Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro
ilustraciones, diagramas
- Autores:
-
López Benítez, Edwin José
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84201
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
330 - Economía::332 - Economía financiera
Economía industrial
Inteligencia artificial
Engineering economy
Artificial intelligence
Trading algorítmico
Aprendizaje Automáticos
Mercados financieros
Auto machine learning
Algorithmic trading
Machine learning
Financial markets
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_a4dc788f69f7ba94d5daf8e5ab282666 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84201 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
dc.title.translated.eng.fl_str_mv |
Algorithmic trading system using a machine learning model generated by auto machine learning machine learning as a filter rule |
title |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
spellingShingle |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 330 - Economía::332 - Economía financiera Economía industrial Inteligencia artificial Engineering economy Artificial intelligence Trading algorítmico Aprendizaje Automáticos Mercados financieros Auto machine learning Algorithmic trading Machine learning Financial markets |
title_short |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
title_full |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
title_fullStr |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
title_full_unstemmed |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
title_sort |
Sistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtro |
dc.creator.fl_str_mv |
López Benítez, Edwin José |
dc.contributor.advisor.none.fl_str_mv |
Hernandez Perez, German Jairo |
dc.contributor.author.none.fl_str_mv |
López Benítez, Edwin José |
dc.contributor.researchgroup.spa.fl_str_mv |
Algoritmos y Combinatoria (Algos-Un) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 330 - Economía::332 - Economía financiera |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 330 - Economía::332 - Economía financiera Economía industrial Inteligencia artificial Engineering economy Artificial intelligence Trading algorítmico Aprendizaje Automáticos Mercados financieros Auto machine learning Algorithmic trading Machine learning Financial markets |
dc.subject.lemb.spa.fl_str_mv |
Economía industrial Inteligencia artificial |
dc.subject.lemb.eng.fl_str_mv |
Engineering economy Artificial intelligence |
dc.subject.proposal.spa.fl_str_mv |
Trading algorítmico Aprendizaje Automáticos Mercados financieros |
dc.subject.proposal.eng.fl_str_mv |
Auto machine learning Algorithmic trading Machine learning Financial markets |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-18T15:27:04Z |
dc.date.available.none.fl_str_mv |
2023-07-18T15:27:04Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84201 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84201 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014a. “Stock Price Prediction Using the ARIMA Model.” Pp. 106–12 in Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014. Institute of Electrical and Electronics Engineers Inc. Adebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014b. “Stock Price Prediction Using the ARIMA Model.” Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014 106–12. doi: 10.1109/UKSIM.2014.67. Amin Naseri, Mohamad Reza, Farimah Mokhatab Rafiee, and Shadi Khalil Moghadam. 2020. “Modeling Portfolio Optimization Based on Fundamental Analysis Using an Expert System in the Real Estate Industry.” International Journal of Supply and Operations Management 7(1):39–50. doi: 10.22034/IJSOM.2020.1.3. Andrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval. 2016. “High-Frequency Trading Strategy Based on Deep Neural Networks.” Lecture Notes in Computer Science. Angarita-Zapata, Juan S., Antonio D. Masegosa, and Isaac Triguero. 2020. “General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-Sklearn for Traffic Forecasting.” Pp. 728–44 in Communications in Computer and Information Science. Vol. 1238 CCIS. Springer. Anon. n.d. “Sklearn.Preprocessing.MinMaxScaler — Scikit-Learn 1.2.0 Documentation.” Retrieved December 22, 2022 (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html). Arce, Paola, Jonathan Antognini, Werner Kristjanpoller, and Luis Salinas. 