Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services
ilustraciones, diagramas, tablas
- Autores:
-
Ruiz, Semaria
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80966
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
380 - Comercio , comunicaciones, transporte::388 - Transporte
Electricity in transportation
Electricidad en el transporte
Batteries Degradation
Nonlinear optimization
Optimal control
Risk aware control
Robust control
Vehicle-to-Grid
Electric vehicles
Carsharing
Envejecimiento de baterías
Vehículos eléctricos
Optimización no lineal
Control óptimo
Control con aversión al riesgo
Control robusto
Vehículo a red
Vehículos compartidos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_a6bcb50d4b942fdebb1f24968d53e585 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80966 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
dc.title.translated.spa.fl_str_mv |
Metodología para diseñar un sistema óptimo de toma de decisiones para el operador de una flota de vehículos eléctricos compartidos que presta servicios auxiliares eléctricos |
title |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
spellingShingle |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte Electricity in transportation Electricidad en el transporte Batteries Degradation Nonlinear optimization Optimal control Risk aware control Robust control Vehicle-to-Grid Electric vehicles Carsharing Envejecimiento de baterías Vehículos eléctricos Optimización no lineal Control óptimo Control con aversión al riesgo Control robusto Vehículo a red Vehículos compartidos |
title_short |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
title_full |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
title_fullStr |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
title_full_unstemmed |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
title_sort |
Methodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary services |
dc.creator.fl_str_mv |
Ruiz, Semaria |
dc.contributor.advisor.none.fl_str_mv |
Gomez-Ramirez, Danny Arlen de Jesus Hernández-Riveros, Jesús-Antonio |
dc.contributor.author.none.fl_str_mv |
Ruiz, Semaria |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte Electricity in transportation Electricidad en el transporte Batteries Degradation Nonlinear optimization Optimal control Risk aware control Robust control Vehicle-to-Grid Electric vehicles Carsharing Envejecimiento de baterías Vehículos eléctricos Optimización no lineal Control óptimo Control con aversión al riesgo Control robusto Vehículo a red Vehículos compartidos |
dc.subject.lemb.none.fl_str_mv |
Electricity in transportation Electricidad en el transporte |
dc.subject.proposal.eng.fl_str_mv |
Batteries Degradation Nonlinear optimization Optimal control Risk aware control Robust control Vehicle-to-Grid Electric vehicles Carsharing |
dc.subject.proposal.spa.fl_str_mv |
Envejecimiento de baterías Vehículos eléctricos Optimización no lineal Control óptimo Control con aversión al riesgo Control robusto Vehículo a red Vehículos compartidos |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-02-14T13:59:04Z |
dc.date.available.none.fl_str_mv |
2022-02-14T13:59:04Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80966 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80966 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] S. Ruiz, N. Arroyo, A. Acosta, C. Portilla, and J. Espinosa, “An Optimal Battery Charging And Schedule Control Strategy For Electric Bus Rapid Transit,” in Proceedings of Joint Conference MOVICI -MOYCOT 2018, Medellin, Colombia, 2018. [2] Mercedes-Benz, “smart EQ fortwo | The all-electric two-seater,” 2019. [Online]. Available: https://www.smart.mercedes-benz.com/gb/en/models/eq-fortwo-coupe#intro-smart-eq-fortwo [3] C. J. Chou, C. W. Chen, and C. Conley, “A systematic approach to generate service model for sustainability,” Journal of Cleaner Production, pp. 173–187. doi: 10.1016/j.jclepro.2012.01.037 [4] G. Hochman and G. R. Timilsina, “Fuel Efficiency Versus Fuel Substitution in the Transport Sector An Econometric Analysis,” Policy Research, pp. 3–10, 2017. [Online]. Available: https://openknowledge.worldbank.org/bitstream/handle/10986/26841/WPS8070.pdf?sequence=1&isAllowed=y [5] B. Bondorová and G. Archer, “Does sharing cars really reduce car use?” Transport & Environment, pp. 1–8, 2017. [Online]. Available: https://www.transportenvironment.org/sites/te/files/publications/Does-sharing-cars-really-reduce-car-use-June2017.pdf [6] R. Seign, M. Schüssler, and K. Bogenberger, “Enabling sustainable transportation: The model-based determination of business/operating areas of free-floating carsharing systems,” Research in Transportation Economics, vol. 51, pp. 104–114, 2015. doi: 10.1016/j.retrec.2015.10.012 [7] J. Firnkorn and M. Müller, “Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments?” Environmental Science and Policy, vol. 45, pp. 30–40. doi: 10.1016/j.envsci.2014.09.005 [8] D. Aguiar, M. Palacio, D. Hernández, and J. Manosalva, “Medellin y su calidad del aire,” Escuela Internacional de Desarrollo sostenible, 2016. [9] J. Kang, S. J. Duncan, and D. N. Mavris, “Real-time scheduling techniques for electric vehicle charging in support of frequency regulation,” Procedia Computer Science, vol. 16, pp. 767–775, 2013. doi:10.1016/j.procs.2013.01.080 [10] N. Rotering and M. Ilic, “Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1021–1029, 2011. doi: 10.1109/TPWRS.2010.2086083 [11] M. G. Vayá and G. Andersson, “Reliability Modeling and Analysis of Smart Power Systems,” Reliable and Sustainable Electric Power and Energy Systems Management book series, 2014. doi: 10.1007/978-81-322-1798-5 [12] I. Momber, A. Siddiqui, T. G. S. Roman, and L. Soder, “Risk averse scheduling by a PEV aggregator under uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 882–891, 2015. doi: 10.1109/TPWRS.2014.2330375 [13] S. I. Vagropoulos and A. G. Bakirtzis, “Optimal bidding strategy for electric vehicle aggregators in electricity markets,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4031–4041, 2013. doi: 10.1109/TPWRS.2013.2274673 [14] M. Gonzalez Vaya and G. Andersson, “Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead Electricity Markets under Uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2375–2385, 2015. doi: 10.1109/TPWRS.2014.2363159 [15] Sortomme, Eric and El-Sharkawi, M., “Optimal scheduling of vehicle-to-grid energy and ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 351–359, 2012, doi: 10.1109/TSG.2011.2164099. [16] E. Sortomme and M. A. El-Sharkawi, “Optimal combined bidding of vehicle-to-grid ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 70–79, 2012, doi: 10.1109/TSG.2011.2170099. [17] R. J. Bessa and M. A. Matos, “Optimization models for an EV aggregator selling secondary reserve in the electricity market,” Electric Power Systems Research, vol. 106, pp. 36–50, 2014. doi: 10.1016/j.epsr.2013.08.006. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2013.08.006 [18] J. P. Koeln and A. G. Alleyne, “Robust hierarchical model predictive control of graph-based power flow systems,” Automatica, vol. 96, no. June, pp. 127–133, 2018. doi: 10.1016/j.automatica.2018.06.042 [19] J. Löfberg, “Minimax approaches to Robust Model Predictive Control,” Ph.D. dissertation, Linköping University. ISBN 9173736228 2014. [20] B. Kouvaritakis and M. Cannon, “Stochastic Model Predictive Control,” Encyclopedia of Systems and Control, pp. 1–9, 2014. doi: 10.1007/978-1-4471-5102-9_7-1 [21] T. Yoon, C. R. Cherry, and L. R. Jones, “One-way and round-trip carsharing: A stated preference experiment in Beijing,” Transportation Research Part D: Transport and Environment, vol. 53, pp. 102–114, 2017. doi: 10.1016/j.trd.2017.04.009 [22] E. Biondi, C. Boldrini, and R. Bruno, “Optimal charging of electric vehicle fleets for a car sharing system with power sharing,” 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016. doi: 10.1109/ENERGYCON.2016.7514070 [23] J. Barco, A. Guerra, L. Muñoz, and N. Quijano, “Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study,” Problems in Engineerin, vol. abs/1310.0, pp. 1–21, 2013. doi: 10.1155/2017/8509783 [24] S. Weikl and K. Bogenberger, “A practice-ready relocation model for free-floating carsharing systems with electric vehicles - Mesoscopic approach and field trial results,” Transportation Research Part C: Emerging Technologies, vol. 57, pp. 206–223, 2015. doi: 10.1016/j.trc.2015.06.024 [25] F. Kong and X. Liu, Sustainable Transportation with Electric Vehicles, 2017, vol. 2, no. 1. ISBN 9781680833881. [Online]. Available: http://www.nowpublishers.com/article/Details/EES-016 [26] P. Liakos, I. Angelidis, and A. Delis, “Routing and Scheduling an Electric Vehicle Fleet Handling Dynamic Customer Requests,” CoopIS 2016: 24th International Conference on Cooperative Information Systems, 2016. [Online]. Available: http://cgi.di.uoa.gr/~ad/Publications/LAD-Coopis16.pdf [27] T. Ichimori, H. Ishii, and T. Nishida, “Routing a vehicle with the limitation of fuel,” Journal of the Operations Research Society of Japan, vol. 24, no. 3, pp. 277–281, 1981. [Online]. Available: http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.24_03_277.pdf [28] A. Artmeier, J. Haselmayr, M. Leucker, and M. Sachenbacher, “The Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles,” Annual Conference on Artificial Intelligence KI 2010, pp. 309–316, 2010. doi: 