Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa

ilustraciones, graficas

Autores:
Hernández Moreno, Lida Vanessa
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83870
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83870
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
Pseudomonas aeruginosa
Piper pertomentellum
Piperamidas
Pseudomonas aeruginosa
Quorum Sensing
Piper
Factores de virulencia
Piper pertomentellum
Piperamides
Pseudomonas aeruginosa
Quorum Sensing
Piper
virulence factors
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_a542c4d49b9b6e224f3a53112cfe76cf
oai_identifier_str oai:repositorio.unal.edu.co:unal/83870
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
dc.title.translated.eng.fl_str_mv Inhibitory effect of substances from Piper species on Quorum Sensing of Pseudomonas aeruginosa
title Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
spellingShingle Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
540 - Química y ciencias afines::547 - Química orgánica
Pseudomonas aeruginosa
Piper pertomentellum
Piperamidas
Pseudomonas aeruginosa
Quorum Sensing
Piper
Factores de virulencia
Piper pertomentellum
Piperamides
Pseudomonas aeruginosa
Quorum Sensing
Piper
virulence factors
title_short Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
title_full Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
title_fullStr Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
title_full_unstemmed Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
title_sort Efecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosa
dc.creator.fl_str_mv Hernández Moreno, Lida Vanessa
dc.contributor.advisor.none.fl_str_mv Patiño Ladino, Oscar Javier
Pabón Baquero, Ludy Cristina
dc.contributor.author.none.fl_str_mv Hernández Moreno, Lida Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.contributor.orcid.spa.fl_str_mv 0000-0001-5427-4398
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000013937
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines::547 - Química orgánica
Pseudomonas aeruginosa
Piper pertomentellum
Piperamidas
Pseudomonas aeruginosa
Quorum Sensing
Piper
Factores de virulencia
Piper pertomentellum
Piperamides
Pseudomonas aeruginosa
Quorum Sensing
Piper
virulence factors
dc.subject.decs.none.fl_str_mv Pseudomonas aeruginosa
dc.subject.proposal.spa.fl_str_mv Piper pertomentellum
Piperamidas
Pseudomonas aeruginosa
Quorum Sensing
Piper
Factores de virulencia
dc.subject.proposal.eng.fl_str_mv Piper pertomentellum
Piperamides
Pseudomonas aeruginosa
Quorum Sensing
Piper
virulence factors
description ilustraciones, graficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-07
dc.date.accessioned.none.fl_str_mv 2023-05-25T18:48:27Z
dc.date.available.none.fl_str_mv 2023-05-25T18:48:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83870
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83870
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adonizio, A. L., Downum, K., Bennett, B. C., & Mathee, K. (2006). Anti-quorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology, 105(3), 427–435. https://doi.org/10.1016/j.jep.2005.11.025
Aguilar, F. R., Aguilar, S. L., Cubas, D. M., Coaguila, L. Á., Fernández, D. A., Mario, M. M., Campos, R., Guevara-Vásquez, G., & Díaz, R. S. (2016). Portadores de bacterias multirresistentes de importancia clínica en áreas críticas (UCI-UCIN) de un hospital al norte del Perú. Horizonte Médico (Lima), 16(3), 50–57. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2016000300008
Ahator, S., & Zhang, L. H. (2019). Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annu Rev Microbiol, 73, 559–578. https://doi.org/10.1146/ANNUREV-MICRO-020518-120044
Ahmed, A. A., & Salih, F. A. (2019). Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complementary and Alternative Medicine, 19(1), 177. https://doi.org/10.1186/s12906-019-2594-5
Ahmed, S. (2022). Pseudomonas aeruginosa and the multifactorial antibiotic resistance. Eurasian Medical Research Periodical, 11, 85–94. https://www.geniusjournals.org/index.php/emrp/article/view/2096/1834
Aleanizy, F. S., Alqahtani, F. Y., Eltayb, E. K., Alrumikan, N., Almebki, R., Alhossan, A., Almangour, T. A., & AlQahtani, H. (2021). Evaluating the effect of antibiotics sub-inhibitory dose on Pseudomonas aeruginosa quorum sensing dependent virulence and its phenotypes. Saudi Journal of Biological Sciences, 28(1), 550–559. https://doi.org/10.1016/J.SJBS.2020.10.040
Aleksic, I., Ristivojevic, P., Pavic, A., Radojević, I., Čomić, L. R., Vasiljevic, B., Opsenica, D., Milojković-Opsenica, D., & Senerovic, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005
Alikhani, M. Y., Karimi Tabar, Z., Mihani, F., Kalantar, E., Karami, P., Sadeghi, M., Ahdi Khosroshahi, S., & Farajnia, S. (2014). Antimicrobial Resistance Patterns and Prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa Isolates in West of Iran. Jundishapur Journal of Microbiology, 7(1). https://doi.org/10.5812/JJM.8888
Aljeldah, M. M. (2022). Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics , 11(8), 1082. https://doi.org/10.3390/ANTIBIOTICS11081082
Alva, P. P., Suresh, S., Nanjappa, D. P., James, J. P., Kaverikana, R., Chakraborty, A., Sarojini, B. K., & Premanath, R. (2021). Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sciences, 267. https://doi.org/10.1016/J.LFS.2020.118878
Amrutha, B., Sundar, K., & Shetty, P. H. (2017). Spice oil nanoemulsions: Potential natural inhibitors against pathogenic E. coli and Salmonella spp. from fresh fruits and vegetables. LWT - Food Science and Technology, 79, 152–159. https://doi.org/10.1016/J.LWT.2017.01.031
Antunes, C. M., Ferreira, R. B. R., Buckner, M. M. C., & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. En Microbiology (Vol. 156, Issue 8, pp. 2271–2282). https://doi.org/10.1099/mic.0.038794-0
Araujo Baptista, L. M., Rondón Rivas, M. E., Cruz Tenempaguay, R. E., Guayanlema Chávez, J. D., Vargas Córdova, C. A., Morocho Zaragocin, S. v., & Cornejo Sotomayor, S. X. (2019). Antimicrobial activity of the essential oil of Piper amalago L. (Piperaceae) collected in coastal Ecuador. Pharmacology Online, 3, 15–27.
Atiax, E., Ahmad, F., Sirat, H. M., & Arbain, D. (2006). Antibacterial Activity and Cytotoxicity Screening of Sumatran Kaduk (Piper sarmentosum Roxb.). Journal of Pharmacology & Therapeutics, 10(5). http://ijpt.iums.ac.ir
Baguley, B., Biggar, R., Beland, F., Blanco, E., Betz, J., Cunningham, M., Dunnick, J., Lachenmeier, D., Guo, L., Lunn, R., Jameson, C., Marques, M., Karagas, M., Mccormick, D., Knight, T., Singh, S., Singh, S., Stewart, B., Tseng, C.-H., & Zavadil, J. (2016). IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Drugs and Herbal Products, 108, 1-422.
Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., & Haghi, F. (2017). Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance, 10, 21–28. https://doi.org/10.1016/J.JGAR.2017.03.006
Bahmani, M., Saki, K., Shahsavari, S., Rafieian-Kopaei, M., Sepahvand, R., & Adineh, A. (2015). Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pacific Journal of Tropical Biomedicine, 5(10), 858–864. https://doi.org/10.1016/J.APJTB.2015.06.004
Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2021). Infectious disease in an era of global change. Nature Reviews Microbiology 2021 20:4, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z
Banerjee, M., Moulick, S., Bhattacharya, K. K., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113, 85–93. https://doi.org/10.1016/J.MICPATH.2017.10.023
Başaran, T. I., Berber, D., Gökalsın, B., Tramice, A., Tommonaro, G., Abbamondi, G. R., Erginer Hasköylü, M., Toksoy Öner, E., Iodice, C., & Sesal, N. C. (2020). Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa Quorum Sensing and Biofilm. Frontiers in Microbiology, 11. https://doi.org/10.3389/FMICB.2020.00079/FULL
Bassetti, S., Tschudin-Sutter, S., Egli, A., & Osthoff, M. (2022). Optimizing antibiotic therapies to reduce the risk of bacterial resistance. European Journal of Internal Medicine, 99, 7–12. https://doi.org/10.1016/J.EJIM.2022.01.029
Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125(2), 237–246. https://doi.org/10.1016/J.CELL.2006.04.001
Bernal, R. (2022). Piper. Catálogo de Plantas y Líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co/es/resultados/genero/piper/
Bertini, E. V. (2018). Importancia de los mecanismos de quorum sensing en las interacciones entre microorganismos endofíticos. Universidad Nacional de Tucumán.
Bhattarai, S., Sharma, B. K., Subedi, N., Ranabhat, S., & Baral, M. P. (2021). Burden of Serious Bacterial Infections and Multidrug-Resistant Organisms in an Adult Population of Nepal: A Comparative Analysis of Minimally Invasive Tissue Sampling Informed Mortality Surveillance of Community and Hospital Deaths. Clinical Infectious Diseases, 73(Suppl 5), S415. https://doi.org/10.1093/CID/CIAB773
Bodí, M., & Garnacho, J. (2007). Pseudomonas aeruginosa: tratamiento combinado frente a monoterapia. Medicina Intensiva, 31(2), 83–87. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-56912007000200005&lng=es&nrm=iso&tlng=es
Borges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simões, M. (2016). New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 21(7). https://doi.org/10.3390/MOLECULES21070877
Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44. https://doi.org/10.1016/j.drup.2019.07.002
Bouyahya, A., Dakka, N., Et-Touys, A., Abrini, J., & Bakri, Y. (2017). Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine, 10(8), 729–743. https://doi.org/10.1016/j.apjtm.2017.07.021
Bramhachari, P. V. (2019). Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry (P. V. Bramhachari, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-32-9409-7
Brazão, M. A. B., Brazão, F. v, Maia, J. G. S., & Monteiro, M. C. (2014). Antibacterial activity of the Piper aduncum oil and dillapiole, its main constituent, against multidrug-resistant strains. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 13(6), 517–526. https://www.redalyc.org/articulo.oa?id=85632545002
Brown-Joel, Z. O., Colleran, E. S., & Stone, M. S. (2018). Inflammatory sebotropic reaction associated with kava kava ingestion. JAAD Case Reports, 4(5), 437–439. https://doi.org/10.1016/J.JDCR.2017.12.011
Bru, J.-L., Rawson, B., Trinh, C., Whiteson, K., Molin Høyland-Kroghsbo, N., & Siryaporn, A. (2019). PQS Produced by the Pseudomonas aeruginosa Stress Response Repels Swarms Away from Bacteriophage and Antibiotics. Journal of Bacteriology, 201(23). https://doi.org/10.1128/JB
Brum-Bousquet, M., Tillequin, F., Koch, M., & Sévenet, T. (1985). Alkaloids from Sarcomelicope argyrophylla. Planta Medica, 51(06), 536–537. https://doi.org/10.1055/s-2007-969594
Brunel, A.-S., & Guery, B. (2017). Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Medical Weekly, 147(47–48). https://doi.org/10.4414/SMW.2017.14553
Bruschi, P., Mancini, M., Mattioli, E., Morganti, M., & Signorini, M. A. (2014). Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of Ethnobiology and Ethnomedicine, 10(1), 1–22. https://doi.org/10.1186/1746-4269-10-59/TABLES/7
Cabral, V., Luo, X., Junqueira, E., Costa, S. S., Mulhovo, S., Duarte, A., Couto, I., Viveiros, M., & Ferreira, M. J. U. (2015). Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine, 22(4), 469–476. https://doi.org/10.1016/J.PHYMED.2015.02.003
Cabrera, C. E., Gómez, R. F., & Zúñiga, A. E. (2007). La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colomb Med, 38(2), 149–158. http://www.foxitsoftware.comForevaluationonly.
Cáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(1), 4–4. https://doi.org/10.15171/IJPNI.2014.04
Calderón, Á. I., Romero, L. I., Ortega-Barría, E., Solís, P. N., Zacchino, S., Gimenez, A., Pinzón, R., Cáceres, A., Tamayo, G., Guerra, C., Espinosa, A., Correa, M., & Gupta, M. P. (2010a). Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Http://Dx.Doi.Org/10.3109/13880200903193344, 48(5), 545–553. https://doi.org/10.3109/13880200903193344
Camou, T., Zunino, P., & Hortal, M. (2017). Alarma por la resistencia a antimicrobianos: situación actual y desafíos. Rev Méd Urug, 33(4), 277–284. https://doi.org/10.29193/RMU.34.3.6
Carette, J., Nachtergael, A., Duez, P., Jaziri, E., & Rasamiravaka, T. (2020). Natural Compounds Inhibiting Pseudomonas aeruginosa Biofilm Formation by Targeting Quorum Sensing Circuitry. www.intechopen.com
Carlson, T. J. (2002). Medical ethnobotanical research as a method to identify bioactive plants to treat infectious diseases. Advances in Phytomedicine, 1(C), 45–53. https://doi.org/10.1016/S1572-557X(02)80012-5
Carmona-Hernández, Ó., Del, M., Fernández, S., Palmeros-Sánchez, B., Armando, J., García, L., & Aguirre Beltrán, G. (2014). Actividad insecticida de extractos etanólicos foliares de nueve Piperaceas (Piper spp.) en Drosophila melanogaster. Revista Internacional de ContaminaciónAmbiental, 30, 67–73.
Carreño, P. (2016). La etnobotánica y su importancia como herramienta para la articulación entre conocimientos ancestrales y científicos. Universidad Distrital Fransisco José de Caldas.
Castañeda, M. L., Martínez Químico, J. R., & Stanshenko, E. E. (2007). Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia Et Technica, XIII(33), 165–166. http://cenivam.uis.edu.co/informacion/historia.html
Castillo-Juárez, I., García-Contreras, R., Velázquez-Guadarrama, N., Soto-Hernández, M., & Martínez-Vázquez, M. (2013). Amphypterygium adstringens Anacardic Acid Mixture Inhibits Quorum Sensing-controlled Virulence Factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of Medical Research, 44(7), 488–494. https://doi.org/10.1016/J.ARCMED.2013.10.004
Cathcart, G. R. A., Quinn, D., Greer, B., Harriott, P., Lynas, J. F., Gilmore, B. F., & Walker, B. (2011). Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrobial Agents and Chemotherapy, 55(6), 2670–2678. https://doi.org/10.1128/AAC.00776-10/SUPPL_FILE/GC_AAC_SUPPLEMENTARY_INFORMATION.ZIP
Celis, Á., Mendoza, C., Pachón, M., Cardona, J., Delgado, W., & Cuca, L. E. (2008). Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, 26(1), 97–106. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652008000100012&lng=en&nrm=iso&tlng=es
Chaired By Jim O’Neill. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance. Review on Antimicrobial Resistance.
Chakraborty, D., & Shah, B. (2011). Antimicrobial, anti¬oxidative and anti¬hemolytic activity of Piper betel leaf extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 192–199.
Chbib, C. (2020). Mechanism and Types of Quorum Sensing Inhibitors. En Trends in Quorum Sensing and Quorum Quenching (1a ed., pp. 199–214). CRC Press. https://doi.org/10.1201/9780429274817-15
Chen, I. S., Chen, Y. C., & Liao, C. H. (2007). Amides with anti-platelet aggregation activity from Piper taiwanense. Fitoterapia, 78(6), 414–419. https://doi.org/10.1016/J.FITOTE.2007.04.009
Cheng, M. J., Lee, K. H., Tsai, I. L., & Chen, I. S. (2005). Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorganic and Medicinal Chemistry, 13(21), 5915–5920. https://doi.org/10.1016/J.BMC.2005.07.050
Chioro, A., Coll-Seck, A. M., Høie, B., Moeloek, N., Motsoaledi, A., Rajatanavin, R., & Touraine, M. (2015). Antimicrobial resistance: A priority for global health action. Bulletin of the World Health Organization, 93(7), 439. https://doi.org/10.2471/BLT.15.158998
Chou, S.-C., Su, C.-R., Ku, Y.-C., & Wu, T.-S. (2009). The Constituents and Their Bioactivities of Houttuynia cordata . Chem. Pharm. Bull, 57(11), 1227–1230.
Choudhury, S., Medina-Lara, A., & Smith, R. (2022). Antimicrobial resistance and the COVID-19 pandemic. Bulletin of the World Health Organization, 100(5), 295. https://doi.org/10.2471/BLT.21.287752
Christine, Dipl.-P., & Maurer, K. (2015). Biological Evaluation of Novel Quorum Sensing Inhibitors as Anti-infectives Against Pseudomonas aeruginosa. Universität des Saarlandes.
CLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (CLSI standard M07, Ed.; M07-11a eds., Vol. 38). www.clsi.org.