2017. “Fast and Adaptive Cointegration Based Model for Forecasting High Frequency Financial Time Series.” Computational Economics 2017 54:1 54(1):99–112. doi: 10.1007/S10614-017-9691-7. Arlt, Josef, and Markéta Arltová. 2001. “Financial Time Series and Their Features.” Acta Oeconomica Pragensia 9(4). Atehortúa Granados, Johm Alexánder. 2012. Mercado de Capitales y Portafolios de Inversión. Vol. 1. Ediciones de la U. edited by L. D. López Escobar. Medellín. Bansal, Alok, Yogeshwari Phatak, and Raj Kishore Sharma. 2015. Quality Management Practices for Global Excellence. Vol. 1. 1st ed. New Delhi: Prestige Institute of Management and Research, Indore. Bendraou, Youssef, Nathan Ramoly, and Baba Seydou Bamba. 2020. “Toward a Generic Automl-Based Assistant for Contracts Negotiation.” Pp. 2877–78 in Frontiers in Artificial Intelligence and Applications. Vol. 325. IOS Press BV. Bis. 2022a. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022. Bis. 2022b. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022. CFI Team. 2022. “Momentum - Overview, How to Calculate, Absolute vs. Relative.” Retrieved January 21, 2023 (https://corporatefinanceinstitute.com/resources/wealth-management/momentum/). Chakraborty, Uday Kumar. 1995. “A Branching Process Model for Genetic Algorithms.” Information Processing Letters 56:281–92. Chande, Tushar S. 1997. Beyond Technical Analysis : How to Develop and Implement a Winning Trading System. Wiley. Coggins, R., B. Flower, D. Dersch, M. A. Jabri, and Bai-Ling Zhang. 2002. “Multiresolution Forecasting for Futures Trading Using Wavelet Decompositions.” IEEE Transactions on Neural Networks 12(4):765–75. doi: 10.1109/72.935090. Conway, Mark R., and Aaron N. Behle. 2002. Professional Stock Trading System Design and Automation. San Diego. Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002a. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017. Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002b. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017. Durán Herrera, Juan José. 2011. Diccionario de Finanzas. edited by L. Perdices de Blas. Madrid: Ecobook - Editorial del Economista. Edwards, Robert D., John Magee, and W. H. C. Bassetti. 2021. Análisis Técnico de Las Tendencias de Los Valores . Vol. 1. 10th ed. Profit Editorial I. Elearnmarkets by StockEdge. 2022. “Best 25 Technical Indicators Every Trader Should Know.” Elearnmarkets . Retrieved December 16, 2022 (https://www.elearnmarkets.com/blog/best-25-technical-indicators/). Evans, Benjamin Patrick. 2019. Population-Based Ensemble Learning with Tree Structures for Classification. Fama, Eugene F. 1970. “Efficient Capital Markets: A Rewiew of Theory and Empirical Work.” The Journal of Finance 25(2):383–417. Fama, Eugene F. 1970. “Session Topic: Stock Market Price Behavior Session Chairman: Burton G. Malkiel Efficient Capital Markets: A Review Of Theory And Empirical Work.” The Journal of Finance 25(2):383–417. doi: 10.1684/bdc.2014.1986. Feurer, Matthias, Aaron Klein, Katharina Eggensperger Jost, Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning. Fikri, Noussair, Khalid Moussaid, Mohamed Rida, Amina el Omri, and Noureddine Abghour. 2022. A Channeled Multilayer Perceptron as Multi-Modal Approach for Two Time-Frames Algo-Trading Strategy. Vol. 13. Fitschen, Keith. 2013. Building Reliable Trading Systems. Wiley. New Jersey: John Wiley & Sons, Inc. Fortin, Félix-Antoine, Ulavalca Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy François-Michel De Rainville. Vol. 13. Friedhoff, Jerry M., and Mo Mansouri. 2017. “A Framework for Assessing Technology Risks in Transaction-Based Extended Enterprises: U.S. Capital Market Case.” IEEE Systems Journal 11(3):1505–15. doi: 10.1109/JSYST.2015.2495282. Gerlein, Eduardo A., Martin McGinnity, Ammar Belatreche, and Sonya Coleman. 