Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on...

Full description

Autores:
Cruz Roa, Angel Alfonso
Díaz Cabrera, Gloria Mercedes
Romero Castro, Eduardo
González Osorio, Fabio Augusto
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/9021
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/9021
http://bdigital.unal.edu.co/5770/
Palabra clave:
6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
Basal Cell Carcinoma
Histopathology Images
Automatic Annotation
Visual Latent Semantic Analysis
Non-negative Matrix Factorization
Bag of Features
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a6ddd497bd7c27e0cec5438d9f3d6844
oai_identifier_str oai:repositorio.unal.edu.co:unal/9021
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cruz Roa, Angel Alfonso15e59f29-e322-4487-8dec-afaab4fc9736300Díaz Cabrera, Gloria Mercedesdf0094ba-5d1d-4764-b81c-c4d3c6106152300Romero Castro, Eduardo1cd0e643-6618-4a24-afd7-47d003c02669300González Osorio, Fabio Augustocb310629-a242-42c5-8301-883fbab8e3ab3002019-06-24T17:50:39Z2019-06-24T17:50:39Z2012-01-19https://repositorio.unal.edu.co/handle/unal/9021http://bdigital.unal.edu.co/5770/Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.application/pdfspaAssociation for Pathology Informaticshttp://www.jpathinformatics.org/Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones BiomédicasInstituto de Investigaciones BiomédicasCruz Roa, Angel Alfonso and Díaz Cabrera, Gloria Mercedes and Romero Castro, Eduardo and González Osorio, Fabio Augusto (2012) Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2 (2). pp. 4-13.6 Tecnología (ciencias aplicadas) / Technology61 Ciencias médicas; Medicina / Medicine and healthBasal Cell CarcinomaHistopathology ImagesAutomatic AnnotationVisual Latent Semantic AnalysisNon-negative Matrix FactorizationBag of FeaturesAutomatic annotation of histopathological images using a latent topic model based on non-negative matrix factorizationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINALangelcruzroa_2011.pdfapplication/pdf6036972https://repositorio.unal.edu.co/bitstream/unal/9021/1/angelcruzroa_2011.pdf9757b9771a540b173d9faf79b5c074c7MD51THUMBNAILangelcruzroa_2011.pdf.jpgangelcruzroa_2011.pdf.jpgGenerated Thumbnailimage/jpeg3271https://repositorio.unal.edu.co/bitstream/unal/9021/2/angelcruzroa_2011.pdf.jpg737bc4487d47a91671912c44a757bed1MD52unal/9021oai:repositorio.unal.edu.co:unal/90212022-09-15 23:02:58.731Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
title Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
spellingShingle Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
Basal Cell Carcinoma
Histopathology Images
Automatic Annotation
Visual Latent Semantic Analysis
Non-negative Matrix Factorization
Bag of Features
title_short Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
title_full Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
title_fullStr Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
title_full_unstemmed Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
title_sort Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
dc.creator.fl_str_mv Cruz Roa, Angel Alfonso
Díaz Cabrera, Gloria Mercedes
Romero Castro, Eduardo
González Osorio, Fabio Augusto
dc.contributor.author.spa.fl_str_mv Cruz Roa, Angel Alfonso
Díaz Cabrera, Gloria Mercedes
Romero Castro, Eduardo
González Osorio, Fabio Augusto
dc.subject.ddc.spa.fl_str_mv 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
topic 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
Basal Cell Carcinoma
Histopathology Images
Automatic Annotation
Visual Latent Semantic Analysis
Non-negative Matrix Factorization
Bag of Features
dc.subject.proposal.spa.fl_str_mv Basal Cell Carcinoma
Histopathology Images
Automatic Annotation
Visual Latent Semantic Analysis
Non-negative Matrix Factorization
Bag of Features
description Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.
publishDate 2012
dc.date.issued.spa.fl_str_mv 2012-01-19
dc.date.accessioned.spa.fl_str_mv 2019-06-24T17:50:39Z
dc.date.available.spa.fl_str_mv 2019-06-24T17:50:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/9021
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/5770/
url https://repositorio.unal.edu.co/handle/unal/9021
http://bdigital.unal.edu.co/5770/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://www.jpathinformatics.org/
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones Biomédicas
Instituto de Investigaciones Biomédicas
dc.relation.references.spa.fl_str_mv Cruz Roa, Angel Alfonso and Díaz Cabrera, Gloria Mercedes and Romero Castro, Eduardo and González Osorio, Fabio Augusto (2012) Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2 (2). pp. 4-13.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Association for Pathology Informatics
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/9021/1/angelcruzroa_2011.pdf
https://repositorio.unal.edu.co/bitstream/unal/9021/2/angelcruzroa_2011.pdf.jpg
bitstream.checksum.fl_str_mv 9757b9771a540b173d9faf79b5c074c7
737bc4487d47a91671912c44a757bed1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090213940527104