Corehtash, Z. G., Khorshidi, A., Firoozeh, F., Akbari, H., & Aznaveh, A. M. (2015). Biofilm formation and virulence factors among pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10). https://doi.org/10.5812/jjm.22345
Costa, G. M., Endo, E. H., Cortez, D. A. G., Nakamura, T. U., Nakamura, C. V., & Dias Filho, B. P. (2016). Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. Journal de Mycologie Médicale / Journal of Medical Mycology, 26(3), 217–226. https://doi.org/10.1016/j.mycmed.2016.03.002
da Costa, J. G., Campos, A. R., Brito, S. A., Pereira, C. K. B., Souza, E. O., & Rodrigues, F. F. G. (2010). Biological screening of araripe basin medicinal plants using Artemia salina Leach and pathogenic bacteria. Pharmacognosy Magazine, 6(24), 331. https://doi.org/10.4103/0973-1296.71792
da Silva, H. A., Yamaguchi, L. F., Young, M. C. M., Ramos, C. S., Amorim, A. M. A., Kato, M. J., & Batista, R. (2018). Antifungal piperamides from piper mollicomum kunth (Piperaceae). Ecletica Quimica, 43(1), 33–38. https://doi.org/10.26850/1678-4618eqj.v43.1.33-38
da Silva, J. K. R., Pinto, L. C., Burbano, R. M. R., Montenegro, R. C., Guimarães, E. F., Andrade, E. H. A., & Maia, J. G. S. (2014). Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Industrial Crops & Products, Complete(58), 55–60. https://doi.org/10.1016/J.INDCROP.2014.04.006
da Silva Pinto, A. C., Silva, L. F. R., Cavalcanti, B. C., Melo, M. R. S., Chaves, F. C. M., Lotufo, L. V. C., de Moraes, M. O., de Andrade-Neto, V. F., Tadei, W. P., Pessoa, C. O., Vieira, P. P. R., & Pohlit, A. M. (2009). New antimalarial and cytotoxic 4-nerolidylcatechol derivatives. European Journal of Medicinal Chemistry, 44(6), 2731–2735. https://doi.org/10.1016/J.EJMECH.2008.10.025
Dane. (2022). Estadísticas Vitales (EEVV) Bogotá DC 28 de junio de 2022.
Datta, S., Jana, D., Maity, T. R., Samanta, A., & Banerjee, R. (2016). Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. 3 Biotech, 6(1), 1–6. https://doi.org/10.1007/s13205-015-0348-8
del Barrio-Tofiño, E., Zamorano, L., Cortes-Lara, S., López-Causapé, C., Sánchez-Diener, I., Cabot, G., Bou, G., Martínez-Martínez, L., Oliver, A., Group, G.-S. P. study, Galán, F., Gracia, I., Rodríguez, M. A., Martín, L., Sánchez, J. M., Viñuela, L., García, M. V., Lepe, J. A., Aznar, J., … Oteo, J. (2019). Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. Journal of Antimicrobial Chemotherapy, 74(7), 1825–1835. https://doi.org/10.1093/JAC/DKZ147
Delgado, W., Avella, E., & de Díaz, A. (1998). Alcaloides bencilisoquinolínicos del talloPiper augustum Rudge. Revista Colombiana de Química, 27(1).
Denisuik, A. J., Garbutt, L. A., Golden, A. R., Adam, H. J., Baxter, M., Nichol, K. A., Lagacé-Wiens, P., Walkty, A. J., Karlowsky, J. A., Hoban, D. J., Mulvey, M. R., & Zhanel, G. G. (2019). Antimicrobial-resistant pathogens in Canadian ICUs: results of the CANWARD 2007 to 2016 study. The Journal of Antimicrobial Chemotherapy, 74(3), 645–653. https://doi.org/10.1093/JAC/DKY477
Deryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences 2019, Vol. 20, Page 5588, 20(22), 5588. https://doi.org/10.3390/IJMS20225588
Desai, S. J., Prabhu, B. R., & Mulchandani, N. B. (1988). Aristolactams and 4,5dioxoaporphines from Piper longum. Phytochemistry, 27(5), 1511–1515.
do Nascimento, J. C., de Paula, V. F., David, J. M., & David, J. P. (2012). Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae). Química Nova, 35(11), 2288–2311. https://doi.org/10.1590/S0100-40422012001100037
Durant-Archibold, A. A., Santana, A. I., & Gupta, M. P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. En Journal of Ethnopharmacology (Vol. 217, pp. 63–82). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2018.02.008
Eggimann, P., & Pittet, D. (2001). Infection control in the ICU. Chest, 120(6), 2059–2093. https://doi.org/10.1378/CHEST.120.6.2059
El-Mowafy, S. A., Abd El Galil, K. H., Habib, E. S. E., & Shaaban, M. I. (2017). Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. African Health Sciences, 17(1), 199–207. https://doi.org/10.4314/ahs.v17i1.25
El-Shaer, S., Shaaban, M., Barwa, R., & Hassan, R. (2016). Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. Journal of Medical Microbiology, 65(10), 1194–1204. https://doi.org/10.1099/JMM.0.000327
Espinoza, D. I., & Esparza, G. F. (2021). Resistencia enzimática en Pseudomonas aeruginosa, aspectos clínicos y de laboratorio. Revista Chilena de Infectología, 38(1), 69–80. https://doi.org/10.4067/S0716-10182021000100069
Farfan, J. P., & Paladines, J. A. (2019). Prevalencia y tasa de letalidad de infecciones por microorganismos multirresistentes en los pacientes sépticos en la unidad de cuidados intensivos del hospital general iess quevedo en el periodo del 2017-2018. Universidad Católica de Santiago de Guayaquil.
Farhana Syed Ab Rahman, S. (2016). Piper sarmentosum Roxb. : A Mini Review of Ethnobotany, Phytochemistry and Pharmacology. Journal of Analytical & Pharmaceutical Research, 2(5). https://doi.org/10.15406/japlr.2016.02.00031
Filloux A, & Ramos J. (2014). Pseudomonas Methods and Protocols Methods in Molecular Biology 1149 (A. Filloux & J.-L. Ramos, Eds.; Vol. 1149). Springer New York. https://doi.org/10.1007/978-1-4939-0473-0
Fonnegra G., R., & Jiménez R., S. L. (1999). Plantas medicinales aprobadas en Colombia. Salud y Enfermedad. Lecturas Básicas En Sociología de La Medicina, 3–22. https://doi.org/10.3/JQUERY-UI.JS
Fosberg, F. R., Schultes, R. E., & Raffauf, R. F. (1990). The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia. En undefined (Vol. 40, Issue 1). Wiley. https://doi.org/10.2307/1222960
Friedrich, U., Siems, K., Solis, P. N., Gupta, M. P., & Jenett-Siems, K. (2005). New prenylated benzoic acid derivatives of Piper hispidum. Die Pharmazie, 60(6), 455–457. https://doi.org/10.1002/CHIN.200541203
Galvis, M., & Torres, M. (2017). Etnobotánica y usos de las plantas de la comunidad rural de Sogamoso, Boyacá, Colombia. Revista de Investigación Agraria y Ambiental, 8(2).
García Barriga, H. (1992). Flora medicinal de Colombia : botánica médica. Instituto de Ciencias Naturales,.
Germen. (2019). Perfiles de sensibilidad a antibióticos de Pseudomonas aeruginosa en UCI. http://www.grupogermen.org/pdf/pseudomonas_aeruginosa_12_14.pdf
Ghosh, R., Darin, K., Nath, P., & Deb, P. (2014). An Overview of Various Piper Species for Their Biological Activities. International Journal of Pharma Research & Review, 3(1), 67–75.
Gómez-Calvario, V., & Rios, M. Y. (2019). 1H and 13C NMR data, occurrence, biosynthesis, and biological activity of Piper amides. Magnetic Resonance in Chemistry, 57(12), 994–1070. https://doi.org/10.1002/MRC.4857
González, B., Mora, M., & Clavijo, M. (2001). Estudio etnobotánico de las plantas medicinales empleadas por la comunidad rural de Zaque-municipio de Gachetá, Cundinamarca. Tecné, Episteme y Didaxis: TED, 0(9). https://doi.org/10.17227/ted.num9-5621
González, J. M. (2019). Auge, caída y resurgimiento de las enfermedades infecciosas. Biomédica, 39(2), 5–7. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572019000600005
Gupta, M. P., Correa A, M. D., Solis, P. N., Jones, A., Galdames, C., & Guionneau-Sinclair, F. (1993). Medicinal plant inventory of Kuna Indians: Part 1. Journal of Ethnopharmacology, 40(2), 77–109. https://doi.org/10.1016/0378-8741(93)90054-9
Gupta, P., Balwani, S., Kumar, S., Aggarwal, N., Rossi, M., Paumier, S., Caruso, F., Bovicelli, P., Saso, L., DePass, A. L., Prasad, A. K., Parmar, V. S., & Ghosh, B. (2010). β-sitosterol among other secondary metabolites of Piper galeatum shows inhibition of TNFα-induced cell adhesion molecule expression on human endothelial cells. Biochimie, 92(9), 1213–1221. https://doi.org/10.1016/J.BIOCHI.2010.06.005
Haque, S., Ahmad, F., Dar, S. A., Jawed, A., Mandal, R. K., Wahid, M., Lohani, M., Khan, S., Singh, V., & Akhter, N. (2018). Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis, 121, 293–302. https://doi.org/10.1016/J.MICPATH.2018.05.046
Hashim, N. A., Ahmad, F., Salleh, W. M. N. H. W., & Khamis, S. (2019). A New Amide From Piper maingayi Hk.F. (Piperaceae). Natural Product Communications, 14(6), 1934578X1985582. https://doi.org/10.1177/1934578X19855826
Hernández, T., García-Bores, A. M., Serrano, R., Ávila, G., Dávila, P., Cervantes, H., Peñalosa, I., Flores-Ortiz, C. M., & Lira, R. (2015). Fitoquímica y actividades biológicas de plantas de importancia en la medicina tradicional del Valle de Tehuacán-Cuicatlán. Tip Revista Especializada En Ciencias Químico-Biológicas, 18(2), 116–121. https://doi.org/10.1016/j.recqb.2015.09.003
Hertiani, T., Tunjung Pratiwi, S. U., Rihardini, M. I., & Cahyaningrum, P. K. (2018). Investigation on Inhibitory Potential of Myrmecodia tuberosa on Quorum Sensing-related Pathogenicity in Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I Strains. Pakistan Journal of Biological Sciences : PJBS, 21(3), 101–109. https://doi.org/10.3923/PJBS.2018.101.109
Hidalgo, J., & Woc-Colburn, L. (2020). Highly Infectious Diseases in Critical Care (J. Hidalgo & L. Woc-Colburn, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-33803-9
Hirakawa, H., & Tomita, H. (2013). Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Frontiers in Microbiology, 4(MAY). https://doi.org/10.3389/FMICB.2013.00114
Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322–332. https://doi.org/10.1016/J.IJANTIMICAG.2009.12.011
Holden, M., Swift, S., & Williams, P. (2000). New signal molecules on the quorum-sensing block. Trends in Microbiology, 8(3), 101–103. https://doi.org/10.1016/S0966-842X(00)01718-2
Hortal, M. (2015). Enfermedades infecciosas emergentes y reemergentes: información actualizada. Rev Méd Urug, 31(4), 52–58.
Hossain, M. A., Sattenapally, N., Parikh, H. I., Li, W., Rumbaugh, K. P., & German, N. A. (2020). Design, synthesis, and evaluation of compounds capable of reducing Pseudomonas aeruginosa virulence. European Journal of Medicinal Chemistry, 185, 111800. https://doi.org/10.1016/J.EJMECH.2019.111800
Ignak, S., Nakipoglu, Y., & Gurler, B. (2017). Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrobial Resistance and Infection Control, 6(1), 1–7. https://doi.org/10.1186/S13756-017-0244-6/TABLES/5
INS. (2022). Boletín epidemiológico semanal: Semana epidemiológica 24 12 al 18 de junio de 2022.
Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T., & Givskov, M. (2012). Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78(7), 2410–2421. https://doi.org/10.1128/AEM.05992-11
James Bound, D., Murthy, P. S., Negi, P. S., & Srinivas, P. (2020). Evaluation of anti-quorum sensing and antimutagenic activity of 2,3-unsaturated and 2,3-dideoxyglucosides of terpene phenols and alcohols. LWT, 122. https://doi.org/10.1016/J.LWT.2019.108987
Jaramillo, M. A., Callejas, R., Davidson, C., Smith, J. F., Stevens, A. C., & Tepe, E. J. (2008). A phylogeny of the tropical genus Piper using ITS and the chloroplast intron psbJ-petA. Systematic Botany, 33(4), 647–660. https://doi.org/10.1600/036364408786500244
Jeyanthi, V., Velusamy, P., Kumar, G. V., & Kiruba, K. (2021). Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Heliyon, 7(5). https://doi.org/10.1016/J.HELIYON.2021.E07021
Karakonstantis, S., Kritsotakis, E. I., & Gikas, A. (2020). Pandrug-resistant gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. En Journal of Antimicrobial Chemotherapy (Vol. 75, Issue 2, pp. 271–282). Oxford University Press. https://doi.org/10.1093/jac/dkz401
Karatuna, O., & Yagci, A. (2010). Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 16(12), 1770–1775. https://doi.org/10.1111/J.1469-0691.2010.03177.X
Karbasizade, V., Dehghan, P., Sichani, M. M., Shahanipoor, K., Sepahvand, S., Jafari, R., & Yousefian, R. (2017). Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas aeruginosa. Pakistan Journal of Pharmaceutical Sciences, 30(2(Suppl.)), 585–589. https://pubmed.ncbi.nlm.nih.gov/28650325/
Kostylev, M., Kim, D. Y., Smalley, N. E., Salukhe, I., Peter Greenberg, E., & Dandekar, A. A. (2019). Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 7027–7032. https://doi.org/10.1073/PNAS.1819796116/SUPPL_FILE/PNAS.1819796116.SAPP.PDF
Kothari, V., Sharma, S., & Padia, D. (2017). Recent research advances on Chromobacterium violaceum. Asian Pacific Journal of Tropical Medicine, 10(8), 744–752. https://doi.org/10.1016/J.APJTM.2017.07.022
Kushwaha, M., Jain, S. K., Sharma, N., Abrol, V., Jaglan, S., & Vishwakarma, R. A. (2018). Establishment of LCMS Based Platform for Discovery of Quorum Sensing Inhibitors: Signal Detection in Pseudomonas aeruginosa PAO1. ACS Chemical Biology, 13(3), 657–665. https://doi.org/10.1021/ACSCHEMBIO.7B00875/SUPPL_FILE/CB7B00875_SI_001.PDF
Lakshmanan, D., Nanda, J., & Jeevaratnam, K. (2018). Inhibition of Swarming motility of Pseudomonas aeruginosa by Methanol extracts of Alpinia officinarum Hance. and Cinnamomum tamala T. Nees and Eberm. Natural Product Research, 32(11), 1307–1311. https://doi.org/10.1080/14786419.2017.1340289
Leal, A., Arturo, C., Jorge, Á., Cortes María, A., & Ovalle, V. (2017). Análisis de la vigilancia de la resistencia bacteriana año 2016. Componente pediátrico y adulto. Boletín Informativo GREBO, 9. www.grebo.org
Leal, A. L., Arturo, C., Jorge, Á., Cortes, A., & Ovalle, M. V. (2014). Análisis de la vigilancia de la resistencia bacteriana año 2013. Componente pediátrico y adulto. Boletín Informativo GREBO. www.grebo.org
Leal, S. M., Pino, N., Stashenko, E. E., Martínez, J. R., & Escobar, P. (2013). Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. Journal of Essential Oil Research, 25(6), 512–519. https://doi.org/10.1080/10412905.2013.820669
Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26–41. https://doi.org/10.1007/s13238-014-0100-x
Li, D. lin, & Xing, F. wu. (2016). Ethnobotanical study on medicinal plants used by local Hoklos people on Hainan Island, China. Journal of Ethnopharmacology, 194, 358–368. https://doi.org/10.1016/J.JEP.2016.07.050
Li, Q., Mao, S., Wang, H., & Ye, X. (2022). The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Marine Drugs 2022, Vol. 20, Page 488, 20(8), 488. https://doi.org/10.3390/MD20080488
Lignier, P., Estager, J., Kardos, N., Gravouil, L., Gazza, J., Naffrechoux, E., & Draye, M. (2011). Swift and efficient sono-hydrolysis of nitriles to carboxylic acids under basic condition: Role of the oxide anion radical in the hydrolysis mechanism. Ultrasonics Sonochemistry, 18(1), 28–31. https://doi.org/10.1016/j.ultsonch.2010.04.006
Lin, R. J., Wu, M. H., Ma, Y. H., Chung, L. Y., Chen, C. Y., & Yen, C. M. (2014). Anthelmintic activities of aporphine from Nelumbo nucifera Gaertn. cv. Rosa-plena against Hymenolepis nana. International Journal of Molecular Sciences, 15(3), 3624–3639. https://doi.org/10.3390/IJMS15033624
Liu, C. M., Kao, C. L., Wu, H. M., Li, W. J., Huang, C. T., Li, H. T., & Chen, C. Y. (2014). Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules (Basel, Switzerland), 19(11), 17829–17838. https://doi.org/10.3390/MOLECULES191117829
López, A., Ming, D. S., & Towers, G. H. N. (2002). Antifungal Activity of Benzoic Acid Derivatives from Piper lanceaefolium. Journal of Natural Products, 65(1), 62–64. https://doi.org/10.1021/np010410g
López-Causapé, C., Cabot, G., del Barrio-Tofiño, E., & Oliver, A. (2018). The versatile mutational resistome of Pseudomonas aeruginosa. Frontiers in Microbiology, 9(APR), 685. https://doi.org/10.3389/FMICB.2018.00685/BIBTEX
Lozano, R. (2017). Nuevas estrategias en la lucha contra la resistencia a los antibióticos: Inhibición del quorum sensing. Universidad Complutense.
Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zhang, B., Wang, Y., Chen, Y., & Zeng, M. (2022). Screening strategies for quorum sensing inhibitors in combating bacterial infections. Journal of Pharmaceutical Analysis, 12(1), 1–14. https://doi.org/10.1016/J.JPHA.2021.03.009
Luís, Â., Duarte, A., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 79, 274–282. https://doi.org/10.1016/j.indcrop.2015.10.055
Luján Roca, D. Á. (2014). Pseudomonas aeruginosa un adversario peligroso. Acta Bioquímica Clínica Latinoamericana, 48(4), 465–474.
Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., Lei, D., Chen, Y., Li, Y., Kong, J., & Chen, Y. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PloS One, 12(4). https://doi.org/10.1371/JOURNAL.PONE.0176883
Maciej, S., Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. v, … Sambanis, N. (2011). Introduction, Phytochemistry, traditional uses and biological activity of genus Piper: A review. International Journal of Current Pharmaceutical Review and Research, 2(2), 130–144. https://doi.org/10.2/JQUERY.MIN.JS
Mahavy, C. E., Duez, P., ElJaziri, M., & Rasamiravaka, T. (2020). African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics, 9(11), 830. https://doi.org/10.3390/antibiotics9110830
Majik, M. S., Naik, D., Bhat, C., Tilve, S., Tilvi, S., & D’Souza, L. (2013). Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry Letters, 23(8), 2353–2356. https://doi.org/10.1016/J.BMCL.2013.02.051
Majolo, C., Monteiro, P. C., Nascimento, A. V. P. do, Chaves, F. C. M., Gama, P. E., Bizzo, H. R., & Chagas, E. C. (2019). Essential Oils from Five Brazilian Piper Species as Antimicrobials Against Strains of Aeromonas hydrophila. Https://Doi.Org/10.1080/0972060X.2019.1645047, 22(3), 746–761. https://doi.org/10.1080/0972060X.2019.1645047
Malgaonkar, A., & Nair, M. (2019). Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Scientific Reports, 9(1), 432. https://doi.org/10.1038/s41598-018-36488-9
Martín-Rodríguez, A. J., Ticona, J. C., Jiménez, I. A., Flores, N., Fernández, J. J., & Bazzocchi, I. L. (2015). Flavonoids from Piper delineatum modulate quorum-sensing-regulated phenotypes in Vibrio harveyi. Phytochemistry, 117, 98–106. https://doi.org/10.1016/J.PHYTOCHEM.2015.06.006
Maxwell, A., & Rampersad, D. (1989). B-phenylethylamine-derived amides from Piper guayranum. Journal of Natural Products, 52(2), 411–414.
McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, England), 143 ( Pt 12)(12), 3703–3711. https://doi.org/10.1099/00221287-143-12-3703
Mendoza, J. G., Maguiña, C., & González, F. (2019). La resistencia a los antibióticos: un problema muy serio . Acta Med Peru, 36(2), 145–151.
Mohabi, S., Kalantar-Neyestanaki, D., & Mansouri, S. (2017). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iranian Journal of Microbiology, 9(1), 26. /pmc/articles/PMC5534001/
Mohajeri, M., Ebrahimi, S. N., Gholamnia, M., & Bayati, M. (2023). Naturally Occurring Quorum Sensing Inhibitors for Pseudomonas aeruginosa by Molecular Modeling. Biointerface Research in Applied Chemistry, 13(2). https://doi.org/10.33263/BRIAC132.147
Molina, F. J., Díaz, C. A., Barrera, L., de La Rosa, G., Dennis, R., Dueñas, C., Granados, M., Londoño, D., Ortiz, G., Rodríguez, F., & Jaimes, F. (2011). Perfil microbiológico de la Infecciones en Unidades de Cuidados Intensivos de Colombia (EPISEPSIS Colombia). Medicina Intensiva, 35(2), 75–83. https://doi.org/10.1016/j.medin.2010.11.003
Muñoz, D. R., Sandoval-Hernandez, A. G., Delgado, W. A., Arboleda, G. H., & Cuca, L. E. (2018). In vitro anticancer screening of Colombian plants from Piper genus (Piperaceae). Journal of Pharmacognosy and Phytotherapy, 10(9), 174–181. https://doi.org/10.5897/JPP2018.0509
Muñoz-Schick, M., Moreira-Muñoz, A., & Moreira Espinoza, S. (2012). Origen del nombre de los géneros de plantas vasculares nativas de Chile y su representatividad en Chile y el mundo. Gayana. Botánica, 69(2), 309–359. https://doi.org/10.4067/S0717-66432012000200011
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Nagori, K., Singh, K., Alexander, A., Kumar, T., Dewangan, D., Badwaik, H., & Tripathi, D. K. (2011). Piper betle L.: A review on its ethnobotany, phytochemistry, pharmacological profile and profiling by new hyphenated technique DART-MS (Direct Analysis in Real Time Mass Spectrometry). Journal of Pharmacy Research, 4(9), 2991–2997. www.jpronline.info
Namaki, M., Habibzadeh, S., Vaez, H., Arzanlou, M., Safarirad, S., Bazghandi, S. A., Sahebkar, A., & Khademi, F. (2022). Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Molecular Biology Reports, 49(3), 2149–2155. https://doi.org/10.1007/S11033-021-07032-2/TABLES/4
Navickiene, H. M. D., Morandim, A. de A., Alécio, A. C., Regasini, L. O., Bergamo, D. C. B., Telascrea, M., Cavalheiro, A. J., Lopes, M. N., Bolzani, V. da S., Furlan, M., Marques, M. O. M., Young, M. C. M., & Kato, M. J. (2006). Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum. Química Nova, 29(3), 467–470. https://doi.org/10.1590/S0100-40422006000300012
Niewiadomska, A. M., Jayabalasingham, B., Seidman, J. C., Willem, L., Grenfell, B., Spiro, D., & Viboud, C. (2019). Population-level mathematical modeling of antimicrobial resistance: a systematic review. BMC Medicine 2019 17:1, 17(1), 1–20. https://doi.org/10.1186/S12916-019-1314-9
Noriega, P., Guerrini, A., Sacchetti, G., Grandini, A., Ankuash, E., & Manfredini, S. (2019). Chemical Composition and Biological Activity of Five Essential Oils from the Ecuadorian Amazon Rain Forest. Molecules 2019, Vol. 24, Page 1637, 24(8), 1637. https://doi.org/10.3390/MOLECULES24081637
Ochoa, S. A., López-Montiel, F., Escalona, G., Cruz-Córdova, A., Dávila, L. B., López-Martínez, B., Jiménez-Tapia, Y., Giono, S., Eslava, C., Hernández-Castro, R., Xicohtencatl-Cortes, J., Gea González, M., Becario, " *, & México, P. (2013). Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas. Bol Med Hosp Infant Mex, 70(2), 138–150. www.medigraphic.org.mx
Olivero V, J. T., Pájaro C, N. P., & Stashenko, E. (2011). Antiquorum sensing activity of essential oils isolated from different species of the genus Piper. Vitae, 18(1), 77–82.
Olivero-Verbel, J., Güette-Fernandez, J., & Stashenko, E. (2009). Acute toxicity against Artemia franciscana of essential oils isolated from plants of the genus Lippia and Piper collected in Colombia. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 8(5), 419–427. https://www.redalyc.org/articulo.oa?id=85611977008
OMS. (2003). Prevención de las infecciones nosocomiales : guía práctica / revisores : G. Ducel, J. Fabry y L. Nicolle. Organización Mundial de La Salud. https://apps.who.int/iris/handle/10665/67877
OMS. (2017, febrero 27). La OMS publica lista de bacterias para las que se necesitan con urgencia nuevos antibióticos. Organización Mundial de La Salud. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
OMS. (2020, diciembre 9). Las 10 principales causas de muerte. Organización Mundial de La Salud. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
OMS. (2021). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report.
O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations.
Orjala, J., Erdelmeier, C. A. J., Wright, A. D., Rali, T., & Sticher, O. (1993). Two chromenes and a prenylated benzoic acid derivative from Piper aduncum. Phytochemistry, 34(3), 813–818. https://doi.org/10.1016/0031-9422(93)85364-W
Orjala, J., Wright, A., Rali, T., & Sticher, O. (2006). Aduncamide, a Cytotoxic and Antibacterial b-Phenylethylamine-Derived Amide from Piper aduncum. Http://Dx.Doi.Org/10.1080/10575639308043814, 2(3), 231–236. https://doi.org/10.1080/10575639308043814
Othman, A. F. M., Rukayadi, Y., & Radu, S. (2019). Inhibition of Pseudomonas aeruginosa Quorum sensing by Curcuma xanthorrhiza Roxb. Extract. Journal of Pure and Applied Microbiology, 13(3), 1335–1347. https://doi.org/10.22207/JPAM.13.3.05
O’Toole, G. A. (2011). Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments : JoVE, 47. https://doi.org/10.3791/2437
O’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449–461. https://doi.org/10.1046/J.1365-2958.1998.00797.X
Ouyang, J., Feng, W., Lai, X., Chen, Y., Zhang, X., Rong, L., Sun, F., & Chen, Y. (2020). Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system. Microbial Pathogenesis, 149, 104291. https://doi.org/10.1016/J.MICPATH.2020.104291
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019a). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013
Paniagua, S. M. (2019). Factores de riesgo asociados a itu por pseudomonas aeruginosa multirresistente en pacientes hospitalizados - Hospital Nacional Dos De Mayo, 2017. Universidad Nacional Federico Villarreal.
Papenfort, K., & Bassler, B. L. (2016). Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. Nature Reviews. Microbiology, 14(9), 576. https://doi.org/10.1038/NRMICRO.2016.89
Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E., & Boll, P. M. (1997). Phytochemistry of the genus Piper. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00328-2
Parra Amin, J. E., Cuca, L. E., & González-Coloma, A. (2019). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, 35(16), 2763–2771. https://doi.org/10.1080/14786419.2019.1662010
Parra, J. E., Delgado, W. A., & Cuca, L. E. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4(3), 280–282. https://doi.org/10.1016/J.PHYTOL.2011.04.015
Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4360–4365. https://doi.org/10.1073/PNAS.96.8.4360/ASSET/3B04D4E7-6DEB-4984-B12A-716C44025169/ASSETS/GRAPHIC/PQ0790513005.JPEG
Patiño, W. R., Prieto, J. A., Suárez, L. E. C., Ávila, M. C., & Patiño, O. J. (2018). Caracterización química y biológica de los extractos etanólicos de Piper asperiusculum y Piper pertomentellum. Revista Cubana de Plantas Medicinales, 23(1). http://revplantasmedicinales.sld.cu/index.php/pla/article/view/576/241
Patiño-Bayona, W. R., Nagles Galeano, L. J., Bustos Cortes, J. J., Delgado Ávila, W. A., Herrera Daza, E., Cuca Suárez, L. E., Prieto-Rodríguez, J. A., Patiño-Ladino, O. J., Galeano, N., Bustos Cortes, L. J. ;, Delgado Ávila, J. J. ;, Herrera Daza, W. A. ;, Suárez, E. ;, Prieto-Rodríguez, L. E. C. ;, & Patiño-Ladino, J. A. ; (2021). Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, Vol. 12, Page 532, 12(6), 532. https://doi.org/10.3390/INSECTS12060532
Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., Vázquez-López, R., Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/S0716-10182019000200180
Peerzada, Z., Kanhed, A. M., & Desai, K. B. (2022). Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa. RSC Advances, 12(24), 15196–15214. https://doi.org/10.1039/D1RA08351A
Pejin, B., Iodice, C., Tommonaro, G., Stanimirovic, B., Ciric, A., Glamoclija, J., Nikolic, M., Rosa, S., & Sokovic, M. (2014). Further in vitro Evaluation of Antimicrobial Activity of the Marine Sesquiterpene Hydroquinone Avarol. Current Pharmaceutical Biotechnology, 15(6), 583–588. https://doi.org/10.2174/138920101506140910152253
POWO. (2022). Plants of the World Online. En Facilitado por Royal Botanic Gardens, Kew. https://powo.science.kew.org/cite-us
Puzi, S., Sama, O., & Sule, A. (2011). Actividad antimicrobiana selectiva de Piper sarmentosum (kaduk) contra Pseudomonas aeroginosa. Temas Actuales En Investigación Nutracéutica, 9, 31–34. https://www.researchgate.net/publication/289653857_Selective_antimicrobial_activity_of_Piper_sarmentosum_kaduk_against_Pseudomonas_aeroginosa
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–27. https://doi.org/10.1038/s41392-022-01056-1
Rai, N., Rai, R., & Venkatesh, K. v. (2015). Quorum Sensing Biosensors. En Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight (pp. 173–183). Springer India. https://doi.org/10.1007/978-81-322-1982-8_16
Rajkumari, J., Borkotoky, S., Murali, A., & Busi, S. (2018). Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. South African Journal of Botany, 118, 151–157. https://doi.org/10.1016/j.sajb.2018.07.004
Rasamiravaka, T., Labtani, Q., Duez, P., & el Jaziri, M. (2015). The formation of biofilms by pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. En BioMed Research International (Vol. 2015). Hindawi Limited. https://doi.org/10.1155/2015/759348
Rasko, D. A., & Sperandio, V. (2010). Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery, 9(2), 117–128. https://doi.org/10.1038/nrd3013
Rather, M. A., Gupta, K., & Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. Journal of Ethnopharmacology, 269, 113699. https://doi.org/10.1016/J.JEP.2020.113699
Rather, M. A., Saha, D., Bhuyan, S., Jha, A. N., & Mandal, M. (2022). Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiological Research, 264, 127173. https://doi.org/10.1016/J.MICRES.2022.127173
Ratridewi, I., Dzulkarnain, S. A., Wijaya, A. B., Huwae, J. T. R., Putra, D. S. M., Barlianto, W., Santoso, S., & Santosaningsih, D. (2021). Effects of Piper betle Leaf Extract on Biofilm and Rhamnolipid Formation of Pseudomonas aeruginosa. Research Journal of Pharmacy and Technology, 14(10), 5182–5186. https://doi.org/10.52711/0974-360X.2021.00901
Razakova, D. M., Bessonova, I. A., & Yunusov, S. Y. (1984). Components ofHaplophyllum obtusifolium. Chemistry of Natural Compounds 1985 20:5, 20(5), 599–600. https://doi.org/10.1007/BF00580074
Rekha, P. D., Vasavi, H. S., Vipin, C., Saptami, K., & Arun, A. B. (2017). A medicinal herb Cassia alata attenuates quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Letters in Applied Microbiology, 64(3), 231–238. https://doi.org/10.1111/LAM.12710
Restrepo, M. I., Babu, B. L., Reyes, L. F., Chalmers, J. D., Soni, N. J., Sibila, O., Faverio, P., Cilloniz, C., Rodriguez-Cintron, W., Aliberti, S., Aruj, P. K., Attorri, S., Barimboim, E., Caeiro, J. P., Garzón, M. I., Cambursano, V. H., Ceccato, A., Chertcoff, J., Lascar, F., … Labra, L. (2018). Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. European Respiratory Journal, 52(2). https://doi.org/10.1183/13993003.01190-2017
Rivera, M. L. C., Hassimotto, N. M. A., Bueris, V., Sircili, M. P., de Almeida, F. A., & Pinto, U. M. (2019). Effect of Capsicum Frutescens Extract, Capsaicin, and Luteolin on Quorum Sensing Regulated Phenotypes. Journal of Food Science, 84(6), 1477–1486. https://doi.org/10.1111/1750-3841.14648
Rocha, A. J., de Oliveira Barsottini, M. R., Rocha, R. R., Laurindo, M. V., de Moraes, F. L. L., & da Rocha, S. L. (2019). Pseudomonas Aeruginosa: Virulence Factors and Antibiotic Resistance Genes. Brazilian Archives of Biology and Technology, 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503
Roersch, C. M. F. B. (2010). Piper umbellatum L.: a comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. Journal of Ethnopharmacology, 131(3), 522–537. https://doi.org/10.1016/J.JEP.2010.07.045
Saeki, E. K., Kobayashi, R. K. T., & Nakazato, G. (2020). Quorum sensing system: Target to control the spread of bacterial infections. Microbial Pathogenesis, 142, 104068. https://doi.org/10.1016/J.MICPATH.2020.104068
Salehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyen, A., Turkdonmez, E., Valussi, M., Tumer, T. B., Fidalgo, L. M., Martorell, M., & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. En Molecules (Vol. 24, Issue 7). MDPI AG. https://doi.org/10.3390/molecules24071364
Salinas, C., Hernández, A., Oropeza, R., Olvera, C., Poblano, M., & Franco, J. (2010). Colistin en el tratamiento de infección por Pseudomonas aeruginosa multidrogorresistente. Revista de La Asociación Mexicana de Medicina Critica y Terapia Intensiva, XXIV(4), 173–177.