10.1007/978-3-642-16111-7_35 [29] M. M. De Weerdt, E. H. Gerding, S. Stein, V. Robu, and N. R. Jennings, “Intention-aware routing to minimize delays at electric vehicle charging stations,” Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pp. 83–89, 2013. doi: 10.1145/2516911.2516923 [30] S. Krauss, “Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics,” Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt e.V., no. 98-8, 1998. [31] A. Febbraro, N. Sacco, and M. Saeednia, “One-Way Carsharing,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2319, no. January 2016, pp. 113–120, 2012. doi: 10.3141/2319-13 [32] D. Jorge and G. Correia, “Carsharing systems demand estimation and defined operations: A literature review,” European Journal of Transport and Infrastructure Research, vol. 13, no. 3, pp. 201–220, 2013. [33] M. Bruglieri, F. Pezzella, and O. Pisacane, “Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems,” Discrete Optimization, vol. 23, pp. 56–80, 2017. doi: 10.1016/j.disopt.2016.12.001 [34] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations,” Transportation Research Part B: Methodological, vol. 95, pp. 214–237, 2017. doi: 10.1016/j.trb.2016.10.007 [35] S. Jian, T. Hossein Rashidi, K. P. Wijayaratna, and V. V. Dixit, “A Spatial Hazard-Based analysis for modelling vehicle selection in station-based carsharing systems,” Transportation Research Part C: Emerging Technologies, vol. 72, pp. 130–142, 2016. doi: 10.1016/j.trc.2016.09.008 [36] M. Drwal, E. Gerding, S. Stein, K. Hayakawa, and H. Kitaoka, “Adaptive Pricing Mechanisms for On-Demand Mobility,” Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017), p. 9, 2017. [Online]. Available: http://eprints.soton.ac.uk/id/eprint/405176 [37] J. García-Villalobos, I. Zamora, J. I. San Martín, F. J. Asensio, and V. Aperribay, “Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 717–731, 2014. doi: 10.1016/j.rser.2014.07.040 [38] A. Brooks, “Vehicle-to-grid demonstration project: Grid regulation ancillary service with a battery electric vehicle,” Regulation, no. 01, p. 61, 2002. [Online]. Available: http://www.smartgridnews.com/artman/uploads/1/sgnr_2007_12031.pdf [39] S. Ruiz and J. Espinosa, “State of the art in strategies allowing the integration of a shared EVs service and the active participation of EVs with the power network,” 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, 2019. doi: 10.1109/CCAC.2019.8921301 [40] D. Pelzer, A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids. München, Germany: Springer, 2019. ISBN 9783658270230 [41] R. J. Bessa and M. A. Matos, “Global against divided optimization for the participation of an EV aggregator in the day-ahead electricity market. Part II: Numerical analysis,” Electric Power Systems Research, vol. 95, pp. 309–318, 2013, doi: 10.1016/j.epsr.2012.08.013. [42] E. A. Buehler, J. A. Paulson, and A. Mesbah, “Lyapunov-based stochastic nonlinear model predictive control: Shaping the state probability distribution functions,” Proceedings of the American Control Conference, vol. 2016-July, no. Section IV, pp. 5389–5394, 2016. doi: 10.1109/ACC.2016.7526514 [43] S. Liu and J. Liu, “Economic Model Predictive Control with Extended Horizon,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 16–21, 2018. doi: 10.1016/j.ifacol.2018.10.168 [44] M. A. Muller, D. Angeli, and F. Allgower, “Economic model predictive control with selftuning terminal cost,” European Journal of Control, vol. 19, no. 5, pp. 408–416, 2013. doi: 10.1016/j.ejcon.2013.05.019. [Online]. Available: http://dx.doi.org/10.1016/j.ejcon.2013.05.019 [45] J. V. Kadam and W. Marquardt, “Integration of Economical Optimization and Control for Intentionally Transient Process Operation,” in Findeisen R., Allgöwer F., Biegler L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: vol 358. Springer. [46] C. Goebel and H. A. Jacobsen, “Aggregator-Controlled EV Charging in Pay-as-Bid Reserve Markets with Strict Delivery Constraints,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4447–4461, 2016. doi: 10.1109/TPWRS.2016.2518648 [47] S.M. Sotoudeh and B. Homchaudhuri, “A RobustMPC-based Hierarchical Control Strategy for Energy Management of Hybrid Electric Vehicles in Presence of Uncertainty,” Proceedings of the American Control Conference, vol. 2020-July, pp. 3065–3070, 2020. doi: 10.23919/ACC45564.2020.9147288 [48] R. Scattolini and P. Colaneri, “Hierarchical model predictive control,” Proceedings of the IEEE Conference on Decision and Control, pp. 4803–4808, 2007. doi: 10.1109/CDC.2007.4434079 [49] F. A. Bayer, M. A. Muller, and F. Allgower, “Min-max economic model predictive control approaches with guaranteed performance,” 2016 IEEE 55th Conference on Decision and Control, CDC 2016, no. Cdc, pp. 3210–3215, 2016. doi: 10.1109/CDC.2016.7798751 [50] A. Parisio and L. Glielmo, “Stochastic Model Predictive Control for economic/environmental operation management of microgrids,” pp. 2014–2019, 2013. [Online]. Available: http://ieeexplore.ieee.org/ielx7/6657188/6669080/06669807.pdf?tp=&arnumber=6669807&isnumber=6669080%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6669807&pageNumber%3D2%26queryText%3Dstochastic+MPC [51] E. Sortomme and M. A. El-Sharkawi, “Optimal charging strategies for unidirectional vehicle-to-grid,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 119–126, 2011, doi: 10.1109/TSG.2010.2090910. [52] H. Liu, Z. Hu, Y. Song, J. Wang, and X. Xie, “Vehicle-to-Grid Control for Supplementary Frequency Regulation Considering Charging Demands,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3110–3119, 2015. doi: 10.1109/TPWRS.2014.2382979 [53] F. J. Soares, P. M. Almeida, and J. A. Lopes, “Quasi-real-time management of Electric Vehicles charging,” Electric Power Systems Research, vol. 108, pp. 293–303, 2014. doi: 10.1016/j.epsr.2013.11.019 [54] O. Beaude, Y. He, and M. Hennebel, “Introducing decentralized EV charging coordination for the voltage regulation,” 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, pp. 1–5, 2013. doi: 10.1109/ISGTEurope.2013.6695375 [55] T. Logenthiran and D. Srinivasan, “Multi-agent system for managing a power distribution system with Plug-in Hybrid Electrical vehicles in smart grid,” 2011 IEEE PES International Conference on Innovative Smart Grid Technologies-India, ISGT India 2011, vol. 0954, pp. 346–351, 2011. doi: 10.1109/ISET-India.2011.6145339 [56] I. S. Bayram, G. Michailidis, and M. Devetsikiotis, “Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1292–1302, 2015. doi: 10.1109/TSG.2014.2362994 [57] I. Semanjski and S. Gautama, “Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices,” Energies, vol. 9, no. 12, 2016. doi: 10.3390/en9121025 [58] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with secondorder moment information,” Mathematical Programming, vol. 137, no. 1-2, pp. 167–198, 2013. doi: 10.1007/s10107-011-0494-7 [59] J. A. Primbs and C. H. Sung, “Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp.221–230, 2009. doi: 10.1109/TAC.2008.2010886 [60] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model predictive control with joint chance constraints,” International Journal of Control, vol. 93, no. 1, pp. 126–139, 2020. doi:10.1080/00207179.2017.1323351. [Online]. Available: https://doi.org/10.1080/00207179.2017.1323351 [61] M. P. Vitus and C. J. Tomlin, “On feedback design and risk allocation in chance constrained control,” Proceedings of the IEEE Conference on Decision and Control, pp. 734–739, 2011. doi: 10.1109/CDC.2011.6160721 [62] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966. doi: 10.1126/science.153.3731.34 [63] A. Pichler, “Risk-Averse Optimal Control,” pp. 1–26, 2019. [64] J. Yong and X. Y. Zhou, Stochastic controls Hamiltonian systems and HJB equations, 1999. ISBN 0387987231 [65] C. Hou, M. Ouyang, L. Xu, and H. Wang, “Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles,” Applied Energy, vol. 115, pp. 174–189, 2014. doi: 10.1016/j.apenergy.2013.11.002. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.11.002 [66] N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1279–1287, 2011. doi: 10.1109/TCST.2010.2061232 [67] D. Bernardini and A. Bemporad, “Scenario-based model predictive control of stochastic constrained linear systems,” Proceedings of the IEEE Conference on Decision and Control, no. 2, pp. 6333–6338, 2009. doi: 10.1109/CDC.2009.5399917 [68] L. Jian, X. Zhu, Z. Shao, S. Niu, and C. C. Chan, “A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids,” Energy Conversion and Management, vol. 78, pp. 508–517, 2014. doi: 10.1016/j.enconman.2013.11.007. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2013.11.007 [69] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach for Stochastic Model Predictive Control with bounds on closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, 2014. doi: 10.1016/j.automatica.2014.10.035. [Online]. Available: http://dx.doi.org/ 10.1016/j.automatica.2014.10.035 [70] L. Baringo and R. Sánchez Amaro, “A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator,” Electric Power Systems Research, vol. 146, pp. 362–370, 2017. doi: 10.1016/j.epsr.2017.02.004. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2017.02.004 [71] A. Nemirovski and A. Shapiro, “Convex Approximations of Chance Constrained Programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2006. doi: 10.1137/050622328 [72] R. P. Cysne, “On the Statistical Estimation of Diffusion Processes - A Survey,” SSRN Electronic Journal, no. 2, pp. 273–301, 2014. doi: 10.2139/ssrn.2388964 [73] I. V. Basawa and R. L. Brakasa Rao, “Statistical inference for stochastic processes.” vol. i, 1980. doi:10.2307/2987945 [74] S. Ruiz, J. Patino, A. Marquez-Ruiz, J. Espinosa, E. Duque, and P. Ortiz, “Optimal design of a diesel-pv-wind-battery-hydro pumped power system with the integration of electric vehicles in a colombian community,” Energies, vol. 12, no. 23, 2019. doi: 10.3390/en12234542 [75] I. Sarmiento-Ordosgoitia, “Plan de estacionamientos y parqueaderos de zonas críticas de Medellín,” Universidad Nacional de Colombia, Tech. Rep., 2019. [76] G. Hertkorn, “Mikroskopische Modellierung von zeitabhängiger Verkehrsnachfrage und von Verkehrsflußmustern,” DLR - Forschungsberichte, no. 29, 2004. [77] D. Krajzewicz, B. Heldt, S. Nieland, R. Cyganski, and K. Gade, “Sustainable urban mobility and communting in Baltic cities: Guidance for transport modelling and data collection,” Baltic Sea Region Mobility Summit, 2019. [Online]. Available: http://sumba.eu/sites/default/files/2020-03/D2. 3_ModellingGuidelines_final.pdf [78] M. G. Mcnally and C. Rindt, “The Activity-Based Approach,” Department of Civil and Environmental Engineering and Institute of Transportation Studies University of California, Irvine, California, Tech. Rep., 2008. [Online]. Available: https://escholarship.org/uc/item/5sv5v9qt [79] M. Hardinghaus, H. Blümel, and C. Seidel, “Charging Infrastructure Implementation for EVs - The Case of Berlin,” Transportation Research Procedia, vol. 14, pp. 2594–2603, 2016. doi: 10.1016/j.trpro.2016.05.410. [Online]. Available: http://dx.doi.org/10.1016/j.trpro.2016.05.410 [80] D. Krajzewicz, M. Hardinghaus, M. Heinrichs, and S. Beige, “Computing spatial charging needs using an agent-based demand model,” 15th International Industrial Simulation Conference 2017, ISC 2017, pp. 24–29, 2017. [81] C. Latinopoulos, A. Sivakumar, and J. W. Polak, “Response of electric vehicle drivers to dynamic pricing of parking and charging services: Risky choice in early reservations,” Transportation Research Part C: Emerging Technologies, vol. 80, pp. 175–189, 2017. doi: 10.1016/j.trc.2017.04.008. [Online]. Available: http://dx.doi.org/10.1016/j.trc.2017.04.008 [82] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flotterod, R. Hilbrich, L. Lucken, J. Rummel, P. Wagner, and E. Wiebner, “Microscopic Traffic Simulation using SUMO,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-November, pp. 2575–2582, 2018. doi: 10.1109/ITSC.2018.8569938 [83] M. Duell, S. Wales, M. Levin, S. T. Waller, and S. Wales, “On Estimating Vehicle Energy Consumption Using Dynamic Traffic Assignment Vehicle,” pp. 1–14, 2014. [Online]. Available: http://handle.unsw.edu.au/1959.4/unsworks_34603 [84] A. Y. S. Lam, Y.-w. Leung, and S. Member, “Electric Vehicle Charging Station Placement : Formulation, Complexity, and Solutions,” vol. 5, no. 6, pp. 2846–2856, 2014. [85] G. Brandstätter, M. Kahr, and M. Leitner, “Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand,” Transportation Research Part B: Methodological, vol. 104, pp. 17–35, 2017. doi: 10.1016/j.trb.2017.06.009 [86] J. Asamer, M. Reinthaler, M. Ruthmair, M. Straub, and J. Puchinger, “Optimizing charging station locations for urban taxi providers,” Transportation Research Part A: Policy and Practice, vol. 85, pp. 233–246, 2016. doi: 10.1016/j.tra.2016.01.014 [87] L. Yang, J. Zhang, and H. V. Poor, “Risk-aware day-ahead scheduling and real-time dispatch for electric vehicle charging,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 693–702, 2014. doi: 10.1109/TSG.2013.2290862 [88] T. Djukic, J. Van Lint, and S. Hoogendoorn, “Application of principal component analysis to predict dynamic origin-destination matrices,” Transportation Research Record, no. 2283, pp. 81–89, 2012. doi: 10.3141/2283-09 [89] D. Redfern and D. McLean, “Principal Component Analysis for Yield Curve Modeling,” Moody’s Analitics, Tech. Rep. August, 2014. [Online]. Available: https://www.moodysanalytics.com/-/media/whitepaper/2014/2014-29-08-pca-for-yield-curve-modelling.pdf [90] N. Gagunashvili, “Weighted histograms Usual histogram,” University of Iceland, Tech. Rep. November, 2017. [Online]. Available: https://indico.cern.ch/event/682907/contributions/2798549/attachments/1565125/2466041/Goodness_pres.pdf [91] S. Hecker, Generation of low order LFT representations for robust control applications, 2006. ISBN 9783185114083 [92] H. Yang, S. Zhang, J. Qiu, D. Qiu, M. Lai, and Z. Dong, “CVaR-Constrained Optimal Bidding of Electric Vehicle Aggregators in Day-Ahead and Real-Time Markets,” IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2555–2565, 2017. doi: 10.1109/TII.2017.2662069 [93] I. Herrero, P. Rodilla, and C. Batlle, “Enhancing Intraday Price Signals in U.S. ISO Markets for a Better Integration of Variable Energy Resources,” The Energy Journal, vol. 39, no. 3, 2018. doi: 10.5547/01956574.39.3.iher [94] Instituto de Investigación Tecnológica - Universidad Pontificia Comillas, “Estudio para la modernización del despacho y el mercado spot de energía eléctrica - despacho vinculante y mercados intradiarios,” Madrid España, Tech. Rep., 2018. [95] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 024 de 1995,” Bogotá, Tech. Rep., 1995. [96] M. Leo, K. Kavi, H. Anders, and B. Moss, “Ancillary service revenue opportunities from electric vehicles via demand response,” Better Place Master’s Project Team. Master of Science from the School of Natural Resources and Environment, no. April, pp. 1–70, 2011. [97] M. Ehsani, M. Falahi, and S. Lotfifard, “Vehicle to grid services: Potential and applications,” Energies, vol. 5, no. 10, pp. 4076–4090, 2012. doi: 10.3390/en5104076 [98] M. P. Kazmierkowski, Advanced Electric Drive Vehicles, 2015, vol. 9, no. 4. ISBN 9781466597709 [99] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 720–732, 2016. doi: 10.1016/j.rser.2015.09.012 [100] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: Calculating capacity and net revenue,” Journal of Power Sources, vol. 144, no. 1, pp. 268–279, 2005. doi:10.1016/j.jpowsour.2004.12.025 [101] D. M. Greenwood, K. Y. Lim, C. Patsios, P. F. Lyons, Y. S. Lim, and P. C. Taylor, “Frequency response services designed for energy storage,” Applied Energy, vol. 203, pp. 115–127, 2017. doi:10.1016/j.apenergy.2017.06.046. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2017.06.046 [102] R. H. Ellison, J. F., Tesfatsion, L. S., Loose, V. W., Byrne, “A Survey of Operating Reserve Markets in U.S. ISO/RTO-Managed Electric Energy Regions,” Sandia National Laboratories, no. September, pp. 1–44, 2012. [Online]. Available: http://prod.sandia.gov/techlib/access-control.cgi/2012/121000.pdf [103] C. Palacios, “Diseño de esquema de asignación y remuneración del servicio de Regulación Secundaria de Frecuencia (AGC) para mejorar la eficiencia en la formación del precio de electricidad en Colombia,” Universidad EAFIT, Medellín, Colombia, Tech. Rep., 2017. [Online]. Available: https://repository.eafit.edu.co/handle/10784/11998 [104] S. Carvajal, “Análisis de servicios potencia eléctricos en ambientes de complementarios en sistemas de mercados,” Ph.D. dissertation, Universidad Nacional de Colombia, 2013. [Online]. Available: http://bdigital.unal.edu.co/11863/1/7907502.2013.pdf [105] W. B. Gish, “Automatic Generation Control Algorithm - General Concepts and Application to the Watertown Energy,” Power and instrumentation Branch Division of Research Engineering and Research Center Bureau of Reclamation, Tech. Rep., 1980. [Online]. Available: https://www.usbr.gov/tsc/techreferences/research/GR8006.pdf [106] A. F. Acosta, “Real-time Co-simulation of Dynamic Systems Incorporating Control Systems,” Unpublished PhD thesis, Universidad Nacional de Colombia, 2021. [107] D. Q. Mayne, J. B. Rawlings, C. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, 2000. doi: 10.1080/00986449808912357 [108] T. Tran, K.-V. Linga, and J. M. Maciejowski, “Economic Model Predictive Control - A Review,” Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC), no. July, 2017. doi: 10.22260/isarc2014/0006 [109] M. Muzakkir Hussain, M. S. Alam, M. M. Sufyan Beg, and H. Malik, “A risk averse business model for smart charging of electric vehicles,” Smart Innovation, Systems and Technologies, vol. 79, pp. 749–759, 2018. doi: 10.1007/978-981-10-5828-8_71 [110] R. J. Bessa, M. A. Matos, F. J. Soares, and J. A. Lopes, “Optimized bidding of a EV aggregation agent in the electricity market,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 443–452, 2012. doi: 10.1109/TSG.2011.2159632 [111] S. Ruiz and J. Espinosa, “Optimal vehicle-to-grid strategy for a fleet of evs considering the batteries aging,” Ingenieria e Investigacion, vol. 39, no. 2, pp. 69–75, 2019. doi: 10.15446/ing.investig.v39n2.78639 [112] Y. Choi and H. Kim, “Optimal scheduling of energy storage system for self-sustainable base station operation considering battery wear-out cost,” International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2016-Augus, pp. 170–172, 2016. doi: 10.1109/ICUFN.2016.7537010 [113] S. Han, S. Han, and H. Aki, “A practical battery wear model for electric vehicle charging applications,” Applied Energy, vol. 113, pp. 1100–1108, 2014. doi: 10.1016/j.apenergy.2013.08.062. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.08.062 [114] J. Köhler, “Distributed economic model predictive control under inexact minimization with application to power systems,” 2017. [115] B. Kouvaritakis and M. Cannon, Model Predictive Control Classical, Robust and Stochastic. Advanced Textbooks in Control and Signal Processing Series- Springer, 2008. ISBN 9781852339838. [Online]. Available: http://books.google.com/books?id=9G-BSwAACAAJ&printsec=frontcover [116] T. K. Kiong, W. Qing-Guo, and H. C. Chieh, Advances in PID Control. Springer, 1999. ISBN 9781447112198 [117] S. Singh, M. Pavone, and J.-j. E. Slotine, “Tube-Based MPC: a Contraction Theory Approach,” Cdc 2016, 2016. [Online]. Available: https://pdfs.semanticscholar.org/733e/698535ec90f654035bb806f19ba1002348b7.pdf [118] C. Böhm, T. Raff, M. Reble, and F. Allgöwer, “LMI-based model predictive control for linear discretetime periodic systems,” Lecture Notes in Control and Information Sciences, vol. 384, pp. 99–108, 2009. doi: 10.1007/978-3-642-01094-1_8 [119] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996. doi: 10.1016/0005-1098(96)00063-5 [120] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, “Efficient Robust Predictive Control,” vol. 45, no. 8, pp. 1545–1549, 2000. [121] P. Krokhmal, M. Zabarankin, and S. Uryasev, “Modeling and optimization of risk,” Surveys in Operations Research and Management Science, vol. 16, no. 2, pp. 49–66, 2011. doi:10.1016/j.sorms.2010.08.001. [Online]. Available: http://dx.doi.org/10.1016/j.sorms.2010.08.001 [122] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91, 1952. doi:https://doi.org/10.2307/2975974 [123] A. Ahmadi-Javid, “Entropic Value-at-Risk: A New Coherent Risk Measure,” Journal of Optimization Theory and Applications, vol. 155, no. 3, pp. 1105–1123, 2012. doi: 10.1007/s10957-011-9968-2 [124] Area Metropolitana Valle de Aburrá, “Medellín – Business Roundtable – Summary Technology and financing options to deploy zero-emission,” Zero emission bus rapid-development accelerator -ZEBRA, 2019. [125] Area Metropolitana Valle de Aburrá, “Área Metropolitana del Valle de Aburrá,” 2019. [Online]. Available: https://datosabiertos.metropol.gov.co/ [126] Area Metropolitana Valle de Aburrá, “Encuesta Origen Destino 2017 – Datos por Hogares,” 2017. [Online]. Available: https://datosabiertos.metropol.gov.co/dataset/encuesta-origen-destino-2017-datos-por-hogares [127] Secretaría de Movilidad de Medellín, “Indicadores - Secretaría de Movilidad de Medellín,” 2013. [Online]. Available: https://www.medellin.gov.co/movilidad/observatorio/indicadores [128] N. Arroyo, A. F. Acosta, and J. E. Espinosa, “Reducción de emisiones vehiculares mediante el modelado y gestión óptima de tráfico en áreas metropolitanas - caso Medellín – área metropolitana del valle de Aburrá,” Universidad Nacional de Colombia, Medellin, Colombia, Tech. Rep., 2018. [129] Alcadía de Medellín, “Semáforos,” Semaforos, p. 80, 2004. doi: 10.1017/CBO9781107415324.004 [130] M. Carlo, “Scenario Simulation Using Principal Components,” Implementing Models in Quantitative Finance: Methods and Cases, no. 2004, pp. 505–516, 2007. doi: 10.1007/978-3-540-49959-6_23 [131] F. Jamshidian and Y. Zhu, “Scenario Simulation: Theory and methodology,” Finance and Stochastics, vol. 1, no. 1, pp. 43–67, 1996. doi: 10.1007/s007800050016 [132] M. C. Grant and S. P. Boyd, “CVX Users’ Guide,” 2012. [Online]. Available: http://web.cvxr.com/cvx/doc/CVX.pdf [133] Gurobi Optimization. Inc, “Gurobi Optimization,” 2016. [Online]. Available: http://www.gurobi. com/index [134] Comisión de Regulación de Energía y Gas - CREG -, “Mercado organizado para contratos de energía para los usuarios regulados y no regulados,” Tech. Rep., 2016. [135] XM Compañía Expertos en Mercados S.A. E.S.P., “Histórico Transacciones y Precio,” 2017. [Online]. Available: http://informacioninteligente10.xm.com.co/transacciones/Paginas/HistoricoTransacciones.aspx [136] Comisión de Regulación de Energía y Gas - CREG -, “Esquema tarifario del servicio de energía eléctrica,” Bogotá, Colombia, 2020. [Online]. Available: https://imgcdn.larepublica.co/cms/2020/04/23075739/TARIFAS.pdf [137] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 107 de 1998,” Bogotá, Colombia, Tech. Rep., 1998. [138] Comisión de Regulación de Energía y Gas - CREG -, “Análisis de los servicios complementarios para el sistema interconectado nacional,” Tech. Rep., 2018. [Online]. Available: https://www.acolgen.org.co/wp-content/uploads/documentos/ESTUDIOSERVICIOSCOMPLEMENTARIOS.pdf [139] CREG, “Asignación de la reserva de regulación (AGC),” Sesión N° 542, 2012. [Online]. Available: http://www.creg.gov.co/index.php/es/creg/quienes-somos/historia [140] Comité de Seguimiento del Mercado Mayorista de Energía Eléctrica., “Servicio de Regulación Secundaria de Frecuencia,” Tech. Rep. 20, 2007. [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/Energiaygascombustible/Energía/2018/Oct/informe20.pdf [141] Redes Energéticas Nacionais SGPS S.A., “REN Sistema de Informação de Mercados de Energia,” 2017. [Online]. Available: https://www.mercado.ren.pt/PT/Electr/InfoMercado/InfOp/Ofertas/Paginas/RestricoesTecnicas.aspx [142] J. C. Hernandez, F. Sanchez-Sutil, A. Cano-Ortega, and C. R. Baier, “Influence of data sampling frequency on household consumption load profile features: A case study in spain,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–36, 2020. doi: 10.3390/s20216034 [143] H. Pang, Z. Tuo, V. Robert, and L. Han, “A Parametric Simplex Approach to Statistical Learning Problems,” 2015. [144] M. Nicholas and M. R. Bernard, “Success factors for electric carsharing,” no. August, 2021. [Online]. Available: https://movmi.net/ [145] S. Ruiz, J. Espinosa, I. Sarmiento, D. Krajzewicz, M. Goletz, and A. Schengen, “Construction of a traffic test scenario in the Aburrá Valley,” Unpublished, 2020. [146] S. Ruiz, D. Krajzewicz, J. Espinosa, and I. Sarmiento, “Optimal Location of Charging Stations for an Electric Car-Sharing Service in the Aburrá Valley,” Unpublished, pp. 1–13, 2020. [147] M. F. Arani and Y. Mohamed, “Cooperative Control of Wind Power Generator and Electric Vehicles for Microgrid Primary Frequency Regulation,” IEEE Transactions on Smart Grid, vol. 3053, no. c, pp.1–1, 2017. doi: 10.1109/TSG.2017.2693992. [Online]. Available: http://ieeexplore.ieee.org/document/7898864/ [148] H. Saadat, “Power System Analysis Hadi Saadat,” 1999. [149] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A unified framework for the study of antiwindup designs,” Automatica, vol. 30, no. 12, pp. 1869–1883, 1994. doi: 10.1016/0005-1098(94)90048-5 [150] E. Hendricks, O. Jannerup, and P. H. Sørensen, Linear Systems Control. Springer, 2019, vol. 1.ISBN 9788578110796 [151] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance. Prentice-Hall, 1991. [152] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design, 2000. [153] L. Grüne and M. Stieler, “Asymptotic stability and transient optimality of economic MPC without terminal conditions,” Journal of Process Control, vol. 24, no. 8, pp. 1187–1196, 2014. doi:10.1016/j.jprocont.2014.05.003. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.05.003 [154] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Automatica MPC for tracking with optimal closed-loop performance,” Automatica, vol. 45, no. 8, pp. 1975–1978, 2009. doi:10.1016/j.automatica.2009.04.007. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2009.04.007 [155] M. Zanon, S. Gros, and M. Diehl, “A tracking MPC formulation that is locally equivalent to economic MPC,” Journal of Process Control, vol. 45, pp. 30–42, 2016. doi:10.1016/j.jprocont.2016.06.006. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2016.06.006 [156] M. Zanon, S. Gros and M. Diehl, “Indefinite linear MPC and approximated economic MPC for nonlinear systems,” Journal of Process Control, vol. 24, no. 8, pp. 1273–1281, 2014. doi:10.1016/j.jprocont.2014.04.023. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.04.023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 201 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Procesos y Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80966/3/1035831711.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/80966/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/80966/5/1035831711.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