2016. “Evaluating Machine Learning Classification for Financial Trading: An Empirical Approach.” Expert Systems with Applications 54:193–207. doi: 10.1016/j.eswa.2016.01.018. Gijsbers, Pieter, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren. 2019. “An Open Source AutoML Benchmark.” H20.ia. 2023. “H2O AutoML.” Retrieved January 8, 2023 (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html). Halls-Moore, Michael L. 2016. Advanced Algorithmic Trading. Vol. 1. QuantStar. Han, Xiao, Alexander Belyakov, Ben Sila, Tao Shu, Yu Wang, and Wei Xiong. 2020. Risks versus Mispricing: Decomposing Asset Pricing Anomalies via Classification *. Heffetz, Yuval, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. “DeepLine: AutoML Tool for Pipelines Generation Using Deep Reinforcement Learning and Hierarchical Actions Filtering.” Pp. 2103–13 in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery. Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2019. “Literature Review: Machine Learning Techniques Applied to Financial Market Prediction.” Expert Systems with Applications 124:226–51. doi: 10.1016/j.eswa.2019.01.012. Holland, John. 1975. “Adaptation in Natural And Artificial Systems.” MIT Press. Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. 2003. “A Practical Guide to Support Vector Classification.” Hsu, Yushan, Ming Fu Hsu, and Sin Jin Lin. 2016. “Corporate Risk Estimation by Combining Machine Learning Technique and Risk Measure.” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc. Huang, Haiying, Wuyi Zhang, Gaochao Deng, and James Chen. 2015. “Predicting Stock Trend Using Fourier Transform and Support Vector Regression.” Proceedings - 17th IEEE International Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium on Pervasive Systems, 213–16. doi: 10.1109/CSE.2014.70. J. Welles Wilder Jr. 1978a. NEW CONCEPTS IN TECHNICAL TRADING SYSTEMS. J. Welles Wilder Jr. 1978b. New Concepts in Technical Trading Systems. Jin, Haifeng, Qingquan Song, and Xia Hu. 2019. “Auto-Keras: An Efficient Neural Architecture Search System.” doi: 10.1145/3292500. Johnson, Barry. 2010. Algorithmic Trading and DMA. 4Myeloma Press. Londres. Kaufman, Perry J. 1995. Smarter Trading Improving Performance in Changing Markets. edited by McGraw-Hill. Laadan, Doron, Roman Vainshtein, Yarden Curiel, Gilad Katz, and Lior Rokach. 2019. “RankML: A Meta Learning-Based Approach for Pre-Ranking Machine Learning Pipelines.” Larraga, Pablo. 2008. Mercado Monetario y Mercado de Renta Fija Conocimiento de Los Dos Grandes Mercados Para Entender Las Valoraciones Del Resto de Mercados Financieros. PROFIT. Leles, Michel Carlo Rodrigues, Leonardo Amaral Mozelli, Elton Felipe Sbruzzi, Cairo Lucio Nascimento Junior, and Homero Nogueira Guimaraes. 2020. “A Multicriteria Trading System Based on Singular Spectrum Analysis Trading Rules.” IEEE Systems Journal 14(1):1468–78. doi: 10.1109/JSYST.2019.2924390. López, José Francisco. 2018. “Sistema de Trading - Qué Es, Definición y Concepto.” Economipedia.Com. Retrieved January 21, 2023 (https://economipedia.com/definiciones/sistema-de-trading.html). Maini, Sahaj Singh, and K. Govinda. 2017. “Stock Market Prediction Using Data Mining Techniques.” Mauricio, José Alberto. 2007. “Series Temporales.” Pp. 1–1 in Introducción al Análisis de Series Temporales . Vol. 1. Madrid : Universidad Complutense de Madrid. MetaQuotes. n.d. “MetaTrader5.” Retrieved January 30, 2023 (https://www.metatrader5.com/es). Microsoft. n.d. “¿Qué Es El Aprendizaje Automático Automatizado (AutoML).” Retrieved January 7, 2023 (https://learn.microsoft.com/es-es/azure/machine-learning/concept-automated-ml#how-does-automl-work). Mohr, Felix, Marcel Wever, and Eyke Hüllermeier. 2018. “ML-Plan: Automated Machine Learning via Hierarchical Planning.” Machine Learning 107(8–10):1495–1515. doi: 10.1007/s10994-018-5735-z. Molina Valdivieso, Ignacio. 2015. “Mercado de Derivados Financieros: Futuros y Opciones.” Universidad Miguel Hernández, España. Morin, Michael, Frederik Paradis, Amelie Rolland, Jean Wery, Jonathan Gaudreault, and Francois Laviolette. 2016. “Machine Learning-Based Metamodels for Sawing Simulation.” Pp. 2160–71 in Proceedings - Winter Simulation Conference. Vols. 2016-February. Institute of Electrical and Electronics Engineers Inc. Ms Management Solutions. 2020. Auto Machine Learning, Hacia La Automatización de Los Modelos. Mustapa, Farah Hayati, and Mohd Tahir Ismail. 