Pedestrian tracking using probability fields and a movement feature space1

Retrieving useful information from video sequences, such as the dynamics of pedestrians, and other moving objects on a video sequence, leads to further knowledge of what is happening on a scene. In this paper, a Target Framework associates each person with an autonomous entity, modeling its trajecto...

Full description

Autores:
Negri, Pablo
Garayalde, Damian
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60446
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60446
http://bdigital.unal.edu.co/58778/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
pedestrian tracking
movement feature space
target framework
seguimiento de peatones
espacio de descriptores dinámicos
target framework
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Retrieving useful information from video sequences, such as the dynamics of pedestrians, and other moving objects on a video sequence, leads to further knowledge of what is happening on a scene. In this paper, a Target Framework associates each person with an autonomous entity, modeling its trajectory and speed by using a state machine. The particularity of our methodology is the use of a Movement Feature Space (MFS) to generate descriptors for classifiers and trackers. This approach is applied to two public sequences (PETS2009 and TownCentre). The results of this tracking outperform other algorithms reported in the literature, which have, however, a higher computational complexity.