Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization
Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on...
- Autores:
-
Cruz Roa, Angel Alfonso
Díaz Cabrera, Gloria Mercedes
Romero Castro, Eduardo
González Osorio, Fabio Augusto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/9021
- Palabra clave:
- 6 Tecnología (ciencias aplicadas) / Technology
61 Ciencias médicas; Medicina / Medicine and health
Basal Cell Carcinoma
Histopathology Images
Automatic Annotation
Visual Latent Semantic Analysis
Non-negative Matrix Factorization
Bag of Features
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_a6ddd497bd7c27e0cec5438d9f3d6844 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/9021 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cruz Roa, Angel Alfonso15e59f29-e322-4487-8dec-afaab4fc9736300Díaz Cabrera, Gloria Mercedesdf0094ba-5d1d-4764-b81c-c4d3c6106152300Romero Castro, Eduardo1cd0e643-6618-4a24-afd7-47d003c02669300González Osorio, Fabio Augustocb310629-a242-42c5-8301-883fbab8e3ab3002019-06-24T17:50:39Z2019-06-24T17:50:39Z2012-01-19https://repositorio.unal.edu.co/handle/unal/9021http://bdigital.unal.edu.co/5770/Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.application/pdfspaAssociation for Pathology Informaticshttp://www.jpathinformatics.org/Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones BiomédicasInstituto de Investigaciones BiomédicasCruz Roa, Angel Alfonso and Díaz Cabrera, Gloria Mercedes and Romero Castro, Eduardo and González Osorio, Fabio Augusto (2012) Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2 (2). pp. 4-13.6 Tecnología (ciencias aplicadas) / Technology61 Ciencias médicas; Medicina / Medicine and healthBasal Cell CarcinomaHistopathology ImagesAutomatic AnnotationVisual Latent Semantic AnalysisNon-negative Matrix FactorizationBag of FeaturesAutomatic annotation of histopathological images using a latent topic model based on non-negative matrix factorizationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINALangelcruzroa_2011.pdfapplication/pdf6036972https://repositorio.unal.edu.co/bitstream/unal/9021/1/angelcruzroa_2011.pdf9757b9771a540b173d9faf79b5c074c7MD51THUMBNAILangelcruzroa_2011.pdf.jpgangelcruzroa_2011.pdf.jpgGenerated Thumbnailimage/jpeg3271https://repositorio.unal.edu.co/bitstream/unal/9021/2/angelcruzroa_2011.pdf.jpg737bc4487d47a91671912c44a757bed1MD52unal/9021oai:repositorio.unal.edu.co:unal/90212022-09-15 23:02:58.731Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
title |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
spellingShingle |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization 6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health Basal Cell Carcinoma Histopathology Images Automatic Annotation Visual Latent Semantic Analysis Non-negative Matrix Factorization Bag of Features |
title_short |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
title_full |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
title_fullStr |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
title_full_unstemmed |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
title_sort |
Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization |
dc.creator.fl_str_mv |
Cruz Roa, Angel Alfonso Díaz Cabrera, Gloria Mercedes Romero Castro, Eduardo González Osorio, Fabio Augusto |
dc.contributor.author.spa.fl_str_mv |
Cruz Roa, Angel Alfonso Díaz Cabrera, Gloria Mercedes Romero Castro, Eduardo González Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health |
topic |
6 Tecnología (ciencias aplicadas) / Technology 61 Ciencias médicas; Medicina / Medicine and health Basal Cell Carcinoma Histopathology Images Automatic Annotation Visual Latent Semantic Analysis Non-negative Matrix Factorization Bag of Features |
dc.subject.proposal.spa.fl_str_mv |
Basal Cell Carcinoma Histopathology Images Automatic Annotation Visual Latent Semantic Analysis Non-negative Matrix Factorization Bag of Features |
description |
Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. |
publishDate |
2012 |
dc.date.issued.spa.fl_str_mv |
2012-01-19 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-24T17:50:39Z |
dc.date.available.spa.fl_str_mv |
2019-06-24T17:50:39Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/9021 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/5770/ |
url |
https://repositorio.unal.edu.co/handle/unal/9021 http://bdigital.unal.edu.co/5770/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://www.jpathinformatics.org/ |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones Biomédicas Instituto de Investigaciones Biomédicas |
dc.relation.references.spa.fl_str_mv |
Cruz Roa, Angel Alfonso and Díaz Cabrera, Gloria Mercedes and Romero Castro, Eduardo and González Osorio, Fabio Augusto (2012) Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2 (2). pp. 4-13. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Association for Pathology Informatics |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/9021/1/angelcruzroa_2011.pdf https://repositorio.unal.edu.co/bitstream/unal/9021/2/angelcruzroa_2011.pdf.jpg |
bitstream.checksum.fl_str_mv |
9757b9771a540b173d9faf79b5c074c7 737bc4487d47a91671912c44a757bed1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090213940527104 |