2019. “Modelling and Forecasting S&P 500 Stock Prices Using Hybrid Arima-Garch Model.” in Journal of Physics: Conference Series. Vol. 1366. Institute of Physics Publishing. Nuti, Giuseppe, Mahnoosh Mirghaemi, Philip Treleaven, and Chaiyakorn Yingsaeree. 2011. Algorithmic Trading RE SE A RCH FE ATURE. Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016a. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.” Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016b. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.” Park, Cheol-Ho, and Scott H. Irwin. 2004. “The Profitability of Technical Analysis: A Review.” SSRN Electronic Journal. doi: 10.2139/SSRN.603481. Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. “Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques.” Expert Systems with Applications 42(1):259–68. doi: 10.1016/j.eswa.2014.07.040. Pedregosa, Fabian, Vincent Michel, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas, David Cournapeau, Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Bertrand Thirion, Olivier Grisel, Vincent Dubourg, Alexandre Passos, Matthieu Brucher, Matthieu Perrot andÉdouardand, andÉdouard Duchesnay, and Frédouard Duchesnay. 2011. Scikit-Learn: Machine Learning in Python. Vol. 12. Picek, Stjepan, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. 2019. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-Channel Evaluations.” IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1):209–37. doi: 10.13154/tches.v2019.i1.209-237. Pring, Martin J. 2002. “Technical Analysis Explained : The Successful Investor’s Guide to Spotting Investment Trends and Turning Points.” 641. Sandoval Archila, Javier H. 2016. High Frequency Exchange Rate Prediction Using Dynamic Bayesian Networks Over The Limit Order Book Information. Sharma, Ashish, Dinesh Bhuriya, and Upendra Singh. 2017. “Survey of Stock Market Prediction Using Machine Learning Approach.” Proceedings of the International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017 2017-Janua:506–9. doi: 10.1109/ICECA.2017.8212715. Slapák, Martin, and Roman Neruda. 2017. Matching Subtrees in Genetic ProgrammingCrossover Operator. Tellechea, Manuel, and Alexander Ramírez M. 2017. “Retorno de Un Activo Financiero.” Synergy Vision. Retrieved January 21, 2023 (https://synergy.vision/corpus/inversion/2017-08-06-retornos.html). Tharp, Van K. 2006. Tener Éxito En Trading. Vol. 1. Tharp, Van K. 2013. Van Tharp on Systems & Trading Fundamentals. Thornto, Chris, Frank Hutte, Hoos Holger H., and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined Selection and HyperparameterOptimization of Classification Algorithms. Tomasini, Emilio., and Urban. Jaekle. 2009. Trading Systems : A New Approach to System Development and Portfolio Optimisation. Harriman House. Wang, John, and Grace Wang. 2010. AbleTrend. Identifying and Analyzing Market Trends for Trading Success. Canada: John Wiley & Sons, Inc. Wang, Zhaoxia, Seng Beng Ho, and Zhiping Lin. 2019. “Stock Market Prediction Analysis by Incorporating Social and News Opinion and Sentiment.” IEEE International Conference on Data Mining Workshops, ICDMW 2018-Novem:1375–80. doi: 10.1109/ICDMW.2018.00195. Williams, Bill M. 1998. New Trading Dimensions: How to Profit from Chaos in Stocks, Bonds, and Commodities. John Wiley & Sons. Williams, Larry. 1985. “The Ultimate Oscillator.” Stocks & Commodities 3(4):140–41. Williams, Larry R. 1973. Larry R. Williams - How I Made One Million Dollars ... Last Year ... Trading Commodities. Xiong, Li, and Yue Lu. 2017. “Hybrid ARIMA-BPNN Model for Time Series Prediction of the Chinese Stock Market.” 2017 3rd International Conference on Information Management, ICIM 2017 93–97. doi: 10.1109/INFOMAN.2017.7950353. Zöller, Marc-André, and Marco F. Huber. 2019. “Benchmark and Survey of Automated Machine Learning Frameworks.” |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
