for fine and ultrafine particles in ambient air ; study manual and data book. National Public Health Institute.
Ram, S. S., Kumar, R. V., Chaudhuri, P., Chanda, S., Santra, S. C., Sudarshan, M., & Chakraborty, A. (2014). Physico-chemical characterization of street dust and re-suspended dust on plant canopies: An approach for finger printing the urban environment. Ecological Indicators, 36, 334–338. https://doi.org/10.1016/j.ecolind.2013.08.010
Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., & Löndahl, J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 48, 18–33. https://doi.org/10.1016/j.jaerosci.2012.01.005
Rivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L., Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez, N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R. M., Querol, X., & Kelly, F. J. (2020). Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 135, 105345. https://doi.org/10.1016/j.envint.2019.105345
Rogula-Kozłowska, W., & Klejnowski, K. (2013). Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology, 90(1), 103–109. https://doi.org/10.1007/s00128-012-0868-4
Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., & Wiedensohler, A. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmospheric Chemistry and Physics, 6(4), 1021–1031. https://doi.org/10.5194/acp-6-1021-2006
Rueda, J. (2017). NANO-PARTÍCULAS, Impactos en salud e influencia de los vehículos motorizados.
Sánchez P., L. F., Manzano, C. A., Leiva-Guzmán, M. A., Canales A., M., & Toro Araya, R. (2021). Urban atmospheric particle size distribution in Santiago, Chile. Atmospheric Pollution Research, 12(10), 101201. https://doi.org/10.1016/j.apr.2021.101201
Secretaría Distrital de Ambiente. (2017). Hoja de vida estaciones de monitoreo RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Hojas_de_Vida_Estaciones_2017%20(1).pdf
Secretaría Distrital de Ambiente. (2022). Inventario de emisiones contaminantes atmosféricas de Bogotá, Año 2021.
Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2a ed.). Wiley.
Slezakova, K., Morais, S., & Carmo Pereir, M. do. (2013a). Atmospheric Nanoparticles and Their Impacts on Public Health. En Current Topics in Public Health. InTech. https://doi.org/10.5772/54775
Taiwo, A. M., Beddows, D. C. S., Shi, Z., & Harrison, R. M. (2014). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of The Total Environment, 475, 29–38. https://doi.org/10.1016/j.scitotenv.2013.12.076
Tan, J., Duan, J., Chai, F., He, K., & Hao, J.-M. (2014). Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmospheric Research, 139, 90–100. https://doi.org/10.1016/j.atmosres.2014.01.007
Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006
Virtanen, A., Rönkkö, T., Kannosto, J., Ristimäki, J., Mäkelä, J. M., Keskinen, J., Pakkanen, T., Hillamo, R., Pirjola, L., & Hämeri, K. (2006). Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 6(9), 2411–2421. https://doi.org/10.5194/acp-6-2411-2006
William C. Hinds, Y. Z. (2022). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 3rd Edition (3a ed.). Wiley.
Wu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., & Cribb, M. (2021). Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing. Atmospheric Environment, 262, 118652. https://doi.org/10.1016/j.atmosenv.2021.118652
EPA. (24 de Junio de 2023). Criteria Air Pollutans. Obtenido de https://www.epa.gov/criteria-air-pollutants
NASA. (2023). Fire Information for Resource Managment System. Obtenido de https://firms.modaps.eosdis.nasa.gov/
Observarorio Ambiental de Bogotá. (2022). Informe de seguimiento semestral al Plan Aire 2030. Bogotá. Obtenido de https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=25679
Planeación, S. D. (14 de junio de 2023). Visor de población. Obtenido de https://sdpbogota.maps.arcgis.com/apps/MapSeries/index.html?appid=baabe888c3ab42c6bb3d10d4eaa993c5
Secretaría Distrital de Ambiente. (2020). Informe Anual de Calidad del Aire de Bogotá Año 2020. Bogotá
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.spa.fl_str_mv Bogotá
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Cundinamarca
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000838
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86034/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86034/2/1030589591.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86034/3/1030589591.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0401e7290fe051c4033ccf2a2f973ba6
39fd5533b755cc2556ba17c39b9204b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885991598784512