be9e7b8536550abdb9ce96e093206850 8153f7789df02f0a4c9e079953658ab2 929af12aaaa2363dabd90157b1690356 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089451872190464 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gomez-Ramirez, Danny Arlen de Jesus058b736ddf4a48a643083a3ef9fdb3a0600Hernández-Riveros, Jesús-Antonio79b7c8f5ace87a6856a110aebf72ff19600Ruiz, Semaria1afb5665ee107b5f38fb4a17003267b16002022-02-14T13:59:04Z2022-02-14T13:59:04Z2021-11https://repositorio.unal.edu.co/handle/unal/80966Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasIn the recent years, the use of electric vehicles for public transport and carsharing services has spread widely in response to the needs of reducing global polluting gases emissions and decreasing vehicle ownership. However, the implementation of the electric carsharing practice still have some changes that need to be overcome, such as limitations in regulations and the low-profit margins that can be achieved by the aggregator agent that operate the fleet. Wherefore this thesis proposes to address the challenge of low profitability margins for the aggregator, giving to the electric vehicles the feature of providing power to the electrical network. It contains the developing process of a a decision making tool for the optimal operation of a fleet of electric vehicles that are used to provide carsharing services by an aggregator agent. In this case the aggregator agent also has the possibility of providing ancillary services to the power network, taking into account the degradation of the batteries and the risk in the incomes due to the variation of carsharing demand and the energy expenditure during travels. The thesis have as main contributions proposal of an aggregated energy model for an agent that operates the electric carsharing fleet, which allows the integration of transport and electrical network related variables, and the inclusion of transport variables uncertainties; and, the design of a risk-aware hierarchical decision-making system based on this model and its application to a study case in the Aburrá Valley; which allows the inclusion of different system models at each level, provides a solution computed in less than 7 seconds, and has the stability conditions necessary for future proposals of stochastic control schemes.El uso de vehículos eléctricos para el transporte público y los servicios de automóviles compartidos se ha extendido ampliamente en los últimos años, en respuesta a las necesidades de reducir las emisiones globales de gases contaminantes y disminuir la cantidad de vehículos particulares. Sin embargo, la implementación de la práctica de vehículos compartidos aún tiene algunos retos que deben superarse, como las limitaciones en las regulaciones y los bajos márgenes de ganancia que pueden lograr los agentes logísticos de la flota. En esta tesis se propone abordar el desafío de los bajos márgenes de rentabilidad para el caso de un único agente logístico en la flota, dando a los vehículos eléctricos la posibilidad de proporcionar energía a la red eléctrica; a través del desarrollo de una herramienta de toma de decisiones para la operación óptima de una flota de vehículos eléctricos que se utilizan de manera compartida, administrados por un único operador o agente logístico (agregador). Dicho agente cuenta adicionalmente con la posibilidad de proveer servicios auxiliares a la red eléctrica, teniendo en cuenta el envejecimiento de las baterías y el riesgo en las ganancias debido a la variación de la demanda del servicio de vehículo compartido y a la energía consumida en los viajes. La tesis tiene como principales aportes la propuesta de un modelo energético agregado para el operador la flota de vehículos eléctricos compartidos, que permite la integración de las variables relacionadas con el transporte, las relacionadas con la red eléctrica, y la inclusión de incertidumbres en las variables de transporte; y, el diseño de un sistema de toma de decisiones jerárquico consciente del riesgo basado en este modelo y su aplicación a un caso de estudio en el Valle de Aburrá; el cual permite la inclusión de diferentes modelos para el sistema en cada nivel de control, brinda una solución calculada en menos de 7 segundos y cuenta con las condiciones de estabilidad necesarias para futuras propuestas de esquemas de control estocástico. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaModelado Matemático para Control y Sistemas DinámicosÁrea Curricular de Ingeniería Química e Ingeniería de Petróleosxxi, 201 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería380 - Comercio , comunicaciones, transporte::388 - TransporteElectricity in transportationElectricidad en el transporteBatteries DegradationNonlinear optimizationOptimal controlRisk aware controlRobust controlVehicle-to-GridElectric vehiclesCarsharingEnvejecimiento de bateríasVehículos eléctricosOptimización no linealControl óptimoControl con aversión al riesgoControl robustoVehículo a redVehículos compartidosMethodology to design an optimal decision making system for the operator of a shared electric vehicle fleet providing electrical ancillary servicesMetodología para diseñar un sistema óptimo de toma de decisiones para el operador de una flota de vehículos eléctricos compartidos que presta servicios auxiliares eléctricosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] S. Ruiz, N. Arroyo, A. Acosta, C. Portilla, and J. Espinosa, “An Optimal Battery Charging And Schedule Control Strategy For Electric Bus Rapid Transit,” in Proceedings of Joint Conference MOVICI -MOYCOT 2018, Medellin, Colombia, 2018.[2] Mercedes-Benz, “smart EQ fortwo | The all-electric two-seater,” 2019. [Online]. Available: https://www.smart.mercedes-benz.com/gb/en/models/eq-fortwo-coupe#intro-smart-eq-fortwo[3] C. J. Chou, C. W. Chen, and C. Conley, “A systematic approach to generate service model for sustainability,” Journal of Cleaner Production, pp. 173–187. doi: 10.1016/j.jclepro.2012.01.037[4] G. Hochman and G. R. Timilsina, “Fuel Efficiency Versus Fuel Substitution in the Transport Sector An Econometric Analysis,” Policy Research, pp. 3–10, 2017. [Online]. Available: https://openknowledge.worldbank.org/bitstream/handle/10986/26841/WPS8070.pdf?sequence=1&isAllowed=y[5] B. Bondorová and G. Archer, “Does sharing cars really reduce car use?” Transport & Environment, pp. 1–8, 2017. [Online]. Available: https://www.transportenvironment.org/sites/te/files/publications/Does-sharing-cars-really-reduce-car-use-June2017.pdf[6] R. Seign, M. Schüssler, and K. Bogenberger, “Enabling sustainable transportation: The model-based determination of business/operating areas of free-floating carsharing systems,” Research in Transportation Economics, vol. 51, pp. 104–114, 2015. doi: 10.1016/j.retrec.2015.10.012[7] J. Firnkorn and M. Müller, “Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments?” Environmental Science and Policy, vol. 45, pp. 30–40. doi: 10.1016/j.envsci.2014.09.005[8] D. Aguiar, M. Palacio, D. Hernández, and J. Manosalva, “Medellin y su calidad del aire,” Escuela Internacional de Desarrollo sostenible, 2016.[9] J. Kang, S. J. Duncan, and D. N. Mavris, “Real-time scheduling techniques for electric vehicle charging in support of frequency regulation,” Procedia Computer Science, vol. 16, pp. 767–775, 2013. doi:10.1016/j.procs.2013.01.080[10] N. Rotering and M. Ilic, “Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1021–1029, 2011. doi: 10.1109/TPWRS.2010.2086083[11] M. G. Vayá and G. Andersson, “Reliability Modeling and Analysis of Smart Power Systems,” Reliable and Sustainable Electric Power and Energy Systems Management book series, 2014. doi: 10.1007/978-81-322-1798-5[12] I. Momber, A. Siddiqui, T. G. S. Roman, and L. Soder, “Risk averse scheduling by a PEV aggregator under uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 882–891, 2015. doi: 10.1109/TPWRS.2014.2330375[13] S. I. Vagropoulos and A. G. Bakirtzis, “Optimal bidding strategy for electric vehicle aggregators in electricity markets,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4031–4041, 2013. doi: 10.1109/TPWRS.2013.2274673[14] M. Gonzalez Vaya and G. Andersson, “Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead Electricity Markets under Uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2375–2385, 2015. doi: 10.1109/TPWRS.2014.2363159[15] Sortomme, Eric and El-Sharkawi, M., “Optimal scheduling of vehicle-to-grid energy and ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 351–359, 2012, doi: 10.1109/TSG.2011.2164099.[16] E. Sortomme and M. A. El-Sharkawi, “Optimal combined bidding of vehicle-to-grid ancillary services,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 70–79, 2012, doi: 10.1109/TSG.2011.2170099.[17] R. J. Bessa and M. A. Matos, “Optimization models for an EV aggregator selling secondary reserve in the electricity market,” Electric Power Systems Research, vol. 106, pp. 36–50, 2014. doi: 10.1016/j.epsr.2013.08.006. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2013.08.006[18] J. P. Koeln and A. G. Alleyne, “Robust hierarchical model predictive control of graph-based power flow systems,” Automatica, vol. 96, no. June, pp. 127–133, 2018. doi: 10.1016/j.automatica.2018.06.042[19] J. Löfberg, “Minimax approaches to Robust Model Predictive Control,” Ph.D. dissertation, Linköping University. ISBN 9173736228 2014.[20] B. Kouvaritakis and M. Cannon, “Stochastic Model Predictive Control,” Encyclopedia of Systems and Control, pp. 1–9, 2014. doi: 10.1007/978-1-4471-5102-9_7-1[21] T. Yoon, C. R. Cherry, and L. R. Jones, “One-way and round-trip carsharing: A stated preference experiment in Beijing,” Transportation Research Part D: Transport and Environment, vol. 53, pp. 102–114, 2017. doi: 10.1016/j.trd.2017.04.009[22] E. Biondi, C. Boldrini, and R. Bruno, “Optimal charging of electric vehicle fleets for a car sharing system with power sharing,” 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016. doi: 10.1109/ENERGYCON.2016.7514070[23] J. Barco, A. Guerra, L. Muñoz, and N. Quijano, “Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study,” Problems in Engineerin, vol. abs/1310.0, pp. 1–21, 2013. doi: 10.1155/2017/8509783[24] S. Weikl and K. Bogenberger, “A practice-ready relocation model for free-floating carsharing systems with electric vehicles - Mesoscopic approach and field trial results,” Transportation Research Part C: Emerging Technologies, vol. 57, pp. 206–223, 2015. doi: 10.1016/j.trc.2015.06.024[25] F. Kong and X. Liu, Sustainable Transportation with Electric Vehicles, 2017, vol. 2, no. 1. ISBN 9781680833881. [Online]. Available: http://www.nowpublishers.com/article/Details/EES-016[26] P. Liakos, I. Angelidis, and A. Delis, “Routing and Scheduling an Electric Vehicle Fleet Handling Dynamic Customer Requests,” CoopIS 2016: 24th International Conference on Cooperative Information Systems, 2016. [Online]. Available: http://cgi.di.uoa.gr/~ad/Publications/LAD-Coopis16.pdf[27] T. Ichimori, H. Ishii, and T. Nishida, “Routing a vehicle with the limitation of fuel,” Journal of the Operations Research Society of Japan, vol. 24, no. 3, pp. 277–281, 1981. [Online]. Available: http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.24_03_277.pdf[28] A. Artmeier, J. Haselmayr, M. Leucker, and M. Sachenbacher, “The Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles,” Annual Conference on Artificial Intelligence KI 2010, pp. 309–316, 2010. doi: 10.1007/978-3-642-16111-7_35[29] M. M. De Weerdt, E. H. Gerding, S. Stein, V. Robu, and N. R. Jennings, “Intention-aware routing to minimize delays at electric vehicle charging stations,” Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pp. 83–89, 2013. doi: 10.1145/2516911.2516923[30] S. Krauss, “Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics,” Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt e.V., no. 98-8, 1998.