Salmanov, A., Litus, V., Vdovychenko, S., Litus, O., Davtian, L., Ubogov, S., Bisyuk, Y., Drozdova, A., & Vlasenko, I. (2019). Healthcare-associated infections in intensive care units. Wiadomosci Lekarskie (Warsaw, Poland : 1960), 72(5 cz 2), 963–969. https://doi.org/10.36740/wlek201905201
Samame, L. M., & Samalvides, F. (2014). Eficacia del proceso de limpieza y desinfección de los endoscopios en un hospital de nivel III. Revista Medica Herediana, 25(4), 208–214. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2014000400005
Santhakumari, S., & Ravi, A. v. (2019). Targeting quorum sensing mechanism: An alternative anti-virulent strategy for the treatment of bacterial infections. South African Journal of Botany, 120, 81–86. https://doi.org/10.1016/J.SAJB.2018.09.028
Sen, S., Dayanandan, S., Davis, T., Ganesan, R., Jagadish, M. R., Mathew, P. J., & Ravikanth, G. (2019). Origin and evolution of the genus Piper in Peninsular India. Molecular Phylogenetics and Evolution, 138, 102–113. https://doi.org/10.1016/J.YMPEV.2019.05.033
Serra-Valdés, M. Á. (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 402–419. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2013
Sethupathy, S., Ananthi, S., Selvaraj, A., Shanmuganathan, B., Vigneshwari, L., Balamurugan, K., Mahalingam, S., & Pandian, S. K. (2017). Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Scientific Reports 2017 7:1, 7(1), 1–17. https://doi.org/10.1038/s41598-017-16507-x
Sethupathy, S., Prasath, K. G., Ananthi, S., Mahalingam, S., Balan, S. Y., & Pandian, S. K. (2016). Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. Journal of Proteomics, 145, 112–126. https://doi.org/10.1016/J.JPROT.2016.04.019
Siddiqui, B. S., Gulzar, T., Begum, S., Afshan, F., & Sattar, F. A. (2005). Insecticidal amides from fruits of Piper nigrum Linn. Natural Product Research, 19(2), 143–150. https://doi.org/10.1080/14786410410001704750
Siges, T. H., Hartemink, A. E., Hebinck, P., & Allen, B. J. (2005). The Invasive Shrub Piper aduncum and Rural Livelihoods in the Finschhafen Area of Papua New Guinea. Human Ecology 2005 33:6, 33(6), 875–893. https://doi.org/10.1007/S10745-005-8214-7
Silalahi, M., Supriatna, J., Walujo, E. B., & Nisyawati. (2015). Local knowledge of medicinal plants in sub-ethnic Batak Simalungun of North Sumatra, Indonesia. Biodiversitas, 16(1), 44–54. https://doi.org/10.13057/BIODIV/D160106
Silva, A., Silva, V., Igrejas, G., & Poeta, P. (2020). Chapter 17: Carbapenems and Pseudomonas aeruginosa: Mechanisms and epidemiology. En Antibiotics and Antimicrobial Resistance Genes in the Environment: Volume 1 in the Advances in Environmental Pollution Research Series (Vol. 1, pp. 253–268). Elsevier. https://doi.org/10.1016/B978-0-12-818882-8.00017-6
Singh, N., Patil, A., Prabhune, A., & Goel, G. (2016). Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology (United Kingdom), 162(9), 1708–1714. https://doi.org/10.1099/MIC.0.000342/CITE/REFWORKS
Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica 2018 63:4, 63(4), 413–432. https://doi.org/10.1007/S12223-018-0585-4
Smith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S. (2014). Global rise in human infectious disease outbreaks. Journal of the Royal Society Interface, 11(101). https://doi.org/10.1098/RSIF.2014.0950
Smith, K., & Hunter, I. S. (2008). Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57(Pt 8), 966–973. https://doi.org/10.1099/JMM.0.47668-0
Solomon, S. L., & Oliver, K. B. (2014). Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Number, 89. www.aafp.org/afp.
Sommer, R., Rox, K., Wagner, S., Hauck, D., Henrikus, S. S., Newsad, S., Arnold, T., Ryckmans, T., Brönstrup, M., Imberty, A., Varrot, A., Hartmann, R. W., & Titz, A. (2019). Anti-biofilm Agents against Pseudomonas aeruginosa: A Structure-Activity Relationship Study of C-Glycosidic LecB Inhibitors. Journal of Medicinal Chemistry, 62(20), 9201–9216. https://doi.org/10.1021/ACS.JMEDCHEM.9B01120/SUPPL_FILE/JM9B01120_SI_002.CSV
Song, D., Bi, F., Zhang, N., Qin, Y., Liu, X., Teng, Y., & Ma, S. (2020). Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus. Bioorganic & Medicinal Chemistry, 28(21), 115729. https://doi.org/10.1016/J.BMC.2020.115729
Sotelo, H. (2016). Estado del arte en el uso potencial de extractos vegetales del género piper para el control de plagas agricolas [Universidad Nacional Abierta y a Distancia]. https://repository.unad.edu.co/bitstream/handle/10596/13255/16609297.pdf?sequence=1&isAllowed=y
Steindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/J.1574-6968.2006.00501.X
Straif-Bourgeois, S., Ratard, R., & Kretzschmar, M. (2014). Infectious Disease Epidemiology. Handbook of Epidemiology, 2041. https://doi.org/10.1007/978-0-387-09834-0_34
Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Wiley. https://doi.org/10.1002/0470011149
Suroowan, S., & Mahomoodally, M. F. (2016). A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. Journal of Ethnopharmacology, 177, 61–80. https://doi.org/10.1016/J.JEP.2015.11.029
Suwanphakdee, C., Simpson, D. A., Hodkinson, T. R., Chantaranothai, P., & Suwanphakdee, C. (2016). Taxonomic notes on the genus Piper (Piperaceae). https://doi.org/10.5061/dryad.qp50f
Sweileh, W. M. (2022). Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Globalization and Health, 18(1), 1–14. https://doi.org/10.1186/S12992-022-00803-X/TABLES/6
Tabak, Y. P., Merchant, S., Ye, G., Vankeepuram, L., Gupta, V., Kurtz, S. G., & Puzniak, L. A. (2019). Incremental clinical and economic burden of suspected respiratory infections due to multi-drug-resistant Pseudomonas aeruginosa in the United States. The Journal of Hospital Infection, 103(2), 134–141. https://doi.org/10.1016/J.JHIN.2019.06.005
Tan, L. Y., Yin, W. F., & Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon- Natural food sources with anti-quorum sensing properties. Sensors (Switzerland), 13(3), 3975–3985. https://doi.org/10.3390/s130303975
Tangarife-Castaño, V., Correa-Royero, J. B., Roa-Linares, V. C., Pino-Benitez, N., Betancur-Galvis, L. A., Durán, D. C., Stashenko, E. E., & Mesa-Arango, A. C. (2014). Anti-dermatophyte, anti-Fusarium and cytotoxic activity of essential oils and plant extracts of Piper genus. Journal of Essential Oil Research, 26(3), 221–227. https://doi.org/10.1080/10412905.2014.882279
Tapia-Rodriguez, M. R., Hernandez-Mendoza, A., Gonzalez-Aguilar, G. A., Martinez-Tellez, M. A., Martins, C. M., & Ayala-Zavala, J. F. (2017). Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control, 75, 255–261. https://doi.org/10.1016/J.FOODCONT.2016.12.014
Tene, V., Malagón, O., Finzi, P. V., Vidari, G., Armijos, C., & Zaragoza, T. (2007). An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. Journal of Ethnopharmacology, 111(1), 63–81. https://doi.org/10.1016/J.JEP.2006.10.032
The plant list. (2021). The Plant List. . http://www.theplantlist.org/
Thi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 21(22), 8671. https://doi.org/10.3390/ijms21228671
Tillotson, G. S., & Zinner, S. H. (2017). Burden of antimicrobial resistance in an era of decreasing susceptibility. Http://Dx.Doi.Org/10.1080/14787210.2017.1337508, 15(7), 663–676. https://doi.org/10.1080/14787210.2017.1337508
Torres-Hormaza, T., Baquero, A., Jaramillo, A., & Fajardo-Gutiérrez, F. (2020). Flora de Bogotá: Piperaceae. Revista Del Jardín Botánico de Bogotá José Celestino Mutis, 21(1). www.perezarbelaezia.jbb.gov.co
Trivedi, M. N., Khemani, A., Vachhani, U. D., Shah, C. P., & Santani, D. D. (2011). Pharmacognostic, phytochemical analysis and antimicrobial activity of two piper species. Pharmacie Globale, 7(5). https://www.researchgate.net/publication/228486454
Trujillo, W., & Vargas, V. (2022). Las especies de Piper: en la vertiente amazónica de los Andes, Caquetá. Guía de campo. (Universidad de la Amazonía, Ed.; 1a ed., Vol. 1).
Turkina, M. v., & Vikström, E. (2019). Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of Innate Immunity, 11(3), 263–279. https://doi.org/10.1159/000494069
Ugurlu, A., Karahasan Yagci, A., Ulusoy, S., Aksu, B., & Bosgelmez-Tinaz, G. (2016). Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 8(6), 698–701. https://doi.org/10.1016/J.APJTB.2016.06.008
Usman, A. B., Abubakar, S., Alaku, C., & Nnadi, O. (2014). Plant: A Necessity of Life. International Letters of Natural Sciences, 20, 151–159. https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.20.151
Vadakkan, K. (2020). Molecular Mechanism of Bacterial Quorum Sensing and Its Inhibition by Target Specific Approaches. ACS Symposium Series, 1374, 21–234. https://doi.org/10.1021/BK-2020-1374.CH012
Vallejo, A., Feitosa, A., Gourlart, A., Pires, L., & Mosquera, O. (2014). Tamizaje de acción antimicrobiana de 34 extractos vegetales contra bacilos gramnegativos. Salud Soc. Uptc, 1, 34–39. https://revistas.uptc.edu.co/index.php/salud_sociedad/article/view/3257/3121
van Duijn, P. J., Verbrugghe, W., Jorens, P. G., Spöhr, F., Schedler, D., Deja, M., Rothbart, A., Annane, D., Lawrence, C., Jereb, M., Seme, K., Šifrer, F., Tomič, V., Estevez, F., Carneiro, J., Harbarth, S., & Bonten, M. J. M. (2022). The effects of antibiotic cycling and mixing on acquisition of antibiotic resistant bacteria in the ICU: A post-hoc individual patient analysis of a prospective cluster-randomized crossover study. PLoS ONE, 17(5 May). https://doi.org/10.1371/journal.pone.0265720
Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., Jaziri, M. el, & Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76(1), 243–253. https://doi.org/10.1128/AEM.01059-09
Vasavi, H. S., Arun, A. B., & Rekha, P. D. (2016). Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. Journal of Microbiology, Immunology and Infection, 49(1), 8–15. https://doi.org/10.1016/j.jmii.2014.03.012
Vásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., Crespo-Ortiz, M. del P., Vásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., & Crespo-Ortiz, M. del P. (2017). Effects of biocide exposure on P. Aeruginosa, E. coli and A. Baumannii complex isolates from hospital and household environments. Infectio, 21(4), 243–250. https://doi.org/10.22354/IN.V21I4.687
Vázquez-Martínez, J., Buitemea-Cantúa, G. v., Gutierrez-Villagomez, J. M., García-González, J. P., Ramírez-Chávez, E., & Molina-Torres, J. (2020). Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03137
Victoria-Munoz, F., Sanchez-Cruz, N., Medina-Franco, J. L., & Lopez-Vallejo, F. (2022). Cheminformatics analysis of molecular datasets of transcription factors associated with quorum sensing in Pseudomonas aeruginosa. RSC Advances, 12(11), 6783–6790. https://doi.org/10.1039/D1RA08352J
Vijendra Kumar, N., Murthy, P. S., Manjunatha, J. R., & Bettadaiah, B. K. (2014). Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chemistry, 159, 451–457. https://doi.org/10.1016/J.FOODCHEM.2014.03.039
Vincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., Moreno, R., Lipman, J., Gomersall, C., Sakr, Y., & Reinhart, K. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323–2329. https://doi.org/10.1001/JAMA.2009.1754
Wang, H., Abbas, K., Abbasifard, M., Abbasi, M., Abbastabar, H., Abd, F., Abdelalim, A., Abolhassani, H., Abreu, L., & Abrigo, M. (2020). Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet (London, England), 396(10258), 1160. https://doi.org/10.1016/S0140-6736(20)30977-6
Weldon, I., Rogers Van Katwyk, S., Burci, G. L., Giur, D., de Campos, T. C., Eccleston-Turner, M., Fryer, H. R., Giubilini, A., Hale, T., Harrison, M., Johnson, S., Kirchhelle, C., Lee, K., Liddell, K., Mendelson, M., Ooms, G., Orbinski, J., Piddock, L. J. v, Røttingen, J.-A., … Hoffman, S. J. (2022). Governing Global Antimicrobial Resistance: 6 Key Lessons From the Paris Climate Agreement. American Journal of Public Health, 112(4), 553–557. https://doi.org/10.2105/AJPH.2021.306695
Wolff, T., Santos, P. F. P., Valente, L. M. M., Magalhães, A., Tinoco, L. W., Pereira, R. C. A., & Guimarães, E. F. (2015). Piperamides from Piper ottonoides by NMR and GC-MS Based Mixture Analysis. Journal of the Brazilian Chemical Society, 26(11), 2321–2330. https://doi.org/10.5935/0103-5053.20150226
Zahin, M., Hasan, S., Aqil, F., Sajjad Ahmad Khan, M., Mabood Husain, F., & Ahmad, I. (2010). Screening of certain medicinal plants from India for their anti-quorum sensing activity. En Indian Journal of Experimental Biology (Vol. 48).