94 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84201/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84201/2/1032417503.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84201/3/1032417503.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 151909fb247b8808be081a52248758db 951db3e61f1f7e3e113cf5596c543b3b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089627532787712 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez Perez, German Jairo657ce2285e24c2147940ed57ee42ed6dLópez Benítez, Edwin José506955981e0babdc595e18f686e5cb80Algoritmos y Combinatoria (Algos-Un)2023-07-18T15:27:04Z2023-07-18T15:27:04Z2023https://repositorio.unal.edu.co/handle/unal/84201Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn el presente trabajo se mejora el rendimiento de un sistema o estrategia de trading algorítmico, basado en indicadores técnicos, mediante la incorporación de un modelo de clasificación que permite discriminar operaciones potenciales de la estrategia entre ganadoras y perdedoras. Las características utilizadas como entrada del modelo de machine learning son generadas a partir de indicadores técnicos en el instante que se abre una operación, obtenidas mediante una simulación de mercado con datos de en formato Open, High, Low, Close en la divisa del eurodólar. Para el proceso de búsqueda del modelo clasificación adecuado, se plantean dos mecanismos basados en automachine learning y algoritmos evolutivos, utilizando la librería Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science (TPOT) y una propuesta basada en el Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) y TPOT, donde se orienta la búsqueda multiobjetivo con la métrica del accuracy y el System Quality Number (SQN) una métrica para evaluar sistemas de trading. En los experimentos realizados, los modelos de clasificación elegidos por NSGA-II mejoraron significativamente el rendimiento de la estrategia de trading, con un 32.5% de los modelos fuera de muestra que mostraron rendimientos positivos y un comportamiento similar dentro y fuera de muestra. Mientras que con TPOT, los clasificadores encontrados tendieron a tener buen rendimiento dentro de muestra, pero no consistente fuera de muestra. La estrategia final elegida por NSGA-II tuvo un 60-61% de operaciones rentables tanto dentro como fuera de muestra, mientras TPOT tuvo un 98% y un 62% respectivamente. (Texto tomado de la fuente)This paper improves the performance of an algorithmic trading system or strategy, based on technical indicators, by incorporating a classification model that allows discriminating potential trades of the strategy between winners and losers. The characteristics used as input of the machine learning model are generated from technical indicators at the moment a trade is opened, obtained through a market simulation with data in Open, High, Low, Close format in the Eurodollar currency. For the search process of the appropriate classification model, two mechanisms based on automachine learning and evolutionary algorithms are proposed, using the Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science (TPOT) library and a proposal based on the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and TPOT, where the multi-objective search is oriented with the accuracy metric and the System Quality Number (SQN), a metric to evaluate trading systems. In the experiments conducted, the classification models chosen by NSGA-II significantly improved the performance of the trading strategy, with 32.5% of the out-of-sample models showing positive returns and similar in-sample and out-of-sample behavior. Whereas with TPOT, the classifiers found tended to perform well in-sample, but not consistently out-of-sample. The final strategy chosen by NSGA-II had 60-61% profitable trades both in-sample and out-of-sample, while TPOT had 98% and 62% respectively.MaestríaMagíster en Ingeniería - Ingeniería IndustrialIngeniería Económica94 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería IndustrialFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores330 - Economía::332 - Economía financieraEconomía industrialInteligencia artificialEngineering economyArtificial intelligenceTrading algorítmicoAprendizaje AutomáticosMercados financierosAuto machine learningAlgorithmic tradingMachine learningFinancial marketsSistema de trading algorítmico utilizando un modelo de machine learning generado por auto machine learning como regla de filtroAlgorithmic trading system using a machine learning model generated by auto machine learning machine learning as a filter ruleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014a. “Stock Price Prediction Using the ARIMA Model.” Pp. 106–12 in Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014. Institute of Electrical and Electronics Engineers Inc.Adebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014b. “Stock Price Prediction Using the ARIMA Model.” Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014 106–12. doi: 10.1109/UKSIM.2014.67.Amin Naseri, Mohamad Reza, Farimah Mokhatab Rafiee, and Shadi Khalil Moghadam. 2020. “Modeling Portfolio Optimization Based on Fundamental Analysis Using an Expert System in the Real Estate Industry.” International Journal of Supply and Operations Management 7(1):39–50. doi: 10.22034/IJSOM.2020.1.3.Andrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval. 2016. “High-Frequency Trading Strategy Based on Deep Neural Networks.” Lecture Notes in Computer Science.Angarita-Zapata, Juan S., Antonio D. Masegosa, and Isaac Triguero. 2020. “General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-Sklearn for Traffic Forecasting.” Pp. 728–44 in Communications in Computer and Information Science. Vol. 1238 CCIS. Springer.Anon. n.d. “Sklearn.Preprocessing.MinMaxScaler — Scikit-Learn 1.2.0 Documentation.” Retrieved December 22, 2022 (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html).Arce, Paola, Jonathan Antognini, Werner Kristjanpoller, and Luis Salinas. 2017. “Fast and Adaptive Cointegration Based Model for Forecasting High Frequency Financial Time Series.” Computational Economics 2017 54:1 54(1):99–112. doi: 10.1007/S10614-017-9691-7.Arlt, Josef, and Markéta Arltová. 2001. “Financial Time Series and Their Features.” Acta Oeconomica Pragensia 9(4).Atehortúa Granados, Johm Alexánder. 2012. Mercado de Capitales y Portafolios de Inversión. Vol. 1. Ediciones de la U. edited by L. D. López Escobar. Medellín.Bansal, Alok, Yogeshwari Phatak, and Raj Kishore Sharma. 2015. Quality Management Practices for Global Excellence. Vol. 1. 1st ed. New Delhi: Prestige Institute of Management and Research, Indore.Bendraou, Youssef, Nathan Ramoly, and Baba Seydou Bamba. 2020. “Toward a Generic Automl-Based Assistant for Contracts Negotiation.” Pp. 2877–78 in Frontiers in Artificial Intelligence and Applications. Vol. 325. IOS Press BV.Bis. 2022a. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.Bis. 2022b. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.CFI Team. 2022. “Momentum - Overview, How to Calculate, Absolute vs. Relative.” Retrieved January 21, 2023 (https://corporatefinanceinstitute.com/resources/wealth-management/momentum/).Chakraborty, Uday Kumar. 1995. “A Branching Process Model for Genetic Algorithms.” Information Processing Letters 56:281–92.Chande, Tushar S. 1997. Beyond Technical Analysis : How to Develop and Implement a Winning Trading System. Wiley.Coggins, R., B. Flower, D. Dersch, M. A. Jabri, and Bai-Ling Zhang. 2002. “Multiresolution Forecasting for Futures Trading Using Wavelet Decompositions.” IEEE Transactions on Neural Networks 12(4):765–75. doi: 10.1109/72.935090.Conway, Mark R., and Aaron N. Behle. 2002. Professional Stock Trading System Design and Automation. San Diego.Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002a. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017.Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002b. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi: 10.1109/4235.996017.Durán Herrera, Juan José. 2011. Diccionario de Finanzas. edited by L. Perdices de Blas. Madrid: Ecobook - Editorial del Economista.Edwards, Robert D., John Magee, and W. H. C. Bassetti. 2021. Análisis Técnico de Las Tendencias de Los Valores . Vol. 1. 10th ed. Profit Editorial I.Elearnmarkets by StockEdge. 2022. “Best 25 Technical Indicators Every Trader Should Know.” Elearnmarkets . Retrieved December 16, 2022 (https://www.elearnmarkets.com/blog/best-25-technical-indicators/).Evans, Benjamin Patrick. 2019. Population-Based Ensemble Learning with Tree Structures for Classification.Fama, Eugene F. 1970. “Efficient Capital Markets: A Rewiew of Theory and Empirical Work.” The Journal of Finance 25(2):383–417.Fama, Eugene F. 1970. “Session Topic: Stock Market Price Behavior Session Chairman: Burton G. Malkiel Efficient Capital Markets: A Review Of Theory And Empirical Work.” The Journal of Finance 25(2):383–417. doi: 10.1684/bdc.2014.1986.Feurer, Matthias, Aaron Klein, Katharina Eggensperger Jost, Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.Fikri, Noussair, Khalid Moussaid, Mohamed Rida, Amina el Omri, and Noureddine Abghour. 2022. A Channeled Multilayer Perceptron as Multi-Modal Approach for Two Time-Frames Algo-Trading Strategy. Vol. 13.Fitschen, Keith. 2013. Building Reliable Trading Systems. Wiley. New Jersey: John Wiley & Sons, Inc.Fortin, Félix-Antoine, Ulavalca Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy François-Michel De Rainville. Vol. 13.Friedhoff, Jerry M., and Mo Mansouri. 2017. “A Framework for Assessing Technology Risks in Transaction-Based Extended Enterprises: U.S. Capital Market Case.” IEEE Systems Journal 11(3):1505–15. doi: 10.1109/JSYST.2015.2495282.Gerlein, Eduardo A., Martin McGinnity, Ammar Belatreche, and Sonya Coleman. 2016. “Evaluating Machine Learning Classification for Financial Trading: An Empirical Approach.” Expert Systems with Applications 54:193–207. doi: 10.1016/j.eswa.2016.01.018.Gijsbers, Pieter, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren. 2019. “An Open Source AutoML Benchmark.”H20.ia. 2023. “H2O AutoML.” Retrieved January 8, 2023 (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html).Halls-Moore, Michael L. 2016. Advanced Algorithmic Trading. Vol. 1. QuantStar.Han, Xiao, Alexander Belyakov, Ben Sila, Tao Shu, Yu Wang, and Wei Xiong. 2020. Risks versus Mispricing: Decomposing Asset Pricing Anomalies via Classification *.Heffetz, Yuval, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. “DeepLine: AutoML Tool for Pipelines Generation Using Deep Reinforcement Learning and Hierarchical Actions Filtering.” Pp. 2103–13 in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery.Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2019. “Literature Review: Machine Learning Techniques Applied to Financial Market Prediction.” Expert Systems with Applications 124:226–51. doi: 10.1016/j.eswa.2019.01.012.Holland, John. 1975. “Adaptation in Natural And Artificial Systems.” MIT Press.Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. 2003. “A Practical Guide to Support Vector Classification.”Hsu, Yushan, Ming Fu Hsu, and Sin Jin Lin. 2016. “Corporate Risk Estimation by Combining Machine Learning Technique and Risk Measure.” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc.Huang, Haiying, Wuyi Zhang, Gaochao Deng, and James Chen. 2015. “Predicting Stock Trend Using Fourier Transform and Support Vector Regression.” Proceedings - 17th IEEE International Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium on Pervasive Systems, 213–16. doi: 10.1109/CSE.2014.70.J. Welles Wilder Jr. 1978a. NEW CONCEPTS IN TECHNICAL TRADING SYSTEMS.J. Welles Wilder Jr. 1978b. New Concepts in Technical Trading Systems.Jin, Haifeng, Qingquan Song, and Xia Hu. 2019. “Auto-Keras: An Efficient Neural Architecture Search System.” doi: 10.1145/3292500.Johnson, Barry. 2010. Algorithmic Trading and DMA. 4Myeloma Press. Londres.Kaufman, Perry J. 1995. Smarter Trading Improving Performance in Changing Markets. edited by McGraw-Hill.Laadan, Doron, Roman Vainshtein, Yarden Curiel, Gilad Katz, and Lior Rokach. 2019. “RankML: A Meta Learning-Based Approach for Pre-Ranking Machine Learning Pipelines.”Larraga, Pablo. 2008. Mercado Monetario y Mercado de Renta Fija Conocimiento de Los Dos Grandes Mercados Para Entender Las Valoraciones Del Resto de Mercados Financieros. PROFIT.Leles, Michel Carlo Rodrigues, Leonardo Amaral Mozelli, Elton Felipe Sbruzzi, Cairo Lucio Nascimento Junior, and Homero Nogueira Guimaraes. 2020. “A Multicriteria Trading System Based on Singular Spectrum Analysis Trading Rules.” IEEE Systems Journal 14(1):1468–78. doi: 10.1109/JSYST.2019.2924390.López, José Francisco. 2018. “Sistema de Trading - Qué Es, Definición y Concepto.” Economipedia.Com. Retrieved January 21, 2023 (https://economipedia.com/definiciones/sistema-de-trading.html).Maini, Sahaj Singh, and K. Govinda. 