[31] A. Febbraro, N. Sacco, and M. Saeednia, “One-Way Carsharing,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2319, no. January 2016, pp. 113–120, 2012. doi: 10.3141/2319-13[32] D. Jorge and G. Correia, “Carsharing systems demand estimation and defined operations: A literature review,” European Journal of Transport and Infrastructure Research, vol. 13, no. 3, pp. 201–220, 2013.[33] M. Bruglieri, F. Pezzella, and O. Pisacane, “Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems,” Discrete Optimization, vol. 23, pp. 56–80, 2017. doi: 10.1016/j.disopt.2016.12.001[34] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations,” Transportation Research Part B: Methodological, vol. 95, pp. 214–237, 2017. doi: 10.1016/j.trb.2016.10.007[35] S. Jian, T. Hossein Rashidi, K. P. Wijayaratna, and V. V. Dixit, “A Spatial Hazard-Based analysis for modelling vehicle selection in station-based carsharing systems,” Transportation Research Part C: Emerging Technologies, vol. 72, pp. 130–142, 2016. doi: 10.1016/j.trc.2016.09.008[36] M. Drwal, E. Gerding, S. Stein, K. Hayakawa, and H. Kitaoka, “Adaptive Pricing Mechanisms for On-Demand Mobility,” Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017), p. 9, 2017. [Online]. Available: http://eprints.soton.ac.uk/id/eprint/405176[37] J. García-Villalobos, I. Zamora, J. I. San Martín, F. J. Asensio, and V. Aperribay, “Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 717–731, 2014. doi: 10.1016/j.rser.2014.07.040[38] A. Brooks, “Vehicle-to-grid demonstration project: Grid regulation ancillary service with a battery electric vehicle,” Regulation, no. 01, p. 61, 2002. [Online]. Available: http://www.smartgridnews.com/artman/uploads/1/sgnr_2007_12031.pdf[39] S. Ruiz and J. Espinosa, “State of the art in strategies allowing the integration of a shared EVs service and the active participation of EVs with the power network,” 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, 2019. doi: 10.1109/CCAC.2019.8921301[40] D. Pelzer, A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids. München, Germany: Springer, 2019. ISBN 9783658270230[41] R. J. Bessa and M. A. Matos, “Global against divided optimization for the participation of an EV aggregator in the day-ahead electricity market. Part II: Numerical analysis,” Electric Power Systems Research, vol. 95, pp. 309–318, 2013, doi: 10.1016/j.epsr.2012.08.013.[42] E. A. Buehler, J. A. Paulson, and A. Mesbah, “Lyapunov-based stochastic nonlinear model predictive control: Shaping the state probability distribution functions,” Proceedings of the American Control Conference, vol. 2016-July, no. Section IV, pp. 5389–5394, 2016. doi: 10.1109/ACC.2016.7526514[43] S. Liu and J. Liu, “Economic Model Predictive Control with Extended Horizon,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 16–21, 2018. doi: 10.1016/j.ifacol.2018.10.168[44] M. A. Muller, D. Angeli, and F. Allgower, “Economic model predictive control with selftuning terminal cost,” European Journal of Control, vol. 19, no. 5, pp. 408–416, 2013. doi: 10.1016/j.ejcon.2013.05.019. [Online]. Available: http://dx.doi.org/10.1016/j.ejcon.2013.05.019[45] J. V. Kadam and W. Marquardt, “Integration of Economical Optimization and Control for Intentionally Transient Process Operation,” in Findeisen R., Allgöwer F., Biegler L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: vol 358. Springer.[46] C. Goebel and H. A. Jacobsen, “Aggregator-Controlled EV Charging in Pay-as-Bid Reserve Markets with Strict Delivery Constraints,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4447–4461, 2016. doi: 10.1109/TPWRS.2016.2518648[47] S.M. Sotoudeh and B. Homchaudhuri, “A RobustMPC-based Hierarchical Control Strategy for Energy Management of Hybrid Electric Vehicles in Presence of Uncertainty,” Proceedings of the American Control Conference, vol. 2020-July, pp. 3065–3070, 2020. doi: 10.23919/ACC45564.2020.9147288[48] R. Scattolini and P. Colaneri, “Hierarchical model predictive control,” Proceedings of the IEEE Conference on Decision and Control, pp. 4803–4808, 2007. doi: 10.1109/CDC.2007.4434079[49] F. A. Bayer, M. A. Muller, and F. Allgower, “Min-max economic model predictive control approaches with guaranteed performance,” 2016 IEEE 55th Conference on Decision and Control, CDC 2016, no. Cdc, pp. 3210–3215, 2016. doi: 10.1109/CDC.2016.7798751[50] A. Parisio and L. Glielmo, “Stochastic Model Predictive Control for economic/environmental operation management of microgrids,” pp. 2014–2019, 2013. [Online]. Available: http://ieeexplore.ieee.org/ielx7/6657188/6669080/06669807.pdf?tp=&arnumber=6669807&isnumber=6669080%5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6669807&pageNumber%3D2%26queryText%3Dstochastic+MPC[51] E. Sortomme and M. A. El-Sharkawi, “Optimal charging strategies for unidirectional vehicle-to-grid,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 119–126, 2011, doi: 10.1109/TSG.2010.2090910.[52] H. Liu, Z. Hu, Y. Song, J. Wang, and X. Xie, “Vehicle-to-Grid Control for Supplementary Frequency Regulation Considering Charging Demands,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3110–3119, 2015. doi: 10.1109/TPWRS.2014.2382979[53] F. J. Soares, P. M. Almeida, and J. A. Lopes, “Quasi-real-time management of Electric Vehicles charging,” Electric Power Systems Research, vol. 108, pp. 293–303, 2014. doi: 10.1016/j.epsr.2013.11.019[54] O. Beaude, Y. He, and M. Hennebel, “Introducing decentralized EV charging coordination for the voltage regulation,” 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, pp. 1–5, 2013. doi: 10.1109/ISGTEurope.2013.6695375[55] T. Logenthiran and D. Srinivasan, “Multi-agent system for managing a power distribution system with Plug-in Hybrid Electrical vehicles in smart grid,” 2011 IEEE PES International Conference on Innovative Smart Grid Technologies-India, ISGT India 2011, vol. 0954, pp. 346–351, 2011. doi: 10.1109/ISET-India.2011.6145339[56] I. S. Bayram, G. Michailidis, and M. Devetsikiotis, “Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1292–1302, 2015. doi: 10.1109/TSG.2014.2362994[57] I. Semanjski and S. Gautama, “Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices,” Energies, vol. 9, no. 12, 2016. doi: 10.3390/en9121025[58] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with secondorder moment information,” Mathematical Programming, vol. 137, no. 1-2, pp. 167–198, 2013. doi: 10.1007/s10107-011-0494-7[59] J. A. Primbs and C. H. Sung, “Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp.221–230, 2009. doi: 10.1109/TAC.2008.2010886[60] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model predictive control with joint chance constraints,” International Journal of Control, vol. 93, no. 1, pp. 126–139, 2020. doi:10.1080/00207179.2017.1323351. [Online]. Available: https://doi.org/10.1080/00207179.2017.1323351[61] M. P. Vitus and C. J. Tomlin, “On feedback design and risk allocation in chance constrained control,” Proceedings of the IEEE Conference on Decision and Control, pp. 734–739, 2011. doi: 10.1109/CDC.2011.6160721[62] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966. doi: 10.1126/science.153.3731.34[63] A. Pichler, “Risk-Averse Optimal Control,” pp. 1–26, 2019.[64] J. Yong and X. Y. Zhou, Stochastic controls Hamiltonian systems and HJB equations, 1999. ISBN 0387987231[65] C. Hou, M. Ouyang, L. Xu, and H. Wang, “Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles,” Applied Energy, vol. 115, pp. 174–189, 2014. doi: 10.1016/j.apenergy.2013.11.002. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.11.002[66] N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid electric vehicles based on Pontryagin’s minimum principle,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1279–1287, 2011. doi: 10.1109/TCST.2010.2061232[67] D. Bernardini and A. Bemporad, “Scenario-based model predictive control of stochastic constrained linear systems,” Proceedings of the IEEE Conference on Decision and Control, no. 2, pp. 6333–6338, 2009. doi: 10.1109/CDC.2009.5399917[68] L. Jian, X. Zhu, Z. Shao, S. Niu, and C. C. Chan, “A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids,” Energy Conversion and Management, vol. 78, pp. 508–517, 2014. doi: 10.1016/j.enconman.2013.11.007. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2013.11.007[69] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach for Stochastic Model Predictive Control with bounds on closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, 2014. doi: 10.1016/j.automatica.2014.10.035. [Online]. Available: http://dx.doi.org/ 10.1016/j.automatica.2014.10.035[70] L. Baringo and R. Sánchez Amaro, “A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator,” Electric Power Systems Research, vol. 146, pp. 362–370, 2017. doi: 10.1016/j.epsr.2017.02.004. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2017.02.004[71] A. Nemirovski and A. Shapiro, “Convex Approximations of Chance Constrained Programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2006. doi: 10.1137/050622328[72] R. P. Cysne, “On the Statistical Estimation of Diffusion Processes - A Survey,” SSRN Electronic Journal, no. 2, pp. 273–301, 2014. doi: 10.2139/ssrn.2388964[73] I. V. Basawa and R. L. Brakasa Rao, “Statistical inference for stochastic processes.” vol. i, 1980. doi:10.2307/2987945[74] S. Ruiz, J. Patino, A. Marquez-Ruiz, J. Espinosa, E. Duque, and P. Ortiz, “Optimal design of a diesel-pv-wind-battery-hydro pumped power system with the integration of electric vehicles in a colombian community,” Energies, vol. 12, no. 23, 2019. doi: 10.3390/en12234542[75] I. Sarmiento-Ordosgoitia, “Plan de estacionamientos y parqueaderos de zonas críticas de Medellín,” Universidad Nacional de Colombia, Tech. Rep., 2019.[76] G. Hertkorn, “Mikroskopische Modellierung von zeitabhängiger Verkehrsnachfrage und von Verkehrsflußmustern,” DLR - Forschungsberichte, no. 29, 2004.[77] D. Krajzewicz, B. Heldt, S. Nieland, R. Cyganski, and K. Gade, “Sustainable urban mobility and communting in Baltic cities: Guidance for transport modelling and data collection,” Baltic Sea Region Mobility Summit, 2019. [Online]. Available: http://sumba.eu/sites/default/files/2020-03/D2. 3_ModellingGuidelines_final.pdf[78] M. G. Mcnally and C. Rindt, “The Activity-Based Approach,” Department of Civil and Environmental Engineering and Institute of Transportation Studies University of California, Irvine, California, Tech. Rep., 2008. [Online]. Available: https://escholarship.org/uc/item/5sv5v9qt[79] M. Hardinghaus, H. Blümel, and C. Seidel, “Charging Infrastructure Implementation for EVs - The Case of Berlin,” Transportation Research Procedia, vol. 14, pp. 2594–2603, 2016. doi: 10.1016/j.trpro.2016.05.410. [Online]. Available: http://dx.doi.org/10.1016/j.trpro.2016.05.410[80] D. Krajzewicz, M. Hardinghaus, M. Heinrichs, and S. Beige, “Computing spatial charging needs using an agent-based demand model,” 15th International Industrial Simulation Conference 2017, ISC 2017, pp. 24–29, 2017.[81] C. Latinopoulos, A. Sivakumar, and J. W. Polak, “Response of electric vehicle drivers to dynamic pricing of parking and charging services: Risky choice in early reservations,” Transportation Research Part C: Emerging Technologies, vol. 80, pp. 175–189, 2017. doi: 10.1016/j.trc.2017.04.008. [Online]. Available: http://dx.doi.org/10.1016/j.trc.2017.04.008[82] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flotterod, R. Hilbrich, L. Lucken, J. Rummel, P. Wagner, and E. Wiebner, “Microscopic Traffic Simulation using SUMO,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-November, pp. 2575–2582, 2018. doi: 10.1109/ITSC.2018.8569938[83] M. Duell, S. Wales, M. Levin, S. T. Waller, and S. Wales, “On Estimating Vehicle Energy Consumption Using Dynamic Traffic Assignment Vehicle,” pp. 1–14, 2014. [Online]. Available: http://handle.unsw.edu.au/1959.4/unsworks_34603[84] A. Y. S. Lam, Y.-w. Leung, and S. Member, “Electric Vehicle Charging Station Placement : Formulation, Complexity, and Solutions,” vol. 5, no. 6, pp. 2846–2856, 2014.[85] G. Brandstätter, M. Kahr, and M. Leitner, “Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand,” Transportation Research Part B: Methodological, vol. 104, pp. 17–35, 2017. doi: 10.1016/j.trb.2017.06.009[86] J. Asamer, M. Reinthaler, M. Ruthmair, M. Straub, and J. Puchinger, “Optimizing charging station locations for urban taxi providers,” Transportation Research Part A: Policy and Practice, vol. 85, pp. 233–246, 2016. doi: 10.1016/j.tra.2016.01.014[87] L. Yang, J. Zhang, and H. V. Poor, “Risk-aware day-ahead scheduling and real-time dispatch for electric vehicle charging,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 693–702, 2014. doi: 10.1109/TSG.2013.2290862[88] T. Djukic, J. Van Lint, and S. Hoogendoorn, “Application of principal component analysis to predict dynamic origin-destination matrices,” Transportation Research Record, no. 2283, pp. 81–89, 2012. doi: 10.3141/2283-09[89] D. Redfern and D. McLean, “Principal Component Analysis for Yield Curve Modeling,” Moody’s Analitics, Tech. Rep. August, 2014. [Online]. Available: https://www.moodysanalytics.com/-/media/whitepaper/2014/2014-29-08-pca-for-yield-curve-modelling.pdf[90] N. Gagunashvili, “Weighted histograms Usual histogram,” University of Iceland, Tech. Rep. November, 2017. [Online]. Available: https://indico.cern.ch/event/682907/contributions/2798549/attachments/1565125/2466041/Goodness_pres.pdf[91] S. Hecker, Generation of low order LFT representations for robust control applications, 2006. ISBN 9783185114083[92] H. Yang, S. Zhang, J. Qiu, D. Qiu, M. Lai, and Z. Dong, “CVaR-Constrained Optimal Bidding of Electric Vehicle Aggregators in Day-Ahead and Real-Time Markets,” IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2555–2565, 2017. doi: 10.1109/TII.2017.2662069[93] I. Herrero, P. Rodilla, and C. Batlle, “Enhancing Intraday Price Signals in U.S. ISO Markets for a Better Integration of Variable Energy Resources,” The Energy Journal, vol. 39, no. 3, 2018. doi: 10.5547/01956574.39.3.iher[94] Instituto de Investigación Tecnológica - Universidad Pontificia Comillas, “Estudio para la modernización del despacho y el mercado spot de energía eléctrica - despacho vinculante y mercados intradiarios,” Madrid España, Tech. Rep., 2018.[95] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 024 de 1995,” Bogotá, Tech. Rep., 1995.[96] M. Leo, K. Kavi, H. Anders, and B. Moss, “Ancillary service revenue opportunities from electric vehicles via demand response,” Better Place Master’s Project Team. Master of Science from the School of Natural Resources and Environment, no. April, pp. 1–70, 2011.[97] M. Ehsani, M. Falahi, and S. Lotfifard, “Vehicle to grid services: Potential and applications,” Energies, vol. 5, no. 10, pp. 4076–4090, 2012. doi: 10.3390/en5104076[98] M. P. Kazmierkowski, Advanced Electric Drive Vehicles, 2015, vol. 9, no. 4. ISBN 9781466597709[99] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 720–732, 2016. doi: 10.1016/j.rser.2015.09.012[100] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: Calculating capacity and net revenue,” Journal of Power Sources, vol. 144, no. 1, pp. 268–279, 2005. doi:10.1016/j.jpowsour.2004.12.025[101] D. M. Greenwood, K. Y. Lim, C. Patsios, P. F. Lyons, Y. S. Lim, and P. C. Taylor, “Frequency response services designed for energy storage,” Applied Energy, vol. 203, pp. 115–127, 2017. doi:10.1016/j.apenergy.2017.06.046. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2017.06.046[102] R. H. Ellison, J. F., Tesfatsion, L. S., Loose, V. W., Byrne, “A Survey of Operating Reserve Markets in U.S. ISO/RTO-Managed Electric Energy Regions,” Sandia National Laboratories, no. September, pp. 1–44, 2012. [Online]. Available: http://prod.sandia.gov/techlib/access-control.cgi/2012/121000.pdf[103] C. Palacios, “Diseño de esquema de asignación y remuneración del servicio de Regulación Secundaria de Frecuencia (AGC) para mejorar la eficiencia en la formación del precio de electricidad en Colombia,” Universidad EAFIT, Medellín, Colombia, Tech. Rep., 2017. [Online]. Available: https://repository.eafit.edu.co/handle/10784/11998[104] S. Carvajal, “Análisis de servicios potencia eléctricos en ambientes de complementarios en sistemas de mercados,” Ph.D. dissertation, Universidad Nacional de Colombia, 2013. [Online]. Available: http://bdigital.unal.edu.co/11863/1/7907502.2013.pdf[105] W. B. Gish, “Automatic Generation Control Algorithm - General Concepts and Application to the Watertown Energy,” Power and instrumentation Branch Division of Research Engineering and Research Center Bureau of Reclamation, Tech. Rep., 1980. [Online]. Available: https://www.usbr.gov/tsc/techreferences/research/GR8006.pdf[106] A. F. Acosta, “Real-time Co-simulation of Dynamic Systems Incorporating Control Systems,” Unpublished PhD thesis, Universidad Nacional de Colombia, 2021.[107] D. Q. Mayne, J. B. Rawlings, C. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, 2000. doi: 10.1080/00986449808912357[108] T. Tran, K.