Zaki, A. A. (2013). Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt. Scientia Pharmaceutica, 81(1), 251–258. https://doi.org/10.3797/scipharm.1204-26
Zhao, X., Yu, Z., & Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, Vol. 8, Page 425, 8(3), 425. https://doi.org/10.3390/MICROORGANISMS8030425
Zhong, L., Ravichandran, V., Zhang, N., Wang, H., Bian, X., Zhang, Y., & Li, A. (2020). Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. International Journal of Molecular Sciences 2020, Vol. 21, Page 2190, 21(6), 2190. https://doi.org/10.3390/IJMS21062190
Zúñiga Carrasco, I. R., & Caro Lozano, J. (2017). Cultivos ambientales y de superficie: una estrategia de detección oportuna de infecciones nosocomiales. Revista Latinoamericana de Infectología Pediátrica, 30(4), 147–150. www.medigraphic.org.mxFinanciamiento:Ninguno.Conflictodeintereses:Ninguno.Esteartículopuedeserconsultadoenversióncompletaenhttp://www.medigraphic.com/rlip
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 167 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83870/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83870/2/1022403783.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83870/3/1022403783.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2f4cdc1fd5d7a048dbc240ff006c42dd
4843b08ddcddc32113cecf3da047d23e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089217667497984
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Patiño Ladino, Oscar Javierf66888847f55b0bd44a6f89b80f89996Pabón Baquero, Ludy Cristinad4bdc0a04765992e92cade8c33486ddbHernández Moreno, Lida Vanessa79a6bcebea9fb5d40d7b7c86b0be551dGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)0000-0001-5427-4398https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000139372023-05-25T18:48:27Z2023-05-25T18:48:27Z2022-10-07https://repositorio.unal.edu.co/handle/unal/83870Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasPseudomonas aeruginosa es una bacteria oportunista catalogada como de prioridad critica por la OMS y está asociada a una amplia gama de infecciones principalmente en las unidades de cuidados intensivos (UCI). La patogenicidad de esta bacteria está regulada principalmente por el sistema de comunicación denominado Quorum Sensing (QS) que le permite controlar sus factores de virulencia. Este sistema ha sido relacionado con la resistencia a los antibióticos y por ende se ha planteado su inhibición a partir de sustancias provenientes de plantas como una estrategia para el control de microorganismos resistentes. Las plantas del género Piper se han caracterizado por tener propiedades antibacterianas, antifúngicas, insecticidas, antioxidantes y citotóxicas, sin embargo, son pocos los estudios enfocados a la inhibición del QS. Por lo tanto, en el presente estudio se determinó el potencial de las sustancias provenientes de especies del género Piper como inhibidores del QS de P. aeruginosa. La metodología que se llevó a cabo comprendió la identificación de algunas especies pertenecientes al género Piper con potencial de inhibición de QS y la formación de biopelícula. Posteriormente se realizó el estudio fitoquímico sobre una de las especies con mayor potencial de inhibición de QS (P. pertomentellum) para aislar e identificar algunos constituyentes químicos bioactivos. Finalmente, se determinó la acción de constituyentes químicos presentes en especies del género Piper sobre la formación de biopelículas y la producción de algunos factores de virulencia (elastasas, proteasas y piocianina) asociados al QS de P. aeruginosa. Los resultados obtenidos permitieron identificar especies pertenecientes al género Piper con potencial de inhibición de QS, destacándose P. asperiusculum, P. cumanense, P. pertomentellum, P. bogotense, P. sucrense y P. grande por presentar porcentajes de producción menores o igual al 50% en los ensayos de formación de biopelícula o producción de violaceína. El estudio fitoquímico realizado sobre la parte aérea de P. pertomentellum permitió aislar e identificar una nueva piperamida (etiltembamida (C1)), junto con cuatro amidas conocidas (tembamida (C2), cefaradiona B (C3), benzamida (C4) y tembamida (C5)). Los compuestos identificados se reportan por primera vez para la especie y sus estructuras están de acuerdo con la quimiotaxonomía del género Piper. Por último, en este estudio se destaca el potencial inhibitorio de los factores de virulencia y en la formación de biopelícula de los compuestos con potencial multidiana que correspondieron a amidas (C9 y C10), hidroquinonas (C8, C18 y C19) y derivados de ácido benzoico (C16). presentes en especies del género Piper. Adicionalmente, con los resultados obtenidos se establecieron algunas relaciones de estructura-actividad preliminar sobre los compuestos más activos. Esta investigación contribuye a la búsqueda de inhibidores de origen natural que pueden servir como alternativa de control del QS en P. aeruginosa para reducir la resistencia bacteriana, mediante la caracterización del potencial inhibitorio de sustancias provenientes de algunas especies del género Piper. (Texto tomado de la fuente)Pseudomonas aeruginosa is an opportunistic bacterium classified as a critical priority by the WHO and is associated with a wide range of infections mainly in intensive care units (ICU). The pathogenicity of this bacterium is mainly regulated by a communication system called Quorum Sensing (QS) that allows it to control its virulence factors. This system has been related to antibiotic resistance and therefore its inhibition by plant-derived substances has been proposed as a strategy for the control of resistant microorganisms. Plants of the genus Piper have been characterized for having antibacterial, antifungal, insecticidal, antioxidant and cytotoxic properties, however, few studies have focused on the inhibition of the QS. Therefore, in the present study, the potential of substances from Piper species as QS inhibitors of P. aeruginosa was determined. The methodology carried out involved the identification of some species belonging to the genus Piper with potential for QS inhibition and biofilm formation. Subsequently, a phytochemical study was carried out on one of the species with the greatest potential for QS inhibition (P. pertomentellum) to isolate and identify some bioactive chemical constituents. Finally, the action of chemical constituents presents in Piper species on biofilm formation and the production of some virulence factors (elastases, proteases and pyocyanin) associated with QS of P. aeruginosa was determined. The results obtained allowed the identification of species belonging to the genus Piper with QS inhibition potential, with P. asperiusculum, P. cumanense, P. pertomentellum, P. bogotense, P. sucrense and P. grande standing out for presenting production percentages of less than or equal to 50% in the biofilm formation or violacein production assays. The phytochemical study carried out on the aerial part of P. pertomentellum allowed the isolation and identification of a new piperamide (ethyltembamide (C1)), together with four known amides (tembamide (C2), cefaradione B (C3), benzamide (C4) and tembamide (C5)). The identified compounds are reported for the first time for the species and their structures are in agreement with the chemotaxonomy of the genus Piper. Finally, this study highlights the inhibitory potential on virulence factors and biofilm formation of compounds with multidiana potential that corresponded to amides (C9 and C10), hydroquinones (C8, C18 and C19) and benzoic acid derivatives (C16). present in species of the genus Piper. Additionally, with the results obtained, some preliminary structure-activity relationships on the most active compounds were established. This research contributes to the search for inhibitors of natural origin that can serve as an alternative for the control of QS in P. aeruginosa to reduce bacterial resistance, through the characterization of the inhibitory potential of substances from some species of the Piper genus.MinicienciasUniversidad de La SalleUniversidad Nacional de ColombiaMinisterio de Medio Ambiente y Desarrollo SostenibleMaestríaMagister en Ciencias FarmacéuticasQuímica de Productos Naturales167 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaPseudomonas aeruginosaPiper pertomentellumPiperamidasPseudomonas aeruginosaQuorum SensingPiperFactores de virulenciaPiper pertomentellumPiperamidesPseudomonas aeruginosaQuorum SensingPipervirulence factorsEfecto inhibitorio de sustancias provenientes de especies del género Piper sobre Quorum Sensing de Pseudomonas aeruginosaInhibitory effect of substances from Piper species on Quorum Sensing of Pseudomonas aeruginosaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdonizio, A. L., Downum, K., Bennett, B. C., & Mathee, K. (2006). Anti-quorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology, 105(3), 427–435. https://doi.org/10.1016/j.jep.2005.11.025Aguilar, F. R., Aguilar, S. L., Cubas, D. M., Coaguila, L. Á., Fernández, D. A., Mario, M. M., Campos, R., Guevara-Vásquez, G., & Díaz, R. S. (2016). Portadores de bacterias multirresistentes de importancia clínica en áreas críticas (UCI-UCIN) de un hospital al norte del Perú. Horizonte Médico (Lima), 16(3), 50–57. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2016000300008Ahator, S., & Zhang, L. H. (2019). Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annu Rev Microbiol, 73, 559–578. https://doi.org/10.1146/ANNUREV-MICRO-020518-120044Ahmed, A. A., & Salih, F. A. (2019). Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complementary and Alternative Medicine, 19(1), 177. https://doi.org/10.1186/s12906-019-2594-5Ahmed, S. (2022). Pseudomonas aeruginosa and the multifactorial antibiotic resistance. Eurasian Medical Research Periodical, 11, 85–94. https://www.geniusjournals.org/index.php/emrp/article/view/2096/1834Aleanizy, F. S., Alqahtani, F. Y., Eltayb, E. K., Alrumikan, N., Almebki, R., Alhossan, A., Almangour, T. A., & AlQahtani, H. (2021). Evaluating the effect of antibiotics sub-inhibitory dose on Pseudomonas aeruginosa quorum sensing dependent virulence and its phenotypes. Saudi Journal of Biological Sciences, 28(1), 550–559. https://doi.org/10.1016/J.SJBS.2020.10.040Aleksic, I., Ristivojevic, P., Pavic, A., Radojević, I., Čomić, L. R., Vasiljevic, B., Opsenica, D., Milojković-Opsenica, D., & Senerovic, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005Alikhani, M. Y., Karimi Tabar, Z., Mihani, F., Kalantar, E., Karami, P., Sadeghi, M., Ahdi Khosroshahi, S., & Farajnia, S. (2014). Antimicrobial Resistance Patterns and Prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa Isolates in West of Iran. Jundishapur Journal of Microbiology, 7(1). https://doi.org/10.5812/JJM.8888Aljeldah, M. M. (2022). Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics , 11(8), 1082. https://doi.org/10.3390/ANTIBIOTICS11081082Alva, P. P., Suresh, S., Nanjappa, D. P., James, J. P., Kaverikana, R., Chakraborty, A., Sarojini, B. K., & Premanath, R. (2021). Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sciences, 267. https://doi.org/10.1016/J.LFS.2020.118878Amrutha, B., Sundar, K., & Shetty, P. H. (2017). Spice oil nanoemulsions: Potential natural inhibitors against pathogenic E. coli and Salmonella spp. from fresh fruits and vegetables. LWT - Food Science and Technology, 79, 152–159. https://doi.org/10.1016/J.LWT.2017.01.031Antunes, C. M., Ferreira, R. B. R., Buckner, M. M. C., & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. En Microbiology (Vol. 156, Issue 8, pp. 2271–2282). https://doi.org/10.1099/mic.0.038794-0Araujo Baptista, L. M., Rondón Rivas, M. E., Cruz Tenempaguay, R. E., Guayanlema Chávez, J. D., Vargas Córdova, C. A., Morocho Zaragocin, S. v., & Cornejo Sotomayor, S. X. (2019). Antimicrobial activity of the essential oil of Piper amalago L. (Piperaceae) collected in coastal Ecuador. Pharmacology Online, 3, 15–27.Atiax, E., Ahmad, F., Sirat, H. M., & Arbain, D. (2006). Antibacterial Activity and Cytotoxicity Screening of Sumatran Kaduk (Piper sarmentosum Roxb.). Journal of Pharmacology & Therapeutics, 10(5). http://ijpt.iums.ac.irBaguley, B., Biggar, R., Beland, F., Blanco, E., Betz, J., Cunningham, M., Dunnick, J., Lachenmeier, D., Guo, L., Lunn, R., Jameson, C., Marques, M., Karagas, M., Mccormick, D., Knight, T., Singh, S., Singh, S., Stewart, B., Tseng, C.-H., & Zavadil, J. (2016). IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Drugs and Herbal Products, 108, 1-422.Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., & Haghi, F. (2017). Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance, 10, 21–28. https://doi.org/10.1016/J.JGAR.2017.03.006Bahmani, M., Saki, K., Shahsavari, S., Rafieian-Kopaei, M., Sepahvand, R., & Adineh, A. (2015). Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pacific Journal of Tropical Biomedicine, 5(10), 858–864. https://doi.org/10.1016/J.APJTB.2015.06.004Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2021). Infectious disease in an era of global change. Nature Reviews Microbiology 2021 20:4, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-zBanerjee, M., Moulick, S., Bhattacharya, K. K., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113, 85–93. https://doi.org/10.1016/J.MICPATH.2017.10.023Başaran, T. I., Berber, D., Gökalsın, B., Tramice, A., Tommonaro, G., Abbamondi, G. R., Erginer Hasköylü, M., Toksoy Öner, E., Iodice, C., & Sesal, N. C. (2020). Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa Quorum Sensing and Biofilm. Frontiers in Microbiology, 11. https://doi.org/10.3389/FMICB.2020.00079/FULLBassetti, S., Tschudin-Sutter, S., Egli, A., & Osthoff, M. (2022). Optimizing antibiotic therapies to reduce the risk of bacterial resistance. European Journal of Internal Medicine, 99, 7–12. https://doi.org/10.1016/J.EJIM.2022.01.029Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125(2), 237–246. https://doi.org/10.1016/J.CELL.2006.04.001Bernal, R. (2022). Piper. Catálogo de Plantas y Líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co/es/resultados/genero/piper/Bertini, E. V. (2018). Importancia de los mecanismos de quorum sensing en las interacciones entre microorganismos endofíticos. Universidad Nacional de Tucumán.Bhattarai, S., Sharma, B. K., Subedi, N., Ranabhat, S., & Baral, M. P. (2021). Burden of Serious Bacterial Infections and Multidrug-Resistant Organisms in an Adult Population of Nepal: A Comparative Analysis of Minimally Invasive Tissue Sampling Informed Mortality Surveillance of Community and Hospital Deaths. Clinical Infectious Diseases, 73(Suppl 5), S415. https://doi.org/10.1093/CID/CIAB773Bodí, M., & Garnacho, J. (2007). Pseudomonas aeruginosa: tratamiento combinado frente a monoterapia. Medicina Intensiva, 31(2), 83–87. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-56912007000200005&lng=es&nrm=iso&tlng=esBorges, A., Abreu, A. C., Dias, C., Saavedra, M. J., Borges, F., & Simões, M. (2016). New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 21(7). https://doi.org/10.3390/MOLECULES21070877Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44. https://doi.org/10.1016/j.drup.2019.07.002Bouyahya, A., Dakka, N., Et-Touys, A., Abrini, J., & Bakri, Y. (2017). Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine, 10(8), 729–743. https://doi.org/10.1016/j.apjtm.2017.07.021Bramhachari, P. V. (2019). Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry (P. V. Bramhachari, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-32-9409-7Brazão, M. A. B., Brazão, F. v, Maia, J. G. S., & Monteiro, M. C. (2014). Antibacterial activity of the Piper aduncum oil and dillapiole, its main constituent, against multidrug-resistant strains. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 13(6), 517–526. https://www.redalyc.org/articulo.oa?id=85632545002Brown-Joel, Z. O., Colleran, E. S., & Stone, M. S. (2018). Inflammatory sebotropic reaction associated with kava kava ingestion. JAAD Case Reports, 4(5), 437–439. https://doi.org/10.1016/J.JDCR.2017.12.011Bru, J.-L., Rawson, B., Trinh, C., Whiteson, K., Molin Høyland-Kroghsbo, N., & Siryaporn, A. (2019). PQS Produced by the Pseudomonas aeruginosa Stress Response Repels Swarms Away from Bacteriophage and Antibiotics. Journal of Bacteriology, 201(23). https://doi.org/10.1128/JBBrum-Bousquet, M., Tillequin, F., Koch, M., & Sévenet, T. (1985). Alkaloids from Sarcomelicope argyrophylla. Planta Medica, 51(06), 536–537. https://doi.org/10.1055/s-2007-969594Brunel, A.-S., & Guery, B. (2017). Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Medical Weekly, 147(47–48). https://doi.org/10.4414/SMW.2017.14553Bruschi, P., Mancini, M., Mattioli, E., Morganti, M., & Signorini, M. A. (2014). Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of Ethnobiology and Ethnomedicine, 10(1), 1–22. https://doi.org/10.1186/1746-4269-10-59/TABLES/7Cabral, V., Luo, X., Junqueira, E., Costa, S. S., Mulhovo, S., Duarte, A., Couto, I., Viveiros, M., & Ferreira, M. J. U. (2015). Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine, 22(4), 469–476. https://doi.org/10.1016/J.PHYMED.2015.02.003Cabrera, C. E., Gómez, R. F., & Zúñiga, A. E. (2007). La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colomb Med, 38(2), 149–158. http://www.foxitsoftware.comForevaluationonly.Cáceres, A., & Kato, M. J. (2014). Importance of a multidisciplinary evaluation of Piper genus for development of new natural products in Latin America. International Journal of Phytocosmetics and Natural Ingredients, 1(1), 4–4. https://doi.org/10.15171/IJPNI.2014.04Calderón, Á. I., Romero, L. I., Ortega-Barría, E., Solís, P. N., Zacchino, S., Gimenez, A., Pinzón, R., Cáceres, A., Tamayo, G., Guerra, C., Espinosa, A., Correa, M., & Gupta, M. P. (2010a). Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Http://Dx.Doi.Org/10.3109/13880200903193344, 48(5), 545–553. https://doi.org/10.3109/13880200903193344Camou, T., Zunino, P., & Hortal, M. (2017). Alarma por la resistencia a antimicrobianos: situación actual y desafíos. Rev Méd Urug, 33(4), 277–284. https://doi.org/10.29193/RMU.34.3.6Carette, J., Nachtergael, A., Duez, P., Jaziri, E., & Rasamiravaka, T. (2020). Natural Compounds Inhibiting Pseudomonas aeruginosa Biofilm Formation by Targeting Quorum Sensing Circuitry. www.intechopen.comCarlson, T. J. (2002). Medical ethnobotanical research as a method to identify bioactive plants to treat infectious diseases. Advances in Phytomedicine, 1(C), 45–53. https://doi.org/10.1016/S1572-557X(02)80012-5Carmona-Hernández, Ó., Del, M., Fernández, S., Palmeros-Sánchez, B., Armando, J., García, L., & Aguirre Beltrán, G. (2014). Actividad insecticida de extractos etanólicos foliares de nueve Piperaceas (Piper spp.) en Drosophila melanogaster. Revista Internacional de ContaminaciónAmbiental, 30, 67–73.Carreño, P. (2016). La etnobotánica y su importancia como herramienta para la articulación entre conocimientos ancestrales y científicos. Universidad Distrital Fransisco José de Caldas.Castañeda, M. L., Martínez Químico, J. R., & Stanshenko, E. E. (2007). Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia Et Technica, XIII(33), 165–166. http://cenivam.uis.edu.co/informacion/historia.htmlCastillo-Juárez, I., García-Contreras, R., Velázquez-Guadarrama, N., Soto-Hernández, M., & Martínez-Vázquez, M. (2013). Amphypterygium adstringens Anacardic Acid Mixture Inhibits Quorum Sensing-controlled Virulence Factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of Medical Research, 44(7), 488–494. https://doi.org/10.1016/J.ARCMED.2013.10.004Cathcart, G. R. A., Quinn, D., Greer, B., Harriott, P., Lynas, J. F., Gilmore, B. F., & Walker, B. (2011). Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrobial Agents and Chemotherapy, 55(6), 2670–2678. https://doi.org/10.1128/AAC.00776-10/SUPPL_FILE/GC_AAC_SUPPLEMENTARY_INFORMATION.ZIPCelis, Á., Mendoza, C., Pachón, M., Cardona, J., Delgado, W., & Cuca, L. E. (2008). Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, 26(1), 97–106. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652008000100012&lng=en&nrm=iso&tlng=esChaired By Jim O’Neill. (2016). Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance. Review on Antimicrobial Resistance.Chakraborty, D., & Shah, B. (2011). Antimicrobial, anti¬oxidative and anti¬hemolytic activity of Piper betel leaf extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 192–199.Chbib, C. (2020). Mechanism and Types of Quorum Sensing Inhibitors. En Trends in Quorum Sensing and Quorum Quenching (1a ed., pp. 199–214). CRC Press. https://doi.org/10.1201/9780429274817-15Chen, I. S., Chen, Y. C., & Liao, C. H. (2007). Amides with anti-platelet aggregation activity from Piper taiwanense. Fitoterapia, 78(6), 414–419. https://doi.org/10.1016/J.FITOTE.2007.04.009Cheng, M. J., Lee, K. H., Tsai, I. L., & Chen, I. S. (2005). Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorganic and Medicinal Chemistry, 13(21), 5915–5920. https://doi.org/10.1016/J.BMC.2005.07.050Chioro, A., Coll-Seck, A. M., Høie, B., Moeloek, N., Motsoaledi, A., Rajatanavin, R., & Touraine, M. (2015). Antimicrobial resistance: A priority for global health action. Bulletin of the World Health Organization, 93(7), 439. https://doi.org/10.2471/BLT.15.158998Chou, S.-C., Su, C.-R., Ku, Y.-C., & Wu, T.-S. (2009). The Constituents and Their Bioactivities of Houttuynia cordata . Chem. Pharm. Bull, 57(11), 1227–1230.Choudhury, S., Medina-Lara, A., & Smith, R. (2022). Antimicrobial resistance and the COVID-19 pandemic. Bulletin of the World Health Organization, 100(5), 295. https://doi.org/10.2471/BLT.21.287752Christine, Dipl.-P., & Maurer, K. (2015). Biological Evaluation of Novel Quorum Sensing Inhibitors as Anti-infectives Against Pseudomonas aeruginosa. Universität des Saarlandes.CLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (CLSI standard M07, Ed.; M07-11a eds., Vol. 38). www.clsi.org.Corehtash, Z. G., Khorshidi, A., Firoozeh, F., Akbari, H., & Aznaveh, A. M. (2015). Biofilm formation and virulence factors among pseudomonas aeruginosa isolated from burn patients. Jundishapur Journal of Microbiology, 8(10). https://doi.org/10.5812/jjm.22345Costa, G. M., Endo, E. H., Cortez, D. A. G., Nakamura, T. U., Nakamura, C. V., & Dias Filho, B. P. (2016). Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. Journal de Mycologie Médicale / Journal of Medical Mycology, 26(3), 217–226. https://doi.org/10.1016/j.mycmed.2016.03.002da Costa, J. G., Campos, A. R., Brito, S. A., Pereira, C. K. B., Souza, E. O., & Rodrigues, F. F. G. (2010). Biological screening of araripe basin medicinal plants using Artemia salina Leach and pathogenic bacteria. Pharmacognosy Magazine, 6(24), 331. https://doi.org/10.4103/0973-1296.71792da Silva, H. A., Yamaguchi, L. F., Young, M. C. M., Ramos, C. S., Amorim, A. M. A., Kato, M. J., & Batista, R. (2018). Antifungal piperamides from piper mollicomum kunth (Piperaceae). Ecletica Quimica, 43(1), 33–38. https://doi.org/10.26850/1678-4618eqj.v43.1.33-38da Silva, J. K. R., Pinto, L. C., Burbano, R. M. R., Montenegro, R. C., Guimarães, E. F., Andrade, E. H. A., & Maia, J. G. S. (2014). Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Industrial Crops & Products, Complete(58), 55–60. https://doi.org/10.1016/J.INDCROP.2014.04.006da Silva Pinto, A. C., Silva, L. F. R., Cavalcanti, B. C., Melo, M. R. S., Chaves, F. C. M., Lotufo, L. V. C., de Moraes, M. O., de Andrade-Neto, V. F., Tadei, W. P., Pessoa, C. O., Vieira, P. P. R., & Pohlit, A. M. (2009). New antimalarial and cytotoxic 4-nerolidylcatechol derivatives. European Journal of Medicinal Chemistry, 44(6), 2731–2735. https://doi.org/10.1016/J.EJMECH.2008.10.025Dane. (2022). Estadísticas Vitales (EEVV) Bogotá DC 28 de junio de 2022.Datta, S., Jana, D., Maity, T. R., Samanta, A., & Banerjee, R. (2016). Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. 3 Biotech, 6(1), 1–6. https://doi.org/10.1007/s13205-015-0348-8del Barrio-Tofiño, E., Zamorano, L., Cortes-Lara, S., López-Causapé, C., Sánchez-Diener, I., Cabot, G., Bou, G., Martínez-Martínez, L., Oliver, A., Group, G.-S. P. study, Galán, F., Gracia, I., Rodríguez, M. A., Martín, L., Sánchez, J. M., Viñuela, L., García, M. V., Lepe, J. A., Aznar, J., … Oteo, J. (2019). Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. Journal of Antimicrobial Chemotherapy, 74(7), 1825–1835. https://doi.org/10.1093/JAC/DKZ147Delgado, W., Avella, E., & de Díaz, A. (1998). Alcaloides bencilisoquinolínicos del talloPiper augustum Rudge. Revista Colombiana de Química, 27(1).Denisuik, A. J., Garbutt, L. A., Golden, A. R., Adam, H. J., Baxter, M., Nichol, K. A., Lagacé-Wiens, P., Walkty, A. J., Karlowsky, J. A., Hoban, D. J., Mulvey, M. R., & Zhanel, G. G. (2019). Antimicrobial-resistant pathogens in Canadian ICUs: results of the CANWARD 2007 to 2016 study. The Journal of Antimicrobial Chemotherapy, 74(3), 645–653. https://doi.org/10.1093/JAC/DKY477Deryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences 2019, Vol. 20, Page 5588, 20(22), 5588. https://doi.org/10.3390/IJMS20225588Desai, S. J., Prabhu, B. R., & Mulchandani, N. B. (1988). Aristolactams and 4,5dioxoaporphines from Piper longum. Phytochemistry, 27(5), 1511–1515.do Nascimento, J. C., de Paula, V. F., David, J. M., & David, J. P. (2012). Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae). Química Nova, 35(11), 2288–2311. https://doi.org/10.1590/S0100-40422012001100037Durant-Archibold, A. A., Santana, A. I., & Gupta, M. P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. En Journal of Ethnopharmacology (Vol. 217, pp. 63–82). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2018.02.008Eggimann, P., & Pittet, D. (2001). Infection control in the ICU. Chest, 120(6), 2059–2093. https://doi.org/10.1378/CHEST.120.6.2059El-Mowafy, S. A., Abd El Galil, K. H., Habib, E. S. E., & Shaaban, M. I. (2017). Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. African Health Sciences, 17(1), 199–207. https://doi.org/10.4314/ahs.v17i1.25El-Shaer, S., Shaaban, M., Barwa, R., & Hassan, R. (2016). Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. Journal of Medical Microbiology, 65(10), 1194–1204. https://doi.org/10.1099/JMM.0.000327Espinoza, D. I., & Esparza, G. F. (2021). Resistencia enzimática en Pseudomonas aeruginosa, aspectos clínicos y de laboratorio. Revista Chilena de Infectología, 38(1), 69–80. https://doi.org/10.4067/S0716-10182021000100069Farfan, J. P., & Paladines, J. A. (2019). Prevalencia y tasa de letalidad de infecciones por microorganismos multirresistentes en los pacientes sépticos en la unidad de cuidados intensivos del hospital general iess quevedo en el periodo del 2017-2018. Universidad Católica de Santiago de Guayaquil.Farhana Syed Ab Rahman, S. (2016). Piper sarmentosum Roxb. : A Mini Review of Ethnobotany, Phytochemistry and Pharmacology. Journal of Analytical & Pharmaceutical Research, 2(5). https://doi.org/10.15406/japlr.2016.02.00031Filloux A, & Ramos J. (2014). Pseudomonas Methods and Protocols Methods in Molecular Biology 1149 (A. Filloux & J.-L. Ramos, Eds.; Vol. 1149). Springer New York. https://doi.org/10.1007/978-1-4939-0473-0Fonnegra G., R., & Jiménez R., S. L. (1999). Plantas medicinales aprobadas en Colombia. Salud y Enfermedad. Lecturas Básicas En Sociología de La Medicina, 3–22. https://doi.org/10.3/JQUERY-UI.JSFosberg, F. R., Schultes, R. E., & Raffauf, R. F. (1990). The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia. En undefined (Vol. 40, Issue 1). Wiley. https://doi.org/10.2307/1222960Friedrich, U., Siems, K., Solis, P. N., Gupta, M. P., & Jenett-Siems, K. (2005). New prenylated benzoic acid derivatives of Piper hispidum. Die Pharmazie, 60(6), 455–457. https://doi.org/10.1002/CHIN.200541203Galvis, M., & Torres, M. (2017). Etnobotánica y usos de las plantas de la comunidad rural de Sogamoso, Boyacá, Colombia. Revista de Investigación Agraria y Ambiental, 8(2).García Barriga, H. (1992). Flora medicinal de Colombia : botánica médica. Instituto de Ciencias Naturales,.Germen. (2019). Perfiles de sensibilidad a antibióticos de Pseudomonas aeruginosa en UCI. http://www.grupogermen.org/pdf/pseudomonas_aeruginosa_12_14.pdfGhosh, R., Darin, K., Nath, P., & Deb, P. (2014). An Overview of Various Piper Species for Their Biological Activities. International Journal of Pharma Research & Review, 3(1), 67–75.Gómez-Calvario, V., & Rios, M. Y. (2019). 1H and 13C NMR data, occurrence, biosynthesis, and biological activity of Piper amides. Magnetic Resonance in Chemistry, 57(12), 994–1070. https://doi.org/10.1002/MRC.4857González, B., Mora, M., & Clavijo, M. (2001). Estudio etnobotánico de las plantas medicinales empleadas por la comunidad rural de Zaque-municipio de Gachetá, Cundinamarca. Tecné, Episteme y Didaxis: TED, 0(9). https://doi.org/10.17227/ted.num9-5621González, J. M. (2019). Auge, caída y resurgimiento de las enfermedades infecciosas. Biomédica, 39(2), 5–7. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572019000600005Gupta, M. P., Correa A, M. D., Solis, P. N., Jones, A., Galdames, C., & Guionneau-Sinclair, F. (1993). Medicinal plant inventory of Kuna Indians: Part 1. Journal of Ethnopharmacology, 40(2), 77–109. https://doi.org/10.1016/0378-8741(93)90054-9Gupta, P., Balwani, S., Kumar, S., Aggarwal, N., Rossi, M., Paumier, S., Caruso, F., Bovicelli, P., Saso, L., DePass, A. L., Prasad, A. K., Parmar, V. S., & Ghosh, B. (2010). β-sitosterol among other secondary metabolites of Piper galeatum shows inhibition of TNFα-induced cell adhesion molecule expression on human endothelial cells. Biochimie, 92(9), 1213–1221. https://doi.org/10.1016/J.BIOCHI.2010.06.005Haque, S., Ahmad, F., Dar, S. A., Jawed, A., Mandal, R. K., Wahid, M., Lohani, M., Khan, S., Singh, V., & Akhter, N. (2018). Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis, 121, 293–302. https://doi.org/10.1016/J.MICPATH.2018.05.046Hashim, N. A., Ahmad, F., Salleh, W. M. N. H. W., & Khamis, S. (2019). A New Amide From Piper maingayi Hk.F. (Piperaceae). Natural Product Communications, 14(6), 1934578X1985582. https://doi.org/10.1177/1934578X19855826Hernández, T., García-Bores, A. M., Serrano, R., Ávila, G., Dávila, P., Cervantes, H., Peñalosa, I., Flores-Ortiz, C. M., & Lira, R. (2015). Fitoquímica y actividades biológicas de plantas de importancia en la medicina tradicional del Valle de Tehuacán-Cuicatlán. Tip Revista Especializada En Ciencias Químico-Biológicas, 18(2), 116–121. https://doi.org/10.1016/j.recqb.2015.09.003Hertiani, T., Tunjung Pratiwi, S. U., Rihardini, M. I., & Cahyaningrum, P. K. (2018). Investigation on Inhibitory Potential of Myrmecodia tuberosa on Quorum Sensing-related Pathogenicity in Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I Strains. Pakistan Journal of Biological Sciences : PJBS, 21(3), 101–109. https://doi.org/10.3923/PJBS.2018.101.109Hidalgo, J., & Woc-Colburn, L. (2020). Highly Infectious Diseases in Critical Care (J. Hidalgo & L. Woc-Colburn, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-33803-9Hirakawa, H., & Tomita, H. (2013). Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Frontiers in Microbiology, 4(MAY). https://doi.org/10.3389/FMICB.2013.00114Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322–332. https://doi.org/10.1016/J.IJANTIMICAG.2009.12.011Holden, M., Swift, S., & Williams, P. (2000). New signal molecules on the quorum-sensing block. Trends in Microbiology, 8(3), 101–103. https://doi.org/10.1016/S0966-842X(00)01718-2Hortal, M. (2015). Enfermedades infecciosas emergentes y reemergentes: información actualizada. Rev Méd Urug, 31(4), 52–58.Hossain, M. A., Sattenapally, N., Parikh, H. I., Li, W., Rumbaugh, K. P., & German, N. A. (2020). Design, synthesis, and evaluation of compounds capable of reducing Pseudomonas aeruginosa virulence. European Journal of Medicinal Chemistry, 185, 111800. https://doi.org/10.1016/J.EJMECH.2019.111800Ignak, S., Nakipoglu, Y., & Gurler, B. (2017). Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrobial Resistance and Infection Control, 6(1), 1–7. https://doi.org/10.1186/S13756-017-0244-6/TABLES/5INS. (2022). Boletín epidemiológico semanal: Semana epidemiológica 24 12 al 18 de junio de 2022.Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T., & Givskov, M. (2012). Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78(7), 2410–2421. https://doi.org/10.1128/AEM.05992-11James Bound, D., Murthy, P. S., Negi, P. S., & Srinivas, P. (2020). Evaluation of anti-quorum sensing and antimutagenic activity of 2,3-unsaturated and 2,3-dideoxyglucosides of terpene phenols and alcohols. LWT, 122. https://doi.org/10.1016/J.LWT.2019.108987Jaramillo, M. A., Callejas, R., Davidson, C., Smith, J. F., Stevens, A. C., & Tepe, E. J. (2008). A phylogeny of the tropical genus Piper using ITS and the chloroplast intron psbJ-petA. Systematic Botany, 33(4), 647–660. https://doi.org/10.1600/036364408786500244Jeyanthi, V., Velusamy, P., Kumar, G. V., & Kiruba, K. (2021). Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Heliyon, 7(5). https://doi.org/10.1016/J.HELIYON.2021.E07021Karakonstantis, S., Kritsotakis, E. I., & Gikas, A. (2020). Pandrug-resistant gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. En Journal of Antimicrobial Chemotherapy (Vol. 75, Issue 2, pp. 271–282). Oxford University Press. https://doi.org/10.1093/jac/dkz401Karatuna, O., & Yagci, A. (2010). Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 16(12), 1770–1775. https://doi.org/10.1111/J.1469-0691.2010.03177.XKarbasizade, V., Dehghan, P., Sichani, M. M., Shahanipoor, K., Sepahvand, S., Jafari, R., & Yousefian, R. (2017). Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas aeruginosa. Pakistan Journal of Pharmaceutical Sciences, 30(2(Suppl.)), 585–589. https://pubmed.ncbi.nlm.nih.gov/28650325/Kostylev, M., Kim, D. Y., Smalley, N. E., Salukhe, I., Peter Greenberg, E., & Dandekar, A. A. (2019). Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 7027–7032. https://doi.org/10.1073/PNAS.1819796116/SUPPL_FILE/PNAS.1819796116.SAPP.PDFKothari, V., Sharma, S., & Padia, D. (2017). Recent research advances on Chromobacterium violaceum. Asian Pacific Journal of Tropical Medicine, 10(8), 744–752. https://doi.org/10.1016/J.APJTM.2017.07.022Kushwaha, M., Jain, S. K., Sharma, N., Abrol, V., Jaglan, S., & Vishwakarma, R. A. (2018). Establishment of LCMS Based Platform for Discovery of Quorum Sensing Inhibitors: Signal Detection in Pseudomonas aeruginosa PAO1. ACS Chemical Biology, 13(3), 657–665. https://doi.org/10.1021/ACSCHEMBIO.7B00875/SUPPL_FILE/CB7B00875_SI_001.PDFLakshmanan, D., Nanda, J., & Jeevaratnam, K. (2018). Inhibition of Swarming motility of Pseudomonas aeruginosa by Methanol extracts of Alpinia officinarum Hance. and Cinnamomum tamala T. Nees and Eberm. Natural Product Research, 32(11), 1307–1311. https://doi.org/10.1080/14786419.2017.1340289Leal, A., Arturo, C., Jorge, Á., Cortes María, A., & Ovalle, V. (2017). Análisis de la vigilancia de la resistencia bacteriana año 2016. Componente pediátrico y adulto. Boletín Informativo GREBO, 9. www.grebo.orgLeal, A. L., Arturo, C., Jorge, Á., Cortes, A., & Ovalle, M. V. (2014). Análisis de la vigilancia de la resistencia bacteriana año 2013. Componente pediátrico y adulto. Boletín Informativo GREBO. www.grebo.orgLeal, S. M., Pino, N., Stashenko, E. E., Martínez, J. R., & Escobar, P. (2013). Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. Journal of Essential Oil Research, 25(6), 512–519. https://doi.org/10.1080/10412905.2013.820669Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26–41. https://doi.org/10.1007/s13238-014-0100-xLi, D. lin, & Xing, F. wu. (2016). Ethnobotanical study on medicinal plants used by local Hoklos people on Hainan Island, China. Journal of Ethnopharmacology, 194, 358–368. https://doi.org/10.1016/J.JEP.2016.07.050Li, Q., Mao, S., Wang, H., & Ye, X. (2022). The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Marine Drugs 2022, Vol. 20, Page 488, 20(8), 488. https://doi.org/10.3390/MD20080488Lignier, P., Estager, J., Kardos, N., Gravouil, L., Gazza, J., Naffrechoux, E., & Draye, M. (2011). Swift and efficient sono-hydrolysis of nitriles to carboxylic acids under basic condition: Role of the oxide anion radical in the hydrolysis mechanism. Ultrasonics Sonochemistry, 18(1), 28–31. https://doi.org/10.1016/j.ultsonch.2010.04.006Lin, R. J., Wu, M. H., Ma, Y. H., Chung, L. Y., Chen, C. Y., & Yen, C. M. (2014). Anthelmintic activities of aporphine from Nelumbo nucifera Gaertn. cv. Rosa-plena against Hymenolepis nana. International Journal of Molecular Sciences, 15(3), 3624–3639. https://doi.org/10.3390/IJMS15033624Liu, C. M., Kao, C. L., Wu, H. M., Li, W. J., Huang, C. T., Li, H. T., & Chen, C. Y. (2014). Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules (Basel, Switzerland), 19(11), 17829–17838. https://doi.org/10.3390/MOLECULES191117829López, A., Ming, D. S., & Towers, G. H. N. (2002). Antifungal Activity of Benzoic Acid Derivatives from Piper lanceaefolium. Journal of Natural Products, 65(1), 62–64. https://doi.org/10.1021/np010410gLópez-Causapé, C., Cabot, G., del Barrio-Tofiño, E., & Oliver, A. (2018). The versatile mutational resistome of Pseudomonas aeruginosa. Frontiers in Microbiology, 9(APR), 685. https://doi.org/10.3389/FMICB.2018.00685/BIBTEXLozano, R. (2017). Nuevas estrategias en la lucha contra la resistencia a los antibióticos: Inhibición del quorum sensing. Universidad Complutense.Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zhang, B., Wang, Y., Chen, Y., & Zeng, M. (2022). Screening strategies for quorum sensing inhibitors in combating bacterial infections. Journal of Pharmaceutical Analysis, 12(1), 1–14. https://doi.org/10.1016/J.JPHA.2021.03.009Luís, Â., Duarte, A., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 79, 274–282. https://doi.org/10.1016/j.indcrop.2015.10.055Luján Roca, D. Á. (2014). Pseudomonas aeruginosa un adversario peligroso. Acta Bioquímica Clínica Latinoamericana, 48(4), 465–474.Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., Lei, D., Chen, Y., Li, Y., Kong, J., & Chen, Y. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PloS One, 12(4). https://doi.org/10.1371/JOURNAL.PONE.0176883Maciej, S., Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. v, … Sambanis, N. (2011). Introduction, Phytochemistry, traditional uses and biological activity of genus Piper: A review. International Journal of Current Pharmaceutical Review and Research, 2(2), 130–144. https://doi.org/10.2/JQUERY.MIN.JSMahavy, C. E., Duez, P., ElJaziri, M., & Rasamiravaka, T. (2020). African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics, 9(11), 830. https://doi.org/10.3390/antibiotics9110830Majik, M. S., Naik, D., Bhat, C., Tilve, S., Tilvi, S., & D’Souza, L. (2013). Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry Letters, 23(8), 2353–2356. https://doi.org/10.1016/J.BMCL.2013.02.051Majolo, C., Monteiro, P. C., Nascimento, A. V. P. do, Chaves, F. C. M., Gama, P. E., Bizzo, H. R., & Chagas, E. C. (2019). Essential Oils from Five Brazilian Piper Species as Antimicrobials Against Strains of Aeromonas hydrophila. Https://Doi.Org/10.1080/0972060X.2019.1645047, 22(3), 746–761. https://doi.org/10.1080/0972060X.2019.1645047Malgaonkar, A., & Nair, M. (2019). Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Scientific Reports, 9(1), 432. https://doi.org/10.1038/s41598-018-36488-9Martín-Rodríguez, A. J., Ticona, J. C., Jiménez, I. A., Flores, N., Fernández, J. J., & Bazzocchi, I. L. (2015). Flavonoids from Piper delineatum modulate quorum-sensing-regulated phenotypes in Vibrio harveyi. Phytochemistry, 117, 98–106. https://doi.org/10.1016/J.PHYTOCHEM.2015.06.006Maxwell, A., & Rampersad, D. (1989). B-phenylethylamine-derived amides from Piper guayranum. Journal of Natural Products, 52(2), 411–414.McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, England), 143 ( Pt 12)(12), 3703–3711. https://doi.org/10.1099/00221287-143-12-3703Mendoza, J. G., Maguiña, C., & González, F. (2019). La resistencia a los antibióticos: un problema muy serio . Acta Med Peru, 36(2), 145–151.Mohabi, S., Kalantar-Neyestanaki, D., & Mansouri, S. (2017). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iranian Journal of Microbiology, 9(1), 26. /pmc/articles/PMC5534001/Mohajeri, M., Ebrahimi, S. N., Gholamnia, M., & Bayati, M. (2023). Naturally Occurring Quorum Sensing Inhibitors for Pseudomonas aeruginosa by Molecular Modeling. Biointerface Research in Applied Chemistry, 13(2). https://doi.org/10.33263/BRIAC132.147Molina, F. J., Díaz, C. A., Barrera, L., de La Rosa, G., Dennis, R., Dueñas, C., Granados, M., Londoño, D., Ortiz, G., Rodríguez, F., & Jaimes, F. (2011). Perfil microbiológico de la Infecciones en Unidades de Cuidados Intensivos de Colombia (EPISEPSIS Colombia). Medicina Intensiva, 35(2), 75–83. https://doi.org/10.1016/j.medin.2010.11.003Muñoz, D. R., Sandoval-Hernandez, A. G., Delgado, W. A., Arboleda, G. H., & Cuca, L. E. (2018). In vitro anticancer screening of Colombian plants from Piper genus (Piperaceae). Journal of Pharmacognosy and Phytotherapy, 10(9), 174–181. https://doi.org/10.5897/JPP2018.0509Muñoz-Schick, M., Moreira-Muñoz, A., & Moreira Espinoza, S. (2012). Origen del nombre de los géneros de plantas vasculares nativas de Chile y su representatividad en Chile y el mundo. Gayana. Botánica, 69(2), 309–359. https://doi.org/10.4067/S0717-66432012000200011Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0Nagori, K., Singh, K., Alexander, A., Kumar, T., Dewangan, D., Badwaik, H., & Tripathi, D. K. (2011). Piper betle L.: A review on its ethnobotany, phytochemistry, pharmacological profile and profiling by new hyphenated technique DART-MS (Direct Analysis in Real Time Mass Spectrometry). Journal of Pharmacy Research, 4(9), 2991–2997. www.jpronline.infoNamaki, M., Habibzadeh, S., Vaez, H., Arzanlou, M., Safarirad, S., Bazghandi, S. A., Sahebkar, A., & Khademi, F. (2022). Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Molecular Biology Reports, 49(3), 2149–2155. https://doi.org/10.1007/S11033-021-07032-2/TABLES/4Navickiene, H. M. D., Morandim, A. de A., Alécio, A. C., Regasini, L. O., Bergamo, D. C. B., Telascrea, M., Cavalheiro, A. J., Lopes, M. N., Bolzani, V. da S., Furlan, M., Marques, M. O. M., Young, M. C. M., & Kato, M. J. (2006). Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum. Química Nova, 29(3), 467–470. https://doi.org/10.1590/S0100-40422006000300012Niewiadomska, A. M., Jayabalasingham, B., Seidman, J. C., Willem, L., Grenfell, B., Spiro, D., & Viboud, C. (2019). Population-level mathematical modeling of antimicrobial resistance: a systematic review. BMC Medicine 2019 17:1, 17(1), 1–20. https://doi.org/10.1186/S12916-019-1314-9Noriega, P., Guerrini, A., Sacchetti, G., Grandini, A., Ankuash, E., & Manfredini, S. (2019). Chemical Composition and Biological Activity of Five Essential Oils from the Ecuadorian Amazon Rain Forest. Molecules 2019, Vol. 24, Page 1637, 24(8), 1637. https://doi.org/10.3390/MOLECULES24081637Ochoa, S. A., López-Montiel, F., Escalona, G., Cruz-Córdova, A., Dávila, L. B., López-Martínez, B., Jiménez-Tapia, Y., Giono, S., Eslava, C., Hernández-Castro, R., Xicohtencatl-Cortes, J., Gea González, M., Becario, " *, & México, P. (2013). Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas. Bol Med Hosp Infant Mex, 70(2), 138–150. www.medigraphic.org.mxOlivero V, J. T., Pájaro C, N. P., & Stashenko, E. (2011). Antiquorum sensing activity of essential oils isolated from different species of the genus Piper. Vitae, 18(1), 77–82.Olivero-Verbel, J., Güette-Fernandez, J., & Stashenko, E. (2009). Acute toxicity against Artemia franciscana of essential oils isolated from plants of the genus Lippia and Piper collected in Colombia. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 8(5), 419–427. https://www.redalyc.org/articulo.oa?id=85611977008OMS. (2003). Prevención de las infecciones nosocomiales : guía práctica / revisores : G. Ducel, J. Fabry y L. Nicolle. Organización Mundial de La Salud. https://apps.who.int/iris/handle/10665/67877OMS. (2017, febrero 27). La OMS publica lista de bacterias para las que se necesitan con urgencia nuevos antibióticos. Organización Mundial de La Salud. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededOMS. (2020, diciembre 9). Las 10 principales causas de muerte. Organización Mundial de La Salud. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-deathOMS. (2021). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report.O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations.Orjala, J., Erdelmeier, C. A. J., Wright, A. D., Rali, T., & Sticher, O. (1993). Two chromenes and a prenylated benzoic acid derivative from Piper aduncum. Phytochemistry, 34(3), 813–818. https://doi.org/10.1016/0031-9422(93)85364-WOrjala, J., Wright, A., Rali, T., & Sticher, O. (2006). Aduncamide, a Cytotoxic and Antibacterial b-Phenylethylamine-Derived Amide from Piper aduncum. Http://Dx.Doi.Org/10.1080/10575639308043814, 2(3), 231–236. https://doi.org/10.1080/10575639308043814Othman, A. F. M., Rukayadi, Y., & Radu, S. (2019). Inhibition of Pseudomonas aeruginosa Quorum sensing by Curcuma xanthorrhiza Roxb. Extract. Journal of Pure and Applied Microbiology, 13(3), 1335–1347. https://doi.org/10.22207/JPAM.13.3.05O’Toole, G. A. (2011). Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments : JoVE, 47. https://doi.org/10.3791/2437O’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449–461. https://doi.org/10.1046/J.1365-2958.1998.00797.XOuyang, J., Feng, W., Lai, X., Chen, Y., Zhang, X., Rong, L., Sun, F., & Chen, Y. (2020). Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system. Microbial Pathogenesis, 149, 104291. https://doi.org/10.1016/J.MICPATH.2020.104291Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019a). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013Paniagua, S. M. (2019). Factores de riesgo asociados a itu por pseudomonas aeruginosa multirresistente en pacientes hospitalizados - Hospital Nacional Dos De Mayo, 2017. Universidad Nacional Federico Villarreal.Papenfort, K., & Bassler, B. L. (2016). Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. Nature Reviews. Microbiology, 14(9), 576. https://doi.org/10.1038/NRMICRO.2016.89Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E., & Boll, P. M. (1997). Phytochemistry of the genus Piper. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00328-2Parra Amin, J. E., Cuca, L. E., & González-Coloma, A. (2019). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, 35(16), 2763–2771. https://doi.org/10.1080/14786419.2019.1662010Parra, J. E., Delgado, W. A., & Cuca, L. E. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4(3), 280–282. https://doi.org/10.1016/J.PHYTOL.2011.04.015Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4360–4365. https://doi.org/10.1073/PNAS.96.8.4360/ASSET/3B04D4E7-6DEB-4984-B12A-716C44025169/ASSETS/GRAPHIC/PQ0790513005.JPEGPatiño, W. R., Prieto, J. A., Suárez, L. E. C., Ávila, M. C., & Patiño, O. J. (2018). Caracterización química y biológica de los extractos etanólicos de Piper asperiusculum y Piper pertomentellum. Revista Cubana de Plantas Medicinales, 23(1). http://revplantasmedicinales.sld.cu/index.php/pla/article/view/576/241Patiño-Bayona, W. R., Nagles Galeano, L. J., Bustos Cortes, J. J., Delgado Ávila, W. A., Herrera Daza, E., Cuca Suárez, L. E., Prieto-Rodríguez, J. A., Patiño-Ladino, O. J., Galeano, N., Bustos Cortes, L. J. ;, Delgado Ávila, J. J. ;, Herrera Daza, W. A. ;, Suárez, E. ;, Prieto-Rodríguez, L. E. C. ;, & Patiño-Ladino, J. A. ; (2021). Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae). Insects 2021, Vol. 12, Page 532, 12(6), 532. https://doi.org/10.3390/INSECTS12060532Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., Vázquez-López, R., Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/S0716-10182019000200180Peerzada, Z., Kanhed, A. M., & Desai, K. B. (2022). Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa. RSC Advances, 12(24), 15196–15214. https://doi.org/10.1039/D1RA08351APejin, B., Iodice, C., Tommonaro, G., Stanimirovic, B., Ciric, A., Glamoclija, J., Nikolic, M., Rosa, S., & Sokovic, M. (2014). Further in vitro Evaluation of Antimicrobial Activity of the Marine Sesquiterpene Hydroquinone Avarol. Current Pharmaceutical Biotechnology, 15(6), 583–588. https://doi.org/10.2174/138920101506140910152253POWO. (2022). Plants of the World Online. En Facilitado por Royal Botanic Gardens, Kew. https://powo.science.kew.org/cite-usPuzi, S., Sama, O., & Sule, A. (2011). Actividad antimicrobiana selectiva de Piper sarmentosum (kaduk) contra Pseudomonas aeroginosa. Temas Actuales En Investigación Nutracéutica, 9, 31–34. https://www.researchgate.net/publication/289653857_Selective_antimicrobial_activity_of_Piper_sarmentosum_kaduk_against_Pseudomonas_aeroginosaQin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–27. https://doi.org/10.1038/s41392-022-01056-1Rai, N., Rai, R., & Venkatesh, K. v. (2015). Quorum Sensing Biosensors. En Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight (pp. 173–183). Springer India. https://doi.org/10.1007/978-81-322-1982-8_16Rajkumari, J., Borkotoky, S., Murali, A., & Busi, S. (2018). Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. South African Journal of Botany, 118, 151–157. https://doi.org/10.1016/j.sajb.2018.07.004Rasamiravaka, T., Labtani, Q., Duez, P., & el Jaziri, M. (2015). The formation of biofilms by pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. En BioMed Research International (Vol. 2015). Hindawi Limited. https://doi.org/10.1155/2015/759348Rasko, D. A., & Sperandio, V. (2010). Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery, 9(2), 117–128. https://doi.org/10.1038/nrd3013Rather, M. A., Gupta, K., & Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. Journal of Ethnopharmacology, 269, 113699. https://doi.org/10.1016/J.JEP.2020.113699Rather, M. A., Saha, D., Bhuyan, S., Jha, A. N., & Mandal, M. (2022). Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiological Research, 264, 127173. https://doi.org/10.1016/J.MICRES.2022.127173Ratridewi, I., Dzulkarnain, S. A., Wijaya, A. B., Huwae, J. T. R., Putra, D. S. M., Barlianto, W., Santoso, S., & Santosaningsih, D. (2021). Effects of Piper betle Leaf Extract on Biofilm and Rhamnolipid Formation of Pseudomonas aeruginosa. Research Journal of Pharmacy and Technology, 14(10), 5182–5186. https://doi.org/10.52711/0974-360X.2021.00901Razakova, D. M., Bessonova, I. A., & Yunusov, S. Y. (1984). Components ofHaplophyllum obtusifolium. Chemistry of Natural Compounds 1985 20:5, 20(5), 599–600. https://doi.org/10.1007/BF00580074Rekha, P. D., Vasavi, H. S., Vipin, C., Saptami, K., & Arun, A. B. (2017). A medicinal herb Cassia alata attenuates quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Letters in Applied Microbiology, 64(3), 231–238. https://doi.org/10.1111/LAM.12710Restrepo, M. I., Babu, B. L., Reyes, L. F., Chalmers, J. D., Soni, N. J., Sibila, O., Faverio, P., Cilloniz, C., Rodriguez-Cintron, W., Aliberti, S., Aruj, P. K., Attorri, S., Barimboim, E., Caeiro, J. P., Garzón, M. I., Cambursano, V. H., Ceccato, A., Chertcoff, J., Lascar, F., … Labra, L. (2018). Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. European Respiratory Journal, 52(2). https://doi.org/10.1183/13993003.01190-2017Rivera, M. L. C., Hassimotto, N. M. A., Bueris, V., Sircili, M. P., de Almeida, F. A., & Pinto, U. M. (2019). Effect of Capsicum Frutescens Extract, Capsaicin, and Luteolin on Quorum Sensing Regulated Phenotypes. Journal of Food Science, 84(6), 1477–1486. https://doi.org/10.1111/1750-3841.14648Rocha, A. J., de Oliveira Barsottini, M. R., Rocha, R. R., Laurindo, M. V., de Moraes, F. L. L., & da Rocha, S. L. (2019). Pseudomonas Aeruginosa: Virulence Factors and Antibiotic Resistance Genes. Brazilian Archives of Biology and Technology, 62, 1–15. https://doi.org/10.1590/1678-4324-2019180503Roersch, C. M. F. B. (2010). Piper umbellatum L.: a comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. Journal of Ethnopharmacology, 131(3), 522–537. https://doi.org/10.1016/J.JEP.2010.07.045Saeki, E. K., Kobayashi, R. K. T., & Nakazato, G. (2020). Quorum sensing system: Target to control the spread of bacterial infections. Microbial Pathogenesis, 142, 104068. https://doi.org/10.1016/J.MICPATH.2020.104068Salehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., Khan, T., Sharifi-Rad, J., Ozleyen, A., Turkdonmez, E., Valussi, M., Tumer, T. B., Fidalgo, L. M., Martorell, M., & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. En Molecules (Vol. 24, Issue 7). MDPI AG. https://doi.org/10.3390/molecules24071364Salinas, C., Hernández, A., Oropeza, R., Olvera, C., Poblano, M., & Franco, J. (2010). Colistin en el tratamiento de infección por Pseudomonas aeruginosa multidrogorresistente. Revista de La Asociación Mexicana de Medicina Critica y Terapia Intensiva, XXIV(4), 173–177.Salmanov, A., Litus, V., Vdovychenko, S., Litus, O., Davtian, L., Ubogov, S., Bisyuk, Y., Drozdova, A., & Vlasenko, I. (2019). Healthcare-associated infections in intensive care units. Wiadomosci Lekarskie (Warsaw, Poland : 1960), 72(5 cz 2), 963–969. https://doi.org/10.36740/wlek201905201Samame, L. M., & Samalvides, F. (2014). Eficacia del proceso de limpieza y desinfección de los endoscopios en un hospital de nivel III. Revista Medica Herediana, 25(4), 208–214. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2014000400005Santhakumari, S., & Ravi, A. v. (2019). Targeting quorum sensing mechanism: An alternative anti-virulent strategy for the treatment of bacterial infections. South African Journal of Botany, 120, 81–86. https://doi.org/10.1016/J.SAJB.2018.09.028Sen, S., Dayanandan, S., Davis, T., Ganesan, R., Jagadish, M. R., Mathew, P. J., & Ravikanth, G. (2019). Origin and evolution of the genus Piper in Peninsular India. Molecular Phylogenetics and Evolution, 138, 102–113. https://doi.org/10.1016/J.YMPEV.2019.05.033Serra-Valdés, M. Á. (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 402–419. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2013Sethupathy, S., Ananthi, S., Selvaraj, A., Shanmuganathan, B., Vigneshwari, L., Balamurugan, K., Mahalingam, S., & Pandian, S. K. (2017). Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Scientific Reports 2017 7:1, 7(1), 1–17. https://doi.org/10.1038/s41598-017-16507-xSethupathy, S., Prasath, K. G., Ananthi, S., Mahalingam, S., Balan, S. Y., & Pandian, S. K. (2016). Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. Journal of Proteomics, 145, 112–126. https://doi.org/10.1016/J.JPROT.2016.04.019Siddiqui, B. S., Gulzar, T., Begum, S., Afshan, F., & Sattar, F. A. (2005). Insecticidal amides from fruits of Piper nigrum Linn. Natural Product Research, 19(2), 143–150. https://doi.org/10.1080/14786410410001704750Siges, T. H., Hartemink, A. E., Hebinck, P., & Allen, B. J. (2005). The Invasive Shrub Piper aduncum and Rural Livelihoods in the Finschhafen Area of Papua New Guinea. Human Ecology 2005 33:6, 33(6), 875–893. https://doi.org/10.1007/S10745-005-8214-7Silalahi, M., Supriatna, J., Walujo, E. B., & Nisyawati. (2015). Local knowledge of medicinal plants in sub-ethnic Batak Simalungun of North Sumatra, Indonesia. Biodiversitas, 16(1), 44–54. https://doi.org/10.13057/BIODIV/D160106Silva, A., Silva, V., Igrejas, G., & Poeta, P. (2020). Chapter 17: Carbapenems and Pseudomonas aeruginosa: Mechanisms and epidemiology. En Antibiotics and Antimicrobial Resistance Genes in the Environment: Volume 1 in the Advances in Environmental Pollution Research Series (Vol. 1, pp. 253–268). Elsevier. https://doi.org/10.1016/B978-0-12-818882-8.00017-6Singh, N., Patil, A., Prabhune, A., & Goel, G. (2016). Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology (United Kingdom), 162(9), 1708–1714. https://doi.org/10.1099/MIC.0.000342/CITE/REFWORKSSkariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica 2018 63:4, 63(4), 413–432. https://doi.org/10.1007/S12223-018-0585-4Smith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S. (2014). Global rise in human infectious disease outbreaks. Journal of the Royal Society Interface, 11(101). https://doi.org/10.1098/RSIF.2014.0950Smith, K., & Hunter, I. S. (2008). Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57(Pt 8), 966–973. https://doi.org/10.1099/JMM.0.47668-0Solomon, S. L., & Oliver, K. B. (2014). Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Number, 89. www.aafp.org/afp.Sommer, R., Rox, K., Wagner, S., Hauck, D., Henrikus, S. S., Newsad, S., Arnold, T., Ryckmans, T., Brönstrup, M., Imberty, A., Varrot, A., Hartmann, R. W., & Titz, A. (2019). Anti-biofilm Agents against Pseudomonas aeruginosa: A Structure-Activity Relationship Study of C-Glycosidic LecB Inhibitors. Journal of Medicinal Chemistry, 62(20), 9201–9216. https://doi.org/10.1021/ACS.JMEDCHEM.9B01120/SUPPL_FILE/JM9B01120_SI_002.CSVSong, D., Bi, F., Zhang, N., Qin, Y., Liu, X., Teng, Y., & Ma, S. (2020). Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus. Bioorganic & Medicinal Chemistry, 28(21), 115729. https://doi.org/10.1016/J.BMC.2020.115729Sotelo, H. (2016). Estado del arte en el uso potencial de extractos vegetales del género piper para el control de plagas agricolas [Universidad Nacional Abierta y a Distancia]. https://repository.unad.edu.co/bitstream/handle/10596/13255/16609297.pdf?sequence=1&isAllowed=ySteindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/J.1574-6968.2006.00501.XStraif-Bourgeois, S., Ratard, R., & Kretzschmar, M. (2014). Infectious Disease Epidemiology. Handbook of Epidemiology, 2041. https://doi.org/10.1007/978-0-387-09834-0_34Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Wiley. https://doi.org/10.1002/0470011149Suroowan, S., & Mahomoodally, M. F. (2016). A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. Journal of Ethnopharmacology, 177, 61–80. https://doi.org/10.1016/J.JEP.2015.11.029Suwanphakdee, C., Simpson, D. A., Hodkinson, T. R., Chantaranothai, P., & Suwanphakdee, C. (2016). Taxonomic notes on the genus Piper (Piperaceae). https://doi.org/10.5061/dryad.qp50fSweileh, W. M. (2022). Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Globalization and Health, 18(1), 1–14. https://doi.org/10.1186/S12992-022-00803-X/TABLES/6Tabak, Y. P., Merchant, S., Ye, G., Vankeepuram, L., Gupta, V., Kurtz, S. G., & Puzniak, L. A. (2019). Incremental clinical and economic burden of suspected respiratory infections due to multi-drug-resistant Pseudomonas aeruginosa in the United States. The Journal of Hospital Infection, 103(2), 134–141. https://doi.org/10.1016/J.JHIN.2019.06.005Tan, L. Y., Yin, W. F., & Chan, K. G. (2013). Piper nigrum, Piper betle and Gnetum gnemon- Natural food sources with anti-quorum sensing properties. Sensors (Switzerland), 13(3), 3975–3985. https://doi.org/10.3390/s130303975Tangarife-Castaño, V., Correa-Royero, J. B., Roa-Linares, V. C., Pino-Benitez, N., Betancur-Galvis, L. A., Durán, D. C., Stashenko, E. E., & Mesa-Arango, A. C. (2014). Anti-dermatophyte, anti-Fusarium and cytotoxic activity of essential oils and plant extracts of Piper genus. Journal of Essential Oil Research, 26(3), 221–227. https://doi.org/10.1080/10412905.2014.882279Tapia-Rodriguez, M. R., Hernandez-Mendoza, A., Gonzalez-Aguilar, G. A., Martinez-Tellez, M. A., Martins, C. M., & Ayala-Zavala, J. F. (2017). Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control, 75, 255–261. https://doi.org/10.1016/J.FOODCONT.2016.12.014Tene, V., Malagón, O., Finzi, P. V., Vidari, G., Armijos, C., & Zaragoza, T. (2007). An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. Journal of Ethnopharmacology, 111(1), 63–81. https://doi.org/10.1016/J.JEP.2006.10.032The plant list. (2021). The Plant List. . http://www.theplantlist.org/Thi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 21(22), 8671. https://doi.org/10.3390/ijms21228671Tillotson, G. S., & Zinner, S. H. (2017). Burden of antimicrobial resistance in an era of decreasing susceptibility. Http://Dx.Doi.Org/10.1080/14787210.2017.1337508, 15(7), 663–676. https://doi.org/10.1080/14787210.2017.1337508Torres-Hormaza, T., Baquero, A., Jaramillo, A., & Fajardo-Gutiérrez, F. (2020). Flora de Bogotá: Piperaceae. Revista Del Jardín Botánico de Bogotá José Celestino Mutis, 21(1). www.perezarbelaezia.jbb.gov.coTrivedi, M. N., Khemani, A., Vachhani, U. D., Shah, C. P., & Santani, D. D. (2011). Pharmacognostic, phytochemical analysis and antimicrobial activity of two piper species. Pharmacie Globale, 7(5). https://www.researchgate.net/publication/228486454Trujillo, W., & Vargas, V. (2022). Las especies de Piper: en la vertiente amazónica de los Andes, Caquetá. Guía de campo. (Universidad de la Amazonía, Ed.; 1a ed., Vol. 1).Turkina, M. v., & Vikström, E. (2019). Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of Innate Immunity, 11(3), 263–279. https://doi.org/10.1159/000494069Ugurlu, A., Karahasan Yagci, A., Ulusoy, S., Aksu, B., & Bosgelmez-Tinaz, G. (2016). Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 8(6), 698–701. https://doi.org/10.1016/J.APJTB.2016.06.008Usman, A. B., Abubakar, S., Alaku, C., & Nnadi, O. (2014). Plant: A Necessity of Life. International Letters of Natural Sciences, 20, 151–159. https://doi.org/10.18052/WWW.SCIPRESS.COM/ILNS.20.151Vadakkan, K. (2020). Molecular Mechanism of Bacterial Quorum Sensing and Its Inhibition by Target Specific Approaches. ACS Symposium Series, 1374, 21–234. https://doi.org/10.1021/BK-2020-1374.CH012Vallejo, A., Feitosa, A., Gourlart, A., Pires, L., & Mosquera, O. (2014). Tamizaje de acción antimicrobiana de 34 extractos vegetales contra bacilos gramnegativos. Salud Soc. Uptc, 1, 34–39. https://revistas.uptc.edu.co/index.php/salud_sociedad/article/view/3257/3121van Duijn, P. J., Verbrugghe, W., Jorens, P. G., Spöhr, F., Schedler, D., Deja, M., Rothbart, A., Annane, D., Lawrence, C., Jereb, M., Seme, K., Šifrer, F., Tomič, V., Estevez, F., Carneiro, J., Harbarth, S., & Bonten, M. J. M. (2022). The effects of antibiotic cycling and mixing on acquisition of antibiotic resistant bacteria in the ICU: A post-hoc individual patient analysis of a prospective cluster-randomized crossover study. PLoS ONE, 17(5 May). https://doi.org/10.1371/journal.pone.0265720Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., Jaziri, M. el, & Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76(1), 243–253. https://doi.org/10.1128/AEM.01059-09Vasavi, H. S., Arun, A. B., & Rekha, P. D. (2016). Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. Journal of Microbiology, Immunology and Infection, 49(1), 8–15. https://doi.org/10.1016/j.jmii.2014.03.012Vásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., Crespo-Ortiz, M. del P., Vásquez-Giraldo, D. F., Libreros-Zúñiga, G. A., & Crespo-Ortiz, M. del P. (2017). Effects of biocide exposure on P. Aeruginosa, E. coli and A. Baumannii complex isolates from hospital and household environments. Infectio, 21(4), 243–250. https://doi.org/10.22354/IN.V21I4.687Vázquez-Martínez, J., Buitemea-Cantúa, G. v., Gutierrez-Villagomez, J. M., García-González, J. P., Ramírez-Chávez, E., & Molina-Torres, J. (2020). Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03137Victoria-Munoz, F., Sanchez-Cruz, N., Medina-Franco, J. L., & Lopez-Vallejo, F. (2022). Cheminformatics analysis of molecular datasets of transcription factors associated with quorum sensing in Pseudomonas aeruginosa. RSC Advances, 12(11), 6783–6790. https://doi.org/10.1039/D1RA08352JVijendra Kumar, N., Murthy, P. S., Manjunatha, J. R., & Bettadaiah, B. K. (2014). Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chemistry, 159, 451–457. https://doi.org/10.1016/J.FOODCHEM.2014.03.039Vincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., Moreno, R., Lipman, J., Gomersall, C., Sakr, Y., & Reinhart, K. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323–2329. https://doi.org/10.1001/JAMA.2009.1754Wang, H., Abbas, K., Abbasifard, M., Abbasi, M., Abbastabar, H., Abd, F., Abdelalim, A., Abolhassani, H., Abreu, L., & Abrigo, M. (2020). Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet (London, England), 396(10258), 1160. https://doi.org/10.1016/S0140-6736(20)30977-6Weldon, I., Rogers Van Katwyk, S., Burci, G. L., Giur, D., de Campos, T. C., Eccleston-Turner, M., Fryer, H. R., Giubilini, A., Hale, T., Harrison, M., Johnson, S., Kirchhelle, C., Lee, K., Liddell, K., Mendelson, M., Ooms, G., Orbinski, J., Piddock, L. J. v, Røttingen, J.-A., … Hoffman, S. J. (2022). Governing Global Antimicrobial Resistance: 6 Key Lessons From the Paris Climate Agreement. American Journal of Public Health, 112(4), 553–557. https://doi.org/10.2105/AJPH.2021.306695Wolff, T., Santos, P. F. P., Valente, L. M. M., Magalhães, A., Tinoco, L. W., Pereira, R. C. A., & Guimarães, E. F. (2015). Piperamides from Piper ottonoides by NMR and GC-MS Based Mixture Analysis. Journal of the Brazilian Chemical Society, 26(11), 2321–2330. https://doi.org/10.5935/0103-5053.20150226Zahin, M., Hasan, S., Aqil, F., Sajjad Ahmad Khan, M., Mabood Husain, F., & Ahmad, I. (2010). Screening of certain medicinal plants from India for their anti-quorum sensing activity. En Indian Journal of Experimental Biology (Vol. 48).Zaki, A. A. (2013). Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt. Scientia Pharmaceutica, 81(1), 251–258. https://doi.org/10.3797/scipharm.1204-26Zhao, X., Yu, Z., & Ding, T. (2020). Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, Vol. 8, Page 425, 8(3), 425. https://doi.org/10.3390/MICROORGANISMS8030425Zhong, L., Ravichandran, V., Zhang, N., Wang, H., Bian, X., Zhang, Y., & Li, A. (2020). Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. International Journal of Molecular Sciences 2020, Vol. 21, Page 2190, 21(6), 2190. https://doi.org/10.3390/IJMS21062190Zúñiga Carrasco, I. R., & Caro Lozano, J. (2017). Cultivos ambientales y de superficie: una estrategia de detección oportuna de infecciones nosocomiales. Revista Latinoamericana de Infectología Pediátrica, 30(4), 147–150. www.medigraphic.org.mxFinanciamiento:Ninguno.Conflictodeintereses:Ninguno.Esteartículopuedeserconsultadoenversióncompletaenhttp://www.medigraphic.com/rlipMincienciasEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83870/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022403783.2022.pdf1022403783.2022.pdfTesis de Maestría en Ciencias Farmacéuticasapplication/pdf3595745https://repositorio.unal.edu.co/bitstream/unal/83870/2/1022403783.2022.pdf2f4cdc1fd5d7a048dbc240ff006c42ddMD52THUMBNAIL1022403783.2022.pdf.jpg1022403783.2022.pdf.jpgGenerated Thumbnailimage/jpeg5278https://repositorio.unal.edu.co/bitstream/unal/83870/3/1022403783.2022.pdf.jpg4843b08ddcddc32113cecf3da047d23eMD53unal/83870oai:repositorio.unal.edu.co:unal/838702024-08-06 23:10:39.01Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=