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Roa, Néstor Yezid827f8ba58948271b39915a46415778ed600Mateus Fontecha, Lady18213de8a1f037a3b51d6011d40d1607600Blanco Fajardo, Karen Johannae4a156cc1acee6fab483ff9e950d8505Calidad del Aire2024-05-06T20:02:14Z2024-05-06T20:02:14Z2023https://repositorio.unal.edu.co/handle/unal/86034Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEste estudio buscó realizar un ejercicio pionero en el país en la medición en aire ambiente de la concentración de número de partículas (CNP) y la caracterización de la distribución de tamaño (PNSD) con el equipo contador de partículas ELPI+ en dos estaciones de monitoreo de calidad del aire del de Bogotá, correspondientes a San Cristóbal (estación de fondo urbano) y Las Ferias (estación de tráfico vehicular), con el fin de identificar las concentraciones y tamaños de las partículas a las que están expuestos los ciudadanos. Estas mediciones se realizaron en tres campañas en diferentes fechas entre junio y octubre de 2017. Los resultados obtenidos correspondieron a promedios horarios de concentración de partículas entre diámetros medios desde 0.016 µm hasta 5.3 µm. Estos resultados en conjunto con la medición de variables meteorológicas y concentraciones másica de contaminantes criterio de las estaciones de calidad del aire permitieron hacer análisis de proveniencia de contaminantes, correlaciones estadísticas y análisis de componentes principales (PCA). (Texto tomado de la fuente).This study sought to carry out a pioneering exercise in the country about measurement of particle number concentration (PNC) and the characterization of the particle number size distribution (PNSD) with particle counter equipment ELPI+ in two stations of air quality monitoring of Bogotá, corresponding to San Cristóbal (urban background station) and Las Ferias (vehicular traffic station), in order to identify the concentrations and sizes of the particles to which citizens are exposed. These measurements were made in three campaigns on different dates between June and October 2017. The results obtained corresponded to hourly averages of particle concentration between average diameters from 0.016 µm to 5.3 µm. These results, combined with metrological variables measurement and criteria pollutants concentrations from the air quality stations, allowed analysis of the origin of pollutants, statistical correlations, and principal components analysis (PCA).MaestríaMagíster en Ingeniería - Ingeniería AmbientalCalidad del airexiv, 88 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaDistribución de tamaño de partículaConcentración de número de partículaAnálisis de Componentes PrincipalesCalidad del aireParticle number concentrationParticle number size distributionPrincipal Components AnalysisAir qualityContaminación atmosféricaAir pollutionCalidad del airePartículas en suspensiónair qualityparticulatesCaracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de BogotáCharacterization of the particle size distribution of particulate matter present in air at two sites in BogotáTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaCundinamarcahttp://vocab.getty.edu/page/tgn/1000838Agudelo-Castañeda, D. M., Teixeira, E. C., Braga, M., Rolim, S. B. A., Silva, L. F. O., Beddows, D. C. S., Harrison, R. M., & Querol, X. (2019). Cluster analysis of urban ultrafine particles size distributions. Atmospheric Pollution Research, 10(1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006Avila Prada, L. (2016). Determinación del nivel de exposición de viajeros pendulares a partículas ultrafinas según el modo de transporte en la ciudad de Bogotá. Universidad Nacional de Colombia.Beddows, D. C. S., Harrison, R. M., Green, D. C., & Fuller, G. W. (2015). Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmospheric Chemistry and Physics, 15(17), 10107–10125. https://doi.org/10.5194/acp-15-10107-2015Chan, T. W., & Mozurkewich, M. (2007). Atmospheric Chemistry and Physics Application of absolute principal component analysis to size distribution data: identification of particle origins. En Atmos. Chem. Phys (Vol. 7). www.atmos-chem-phys.net/7/887/2007/Colbeck, I., & Lazaridis, M. (2014b). Aerosol Science: Technology and Application.Dekati Ltd. (2011). ELPI Plus User Manual (1.12).Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2015). OpenIntro Statistics (4a ed.). Duke University.España, G. DE, & Pindado Ma Pérez S García, O. R. (2013). Informes Técnicos Ciemat Desarrollo del Modelo de Factorización de la Matriz Positiva (PMF) al Estudio Anual de la Composición Orgánica del PM2.5 en Chapinería. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/060/44060243.pdfFinlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the Upper and Lower Atmosphere (1a ed.). Academic Press.Friedlander, S. K. (2000). Smoke, dust, and haze. Fundamentals of Aerosols Dynamics (2a ed.). Oxford University Press.Fults, S. L., Massmann, A. K., Montecinos, A., Andrews, E., Kingsmill, D. E., Minder, J. R., Garreaud, R. D., & Snider, J. R. (2019). Wintertime aerosol measurements during the Chilean Coastal Orographic Precipitation Experiment. Atmospheric Chemistry and Physics, 19(19), 12377–12396. https://doi.org/10.5194/acp-19-12377-2019Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., & Apte, J. S. (2020). Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 20(14), 8533–8549. https://doi.org/10.5194/acp-20-8533-2020Guarieiro, L. L. N., & Guarieiro, A. L. N. (2015). Impact of the Biofuels Burning on Particle Emissions from the Vehicular Exhaust. En Biofuels - Status and Perspective. InTech. https://doi.org/10.5772/60110Hama, S. M. L., Cordell, R. L., Kos, G. P. A., Weijers, E. P., & Monks, P. S. (2017). Sub-micron particle number size distribution characteristics at two urban locations in Leicester. Atmospheric Research, 194, 1–16. https://doi.org/10.1016/j.atmosres.2017.04.021Harrison, R. M., & Jones, M. (1995). The chemical composition of airborne particles in the UK atmosphere. Science of The Total Environment, 168(3), 195–214. https://doi.org/10.1016/0048-9697(95)04536-AHopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255–265. https://doi.org/10.1002/cem.796IDEAM. (2021). Informe de Calidad del Aire de Colombia.Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637–14656. https://doi.org/10.1007/s11356-017-8925-5Jancsek-Turóczi, B., Hoffer, A., Nyírö-Kósa, I., & Gelencsér, A. (2013). Sampling and characterization of resuspended and respirable road dust. Journal of Aerosol Science, 65, 69–76. https://doi.org/10.1016/j.jaerosci.2013.07.006Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of The Total Environment, 326(1–3), 151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021Kassambara, A. (2017). Multivariate Analisys .Kasumba, J., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2009). Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Science of the Total Environment, 407(18), 5071–5084. https://doi.org/10.1016/j.scitotenv.2009.05.040Kleinman, L. I., Springston, S. R., Wang, J., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Zaveri, R. A., Canagaratna, M. R., & Jayne, J. (2009). The time evolution of aerosol size distribution over the Mexico City plateau. Atmospheric Chemistry and Physics, 9(13), 4261–4278. https://doi.org/10.5194/acp-9-4261-2009Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., & McMurry, P. H. (2004). Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35(2), 143–176. https://doi.org/10.1016/j.jaerosci.2003.10.003Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., Křůmal, K., Cliff, S., Mikuška, P., & Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097Li, Q.-F., Wang-Li, L., Jayanty, R. K. M., & Shah, S. B. (2013). Organic and Elemental Carbon in Atmospheric Fine Particulate Matter in an Animal Agriculture Intensive Area in North Carolina: Estimation of Secondary Organic Carbon Concentrations. Open Journal of Air Pollution, 02(01), 7–18. https://doi.org/10.4236/ojap.2013.21002Miller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36(22), 3629–3641. https://doi.org/10.1016/S1352-2310(02)00279-0Minitab Statistical Software. (2023). Modelos ANOVA.Monteiro dos Santos, D., Rizzo, L. V., Carbone, S., Schlag, P., & Artaxo, P. (2021). Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 21(11), 8761–8773. https://doi.org/10.5194/acp-21-8761-2021Na, K., Sawant, A. A., Song, C., & Cocker, D. R. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355. https://doi.org/10.1016/j.atmosenv.2003.11.023Ogulei, D., Hopke, P. K., Ferro, A. R., & Jaques, P. a. (2007). Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. Journal of the Air & Waste Management Association (1995), 57(2), 190–203. https://doi.org/10.1080/10473289.2007.10465316OMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire.Pekkanen, Juha., & Kuopio University Printing Office). (2000). Ultra : exposure and risk assessment for fine and ultrafine particles in ambient air ; study manual and data book. National Public Health Institute.Ram, S. S., Kumar, R. V., Chaudhuri, P., Chanda, S., Santra, S. C., Sudarshan, M., & Chakraborty, A. (2014). Physico-chemical characterization of street dust and re-suspended dust on plant canopies: An approach for finger printing the urban environment. Ecological Indicators, 36, 334–338. https://doi.org/10.1016/j.ecolind.2013.08.010Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., & Löndahl, J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 48, 18–33. https://doi.org/10.1016/j.jaerosci.2012.01.005Rivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L., Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez, N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R. M., Querol, X., & Kelly, F. J. (2020). Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 135, 105345. https://doi.org/10.1016/j.envint.2019.105345Rogula-Kozłowska, W., & Klejnowski, K. (2013). Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology, 90(1), 103–109. https://doi.org/10.1007/s00128-012-0868-4Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., & Wiedensohler, A. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmospheric Chemistry and Physics, 6(4), 1021–1031. https://doi.org/10.5194/acp-6-1021-2006Rueda, J. (2017). NANO-PARTÍCULAS, Impactos en salud e influencia de los vehículos motorizados.Sánchez P., L. F., Manzano, C. A., Leiva-Guzmán, M. A., Canales A., M., & Toro Araya, R. (2021). Urban atmospheric particle size distribution in Santiago, Chile. Atmospheric Pollution Research, 12(10), 101201. https://doi.org/10.1016/j.apr.2021.101201Secretaría Distrital de Ambiente. (2017). Hoja de vida estaciones de monitoreo RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Hojas_de_Vida_Estaciones_2017%20(1).pdfSecretaría Distrital de Ambiente. (2022). Inventario de emisiones contaminantes atmosféricas de Bogotá, Año 2021.Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2a ed.). Wiley.Slezakova, K., Morais, S., & Carmo Pereir, M. do. (2013a). Atmospheric Nanoparticles and Their Impacts on Public Health. En Current Topics in Public Health. InTech. https://doi.org/10.5772/54775Taiwo, A. M., Beddows, D. C. S., Shi, Z., & Harrison, R. M. (2014). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of The Total Environment, 475, 29–38. https://doi.org/10.1016/j.scitotenv.2013.12.076Tan, J., Duan, J., Chai, F., He, K., & Hao, J.-M. (2014). Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmospheric Research, 139, 90–100. https://doi.org/10.1016/j.atmosres.2014.01.007Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006Virtanen, A., Rönkkö, T., Kannosto, J., Ristimäki, J., Mäkelä, J. M., Keskinen, J., Pakkanen, T., Hillamo, R., Pirjola, L., & Hämeri, K. (2006). Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 6(9), 2411–2421. https://doi.org/10.5194/acp-6-2411-2006William C. Hinds, Y. Z. (2022). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 3rd Edition (3a ed.). Wiley.Wu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., & Cribb, M. (2021). Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing. Atmospheric Environment, 262, 118652. https://doi.org/10.1016/j.atmosenv.2021.118652EPA. (24 de Junio de 2023). Criteria Air Pollutans. Obtenido de https://www.epa.gov/criteria-air-pollutantsNASA. (2023). Fire Information for Resource Managment System. Obtenido de https://firms.modaps.eosdis.nasa.gov/Observarorio Ambiental de Bogotá. (2022). Informe de seguimiento semestral al Plan Aire 2030. Bogotá. Obtenido de https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=25679Planeación, S. D. (14 de junio de 2023). Visor de población. Obtenido de https://sdpbogota.maps.arcgis.com/apps/MapSeries/index.html?appid=baabe888c3ab42c6bb3d10d4eaa993c5Secretaría Distrital de Ambiente. (2020). Informe Anual de Calidad del Aire de Bogotá Año 2020. BogotáInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86034/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1030589591.2023.pdf1030589591.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Ambientalapplication/pdf3918506https://repositorio.unal.edu.co/bitstream/unal/86034/2/1030589591.2023.pdf0401e7290fe051c4033ccf2a2f973ba6MD52THUMBNAIL1030589591.2023.pdf.jpg1030589591.2023.pdf.jpgGenerated Thumbnailimage/jpeg5270https://repositorio.unal.edu.co/bitstream/unal/86034/3/1030589591.2023.pdf.jpg39fd5533b755cc2556ba17c39b9204b2MD53unal/86034oai:repositorio.unal.edu.co:unal/860342024-05-06 23:04:43.643Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=