-V. Linga, and J. M. Maciejowski, “Economic Model Predictive Control - A Review,” Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC), no. July, 2017. doi: 10.22260/isarc2014/0006[109] M. Muzakkir Hussain, M. S. Alam, M. M. Sufyan Beg, and H. Malik, “A risk averse business model for smart charging of electric vehicles,” Smart Innovation, Systems and Technologies, vol. 79, pp. 749–759, 2018. doi: 10.1007/978-981-10-5828-8_71[110] R. J. Bessa, M. A. Matos, F. J. Soares, and J. A. Lopes, “Optimized bidding of a EV aggregation agent in the electricity market,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 443–452, 2012. doi: 10.1109/TSG.2011.2159632[111] S. Ruiz and J. Espinosa, “Optimal vehicle-to-grid strategy for a fleet of evs considering the batteries aging,” Ingenieria e Investigacion, vol. 39, no. 2, pp. 69–75, 2019. doi: 10.15446/ing.investig.v39n2.78639[112] Y. Choi and H. Kim, “Optimal scheduling of energy storage system for self-sustainable base station operation considering battery wear-out cost,” International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2016-Augus, pp. 170–172, 2016. doi: 10.1109/ICUFN.2016.7537010[113] S. Han, S. Han, and H. Aki, “A practical battery wear model for electric vehicle charging applications,” Applied Energy, vol. 113, pp. 1100–1108, 2014. doi: 10.1016/j.apenergy.2013.08.062. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2013.08.062[114] J. Köhler, “Distributed economic model predictive control under inexact minimization with application to power systems,” 2017.[115] B. Kouvaritakis and M. Cannon, Model Predictive Control Classical, Robust and Stochastic. Advanced Textbooks in Control and Signal Processing Series- Springer, 2008. ISBN 9781852339838. [Online]. Available: http://books.google.com/books?id=9G-BSwAACAAJ&printsec=frontcover[116] T. K. Kiong, W. Qing-Guo, and H. C. Chieh, Advances in PID Control. Springer, 1999. ISBN 9781447112198[117] S. Singh, M. Pavone, and J.-j. E. Slotine, “Tube-Based MPC: a Contraction Theory Approach,” Cdc 2016, 2016. [Online]. Available: https://pdfs.semanticscholar.org/733e/698535ec90f654035bb806f19ba1002348b7.pdf[118] C. Böhm, T. Raff, M. Reble, and F. Allgöwer, “LMI-based model predictive control for linear discretetime periodic systems,” Lecture Notes in Control and Information Sciences, vol. 384, pp. 99–108, 2009. doi: 10.1007/978-3-642-01094-1_8[119] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996. doi: 10.1016/0005-1098(96)00063-5[120] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans, “Efficient Robust Predictive Control,” vol. 45, no. 8, pp. 1545–1549, 2000.[121] P. Krokhmal, M. Zabarankin, and S. Uryasev, “Modeling and optimization of risk,” Surveys in Operations Research and Management Science, vol. 16, no. 2, pp. 49–66, 2011. doi:10.1016/j.sorms.2010.08.001. [Online]. Available: http://dx.doi.org/10.1016/j.sorms.2010.08.001[122] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91, 1952. doi:https://doi.org/10.2307/2975974[123] A. Ahmadi-Javid, “Entropic Value-at-Risk: A New Coherent Risk Measure,” Journal of Optimization Theory and Applications, vol. 155, no. 3, pp. 1105–1123, 2012. doi: 10.1007/s10957-011-9968-2[124] Area Metropolitana Valle de Aburrá, “Medellín – Business Roundtable – Summary Technology and financing options to deploy zero-emission,” Zero emission bus rapid-development accelerator -ZEBRA, 2019.[125] Area Metropolitana Valle de Aburrá, “Área Metropolitana del Valle de Aburrá,” 2019. [Online]. Available: https://datosabiertos.metropol.gov.co/[126] Area Metropolitana Valle de Aburrá, “Encuesta Origen Destino 2017 – Datos por Hogares,” 2017. [Online]. Available: https://datosabiertos.metropol.gov.co/dataset/encuesta-origen-destino-2017-datos-por-hogares[127] Secretaría de Movilidad de Medellín, “Indicadores - Secretaría de Movilidad de Medellín,” 2013. [Online]. Available: https://www.medellin.gov.co/movilidad/observatorio/indicadores[128] N. Arroyo, A. F. Acosta, and J. E. Espinosa, “Reducción de emisiones vehiculares mediante el modelado y gestión óptima de tráfico en áreas metropolitanas - caso Medellín – área metropolitana del valle de Aburrá,” Universidad Nacional de Colombia, Medellin, Colombia, Tech. Rep., 2018.[129] Alcadía de Medellín, “Semáforos,” Semaforos, p. 80, 2004. doi: 10.1017/CBO9781107415324.004[130] M. Carlo, “Scenario Simulation Using Principal Components,” Implementing Models in Quantitative Finance: Methods and Cases, no. 2004, pp. 505–516, 2007. doi: 10.1007/978-3-540-49959-6_23[131] F. Jamshidian and Y. Zhu, “Scenario Simulation: Theory and methodology,” Finance and Stochastics, vol. 1, no. 1, pp. 43–67, 1996. doi: 10.1007/s007800050016[132] M. C. Grant and S. P. Boyd, “CVX Users’ Guide,” 2012. [Online]. Available: http://web.cvxr.com/cvx/doc/CVX.pdf[133] Gurobi Optimization. Inc, “Gurobi Optimization,” 2016. [Online]. Available: http://www.gurobi. com/index[134] Comisión de Regulación de Energía y Gas - CREG -, “Mercado organizado para contratos de energía para los usuarios regulados y no regulados,” Tech. Rep., 2016.[135] XM Compañía Expertos en Mercados S.A. E.S.P., “Histórico Transacciones y Precio,” 2017. [Online]. Available: http://informacioninteligente10.xm.com.co/transacciones/Paginas/HistoricoTransacciones.aspx[136] Comisión de Regulación de Energía y Gas - CREG -, “Esquema tarifario del servicio de energía eléctrica,” Bogotá, Colombia, 2020. [Online]. Available: https://imgcdn.larepublica.co/cms/2020/04/23075739/TARIFAS.pdf[137] Comisión de Regulación de Energía y Gas - CREG -, “Resolución CREG 107 de 1998,” Bogotá, Colombia, Tech. Rep., 1998.[138] Comisión de Regulación de Energía y Gas - CREG -, “Análisis de los servicios complementarios para el sistema interconectado nacional,” Tech. Rep., 2018. [Online]. Available: https://www.acolgen.org.co/wp-content/uploads/documentos/ESTUDIOSERVICIOSCOMPLEMENTARIOS.pdf[139] CREG, “Asignación de la reserva de regulación (AGC),” Sesión N° 542, 2012. [Online]. Available: http://www.creg.gov.co/index.php/es/creg/quienes-somos/historia[140] Comité de Seguimiento del Mercado Mayorista de Energía Eléctrica., “Servicio de Regulación Secundaria de Frecuencia,” Tech. Rep. 20, 2007. [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/Energiaygascombustible/Energía/2018/Oct/informe20.pdf[141] Redes Energéticas Nacionais SGPS S.A., “REN Sistema de Informação de Mercados de Energia,” 2017. [Online]. Available: https://www.mercado.ren.pt/PT/Electr/InfoMercado/InfOp/Ofertas/Paginas/RestricoesTecnicas.aspx[142] J. C. Hernandez, F. Sanchez-Sutil, A. Cano-Ortega, and C. R. Baier, “Influence of data sampling frequency on household consumption load profile features: A case study in spain,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–36, 2020. doi: 10.3390/s20216034[143] H. Pang, Z. Tuo, V. Robert, and L. Han, “A Parametric Simplex Approach to Statistical Learning Problems,” 2015.[144] M. Nicholas and M. R. Bernard, “Success factors for electric carsharing,” no. August, 2021. [Online]. Available: https://movmi.net/[145] S. Ruiz, J. Espinosa, I. Sarmiento, D. Krajzewicz, M. Goletz, and A. Schengen, “Construction of a traffic test scenario in the Aburrá Valley,” Unpublished, 2020.[146] S. Ruiz, D. Krajzewicz, J. Espinosa, and I. Sarmiento, “Optimal Location of Charging Stations for an Electric Car-Sharing Service in the Aburrá Valley,” Unpublished, pp. 1–13, 2020.[147] M. F. Arani and Y. Mohamed, “Cooperative Control of Wind Power Generator and Electric Vehicles for Microgrid Primary Frequency Regulation,” IEEE Transactions on Smart Grid, vol. 3053, no. c, pp.1–1, 2017. doi: 10.1109/TSG.2017.2693992. [Online]. Available: http://ieeexplore.ieee.org/document/7898864/[148] H. Saadat, “Power System Analysis Hadi Saadat,” 1999.[149] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A unified framework for the study of antiwindup designs,” Automatica, vol. 30, no. 12, pp. 1869–1883, 1994. doi: 10.1016/0005-1098(94)90048-5[150] E. Hendricks, O. Jannerup, and P. H. Sørensen, Linear Systems Control. Springer, 2019, vol. 1.ISBN 9788578110796[151] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance. Prentice-Hall, 1991.[152] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design, 2000.[153] L. Grüne and M. Stieler, “Asymptotic stability and transient optimality of economic MPC without terminal conditions,” Journal of Process Control, vol. 24, no. 8, pp. 1187–1196, 2014. doi:10.1016/j.jprocont.2014.05.003. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.05.003[154] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Automatica MPC for tracking with optimal closed-loop performance,” Automatica, vol. 45, no. 8, pp. 1975–1978, 2009. doi:10.1016/j.automatica.2009.04.007. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2009.04.007[155] M. Zanon, S. Gros, and M. Diehl, “A tracking MPC formulation that is locally equivalent to economic MPC,” Journal of Process Control, vol. 45, pp. 30–42, 2016. doi:10.1016/j.jprocont.2016.06.006. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2016.06.006[156] M. Zanon, S. Gros and M. Diehl, “Indefinite linear MPC and approximated economic MPC for nonlinear systems,” Journal of Process Control, vol. 24, no. 8, pp. 1273–1281, 2014. doi:10.1016/j.jprocont.2014.04.023. [Online]. Available: http://dx.doi.org/10.1016/j.jprocont.2014.04.023Colciencias beca 757 de 2016DAAD Research Grant (Short-Term) 57440917 (2019)InvestigadoresORIGINAL1035831711.2022.pdf1035831711.2022.pdfTesis de Doctorado en Ingeniería - Ingeniería de Sistemas Energéticosapplication/pdf5139869https://repositorio.unal.edu.co/bitstream/unal/80966/3/1035831711.2022.pdfbe9e7b8536550abdb9ce96e093206850MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80966/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1035831711.2022.pdf.jpg1035831711.2022.pdf.jpgGenerated Thumbnailimage/jpeg4982https://repositorio.unal.edu.co/bitstream/unal/80966/5/1035831711.2022.pdf.jpg929af12aaaa2363dabd90157b1690356MD55unal/80966oai:repositorio.unal.edu.co:unal/809662023-10-13 14:08:34.246Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |