Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study

Despite the leading role that micro-entrepreneurship plays in economic development, and the high failure rate of microenterprise start-ups in their early years, very few studies have designed financial distress models to detect the financial problems of micro-entrepreneurs. Moreover, due to a lack o...

Full description

Autores:
Blanco-Oliver, Antonio
Pino-Mejías, Rafael
Lara-Rubio, Juan
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/65939
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/65939
http://bdigital.unal.edu.co/66962/
Palabra clave:
3 Ciencias sociales / Social sciences
Financial distress model
microenterprise start-ups
microfinancial institutions
Latin American
non-financial variables
modelo de dificultades financieras
microempresas de nueva creación
instituciones microfinancieras
América Latina
variables no financieras
Modelo de dificuldades financeiras
microempresas de criação recente
micro-instituições financeiras
América Latina
variáveis não financeiras
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a66b2b6302b05ffe5fbf28cdf9828d94
oai_identifier_str oai:repositorio.unal.edu.co:unal/65939
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
title Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
spellingShingle Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
3 Ciencias sociales / Social sciences
Financial distress model
microenterprise start-ups
microfinancial institutions
Latin American
non-financial variables
modelo de dificultades financieras
microempresas de nueva creación
instituciones microfinancieras
América Latina
variables no financieras
Modelo de dificuldades financeiras
microempresas de criação recente
micro-instituições financeiras
América Latina
variáveis não financeiras
title_short Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
title_full Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
title_fullStr Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
title_full_unstemmed Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
title_sort Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study
dc.creator.fl_str_mv Blanco-Oliver, Antonio
Pino-Mejías, Rafael
Lara-Rubio, Juan
dc.contributor.author.spa.fl_str_mv Blanco-Oliver, Antonio
Pino-Mejías, Rafael
Lara-Rubio, Juan
dc.subject.ddc.spa.fl_str_mv 3 Ciencias sociales / Social sciences
topic 3 Ciencias sociales / Social sciences
Financial distress model
microenterprise start-ups
microfinancial institutions
Latin American
non-financial variables
modelo de dificultades financieras
microempresas de nueva creación
instituciones microfinancieras
América Latina
variables no financieras
Modelo de dificuldades financeiras
microempresas de criação recente
micro-instituições financeiras
América Latina
variáveis não financeiras
dc.subject.proposal.spa.fl_str_mv Financial distress model
microenterprise start-ups
microfinancial institutions
Latin American
non-financial variables
modelo de dificultades financieras
microempresas de nueva creación
instituciones microfinancieras
América Latina
variables no financieras
Modelo de dificuldades financeiras
microempresas de criação recente
micro-instituições financeiras
América Latina
variáveis não financeiras
description Despite the leading role that micro-entrepreneurship plays in economic development, and the high failure rate of microenterprise start-ups in their early years, very few studies have designed financial distress models to detect the financial problems of micro-entrepreneurs. Moreover, due to a lack of research, nothing is known about whether non-financial information and non-parametric statistical techniques improve the predictive capacity of these models. Therefore, this paper provides an innovative financial distress model specifically designed for microenterprise startups via support vector machines (SVMs) that employs financial, non-financial, and macroeconomic variables. Based on a sample of almost 5,500 micro-entrepreneurs from a Peruvian Microfinance Institution (MFI), our findings show that the introduction of non-financial information related to the zone in which the entrepreneurs live and situate their business, the duration of the MFI-entrepre-neur relationship, the number of loans granted by the MFI in the last year, the loan destination, and the opinion of experts on the probability that microenterprise start-ups may experience financial problems, significantly increases the accuracy performance of our financial distress model. Furthermore, the results reveal that the models that use SVMs outperform those which employ traditional logistic regression (LR) analysis.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-02-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T01:11:42Z
dc.date.available.spa.fl_str_mv 2019-07-03T01:11:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2248-6968
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/65939
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/66962/
identifier_str_mv ISSN: 2248-6968
url https://repositorio.unal.edu.co/handle/unal/65939
http://bdigital.unal.edu.co/66962/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/innovar/article/view/47615
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Innovar Journal Revista de Ciencias Administrativas y Sociales
Revista Innovar Journal Revista de Ciencias Administrativas y Sociales
dc.relation.references.spa.fl_str_mv Blanco-Oliver, Antonio and Pino-Mejías, Rafael and Lara-Rubio, Juan (2014) Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study. Innovar, 24 (1Spe). pp. 153-168. ISSN 2248-6968
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Económicas - Escuela de Administración y Contaduría Pública
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/65939/1/47615-231295-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/65939/2/47615-231295-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv ef0e0405a20ba400bef98b6e30f42606
7d25423166199e396100ca3bb27a2ad2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089646724874240
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Blanco-Oliver, Antonio8b8593b6-5d41-4c24-af3f-39f11ed9756a300Pino-Mejías, Rafaeld3ef6522-4edc-4c21-9930-090d97b6c34c300Lara-Rubio, Juan78d4fb0c-00d7-4f83-bdb6-a0246cacfe7e3002019-07-03T01:11:42Z2019-07-03T01:11:42Z2014-02-01ISSN: 2248-6968https://repositorio.unal.edu.co/handle/unal/65939http://bdigital.unal.edu.co/66962/Despite the leading role that micro-entrepreneurship plays in economic development, and the high failure rate of microenterprise start-ups in their early years, very few studies have designed financial distress models to detect the financial problems of micro-entrepreneurs. Moreover, due to a lack of research, nothing is known about whether non-financial information and non-parametric statistical techniques improve the predictive capacity of these models. Therefore, this paper provides an innovative financial distress model specifically designed for microenterprise startups via support vector machines (SVMs) that employs financial, non-financial, and macroeconomic variables. Based on a sample of almost 5,500 micro-entrepreneurs from a Peruvian Microfinance Institution (MFI), our findings show that the introduction of non-financial information related to the zone in which the entrepreneurs live and situate their business, the duration of the MFI-entrepre-neur relationship, the number of loans granted by the MFI in the last year, the loan destination, and the opinion of experts on the probability that microenterprise start-ups may experience financial problems, significantly increases the accuracy performance of our financial distress model. Furthermore, the results reveal that the models that use SVMs outperform those which employ traditional logistic regression (LR) analysis.A pesar del destacado papel que desempeña el microemprendimiento en el desarrollo económico y de la alta tasa de quiebra que tienen las nuevas microempresas en sus primeros años de vida, muy pocos estúdios han diseñado un modelo para detectar las dificultades financieras de los microemprendedores Además, debido a la ausencia de investigaciones, no se conoce nada acerca de si la información no financiera y las técnicas estadísticas no paramétricas mejoran la capacidad predictiva de estos modelos. Por tanto, este artículo proporciona un innovador modelo para detectar las dificultades financieras específicamente diseñado para las microempresas de nueva creación mediante el uso de máquinas de soporte vectorial (MSV) y empleando variables financieras, no financieras y macroeconómicas. Basados en una muestra de casi 5.500 de una Institución Mi-crofinanciera (IMF) peruana, nuestros hallazgos muestran que la introducción de información no financiera relacionada con la zona en la que el emprendedor vive y localiza su negocio, la duración de la relación IMF-emprendedor, el número de préstamos concedidos por la IMF en el último año, el destino del préstamo y la opinión de los expertos sobre la probabilidad de que la nueva microempresa experimente problemas financieros, aumentan de manera significativa la precisión de nuestro modelo de detección de dificultades financieras. Además, los resultados revelan que los modelos construidos usando MVS superan los obtenidos por aquellos modelos que emplean el tradicional análisis de regresión logística.Apesar do destacado papel que o microempreendimento desempenha no desenvolvimento económico e da alta taxa de falências que as novas microempresas têm nos seus primeiros anos de vida, poucos estudos têm projetado um modelo para detectar as dificuldades financeiras dos microempreendedores. Além disso, devido à ausência de pesquisas, não se sabe nada sobre se a informação não financeira e as técnicas estatísticas não paramétricas melhoram a capacidade preditiva destes modelos. Portanto, este artigo proporciona um inovador modelo para detectar as dificuldades financeiras especificamente projetado para as microempresas de criação recente mediante o uso de máquinas de vetores suportes (MVS) e utilizando variáveis financeiras, não financeiras e macroeconómicas Baseados em uma amostra de quase 5.500 microempresas de uma micro-insti-tuição financeira (IMF) peruana, encontramos que a introdução de informação não financeira relacionada com a região na qual o empreendedor mora e localiza o seu negócio, a duração da relação IMF- empreendedor, o número de empréstimos concedidos pela IMF no último ano, a destinação do empréstimo e a opinião dos peritos sobre a probabilidade de a nova microempresa ter problemas financeiros aumentam significativamente a precisão do nosso modelo de detecção de dificuldades financeiras. Além do mais, os resultados revelam que os modelos construídos utilizando MVS ultrapassam os obtidos por aqueles modelos que utilizam a tradicional análise de regressão logística.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Económicas - Escuela de Administración y Contaduría Públicahttps://revistas.unal.edu.co/index.php/innovar/article/view/47615Universidad Nacional de Colombia Revistas electrónicas UN Revista Innovar Journal Revista de Ciencias Administrativas y SocialesRevista Innovar Journal Revista de Ciencias Administrativas y SocialesBlanco-Oliver, Antonio and Pino-Mejías, Rafael and Lara-Rubio, Juan (2014) Modeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case Study. Innovar, 24 (1Spe). pp. 153-168. ISSN 2248-69683 Ciencias sociales / Social sciencesFinancial distress modelmicroenterprise start-upsmicrofinancial institutionsLatin Americannon-financial variablesmodelo de dificultades financierasmicroempresas de nueva creacióninstituciones microfinancierasAmérica Latinavariables no financierasModelo de dificuldades financeirasmicroempresas de criação recentemicro-instituições financeirasAmérica Latinavariáveis não financeirasModeling the Financial Distress of Microenterprise Start- Ups Using Support Vector Machines: A Case StudyArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL47615-231295-1-SM.pdfapplication/pdf424427https://repositorio.unal.edu.co/bitstream/unal/65939/1/47615-231295-1-SM.pdfef0e0405a20ba400bef98b6e30f42606MD51THUMBNAIL47615-231295-1-SM.pdf.jpg47615-231295-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg7510https://repositorio.unal.edu.co/bitstream/unal/65939/2/47615-231295-1-SM.pdf.jpg7d25423166199e396100ca3bb27a2ad2MD52unal/65939oai:repositorio.unal.edu.co:unal/659392023-05-21 23:14:16.36Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co