2017. “Stock Market Prediction Using Data Mining Techniques.”Mauricio, José Alberto. 2007. “Series Temporales.” Pp. 1–1 in Introducción al Análisis de Series Temporales . Vol. 1. Madrid : Universidad Complutense de Madrid.MetaQuotes. n.d. “MetaTrader5.” Retrieved January 30, 2023 (https://www.metatrader5.com/es).Microsoft. n.d. “¿Qué Es El Aprendizaje Automático Automatizado (AutoML).” Retrieved January 7, 2023 (https://learn.microsoft.com/es-es/azure/machine-learning/concept-automated-ml#how-does-automl-work).Mohr, Felix, Marcel Wever, and Eyke Hüllermeier. 2018. “ML-Plan: Automated Machine Learning via Hierarchical Planning.” Machine Learning 107(8–10):1495–1515. doi: 10.1007/s10994-018-5735-z.Molina Valdivieso, Ignacio. 2015. “Mercado de Derivados Financieros: Futuros y Opciones.” Universidad Miguel Hernández, España.Morin, Michael, Frederik Paradis, Amelie Rolland, Jean Wery, Jonathan Gaudreault, and Francois Laviolette. 2016. “Machine Learning-Based Metamodels for Sawing Simulation.” Pp. 2160–71 in Proceedings - Winter Simulation Conference. Vols. 2016-February. Institute of Electrical and Electronics Engineers Inc.Ms Management Solutions. 2020. Auto Machine Learning, Hacia La Automatización de Los Modelos.Mustapa, Farah Hayati, and Mohd Tahir Ismail. 2019. “Modelling and Forecasting S&P 500 Stock Prices Using Hybrid Arima-Garch Model.” in Journal of Physics: Conference Series. Vol. 1366. Institute of Physics Publishing.Nuti, Giuseppe, Mahnoosh Mirghaemi, Philip Treleaven, and Chaiyakorn Yingsaeree. 2011. Algorithmic Trading RE SE A RCH FE ATURE.Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016a. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016b. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”Park, Cheol-Ho, and Scott H. Irwin. 2004. “The Profitability of Technical Analysis: A Review.” SSRN Electronic Journal. doi: 10.2139/SSRN.603481.Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. “Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques.” Expert Systems with Applications 42(1):259–68. doi: 10.1016/j.eswa.2014.07.040.Pedregosa, Fabian, Vincent Michel, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas, David Cournapeau, Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Bertrand Thirion, Olivier Grisel, Vincent Dubourg, Alexandre Passos, Matthieu Brucher, Matthieu Perrot andÉdouardand, andÉdouard Duchesnay, and Frédouard Duchesnay. 2011. Scikit-Learn: Machine Learning in Python. Vol. 12.Picek, Stjepan, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. 2019. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-Channel Evaluations.” IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1):209–37. doi: 10.13154/tches.v2019.i1.209-237.Pring, Martin J. 2002. “Technical Analysis Explained : The Successful Investor’s Guide to Spotting Investment Trends and Turning Points.” 641.Sandoval Archila, Javier H. 2016. High Frequency Exchange Rate Prediction Using Dynamic Bayesian Networks Over The Limit Order Book Information.Sharma, Ashish, Dinesh Bhuriya, and Upendra Singh. 2017. “Survey of Stock Market Prediction Using Machine Learning Approach.” Proceedings of the International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017 2017-Janua:506–9. doi: 10.1109/ICECA.2017.8212715.Slapák, Martin, and Roman Neruda. 2017. Matching Subtrees in Genetic ProgrammingCrossover Operator.Tellechea, Manuel, and Alexander Ramírez M. 2017. “Retorno de Un Activo Financiero.” Synergy Vision. Retrieved January 21, 2023 (https://synergy.vision/corpus/inversion/2017-08-06-retornos.html).Tharp, Van K. 2006. Tener Éxito En Trading. Vol. 1.Tharp, Van K. 2013. Van Tharp on Systems & Trading Fundamentals.Thornto, Chris, Frank Hutte, Hoos Holger H., and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined Selection and HyperparameterOptimization of Classification Algorithms.Tomasini, Emilio., and Urban. Jaekle. 2009. Trading Systems : A New Approach to System Development and Portfolio Optimisation. Harriman House.Wang, John, and Grace Wang. 2010. AbleTrend. Identifying and Analyzing Market Trends for Trading Success. Canada: John Wiley & Sons, Inc.Wang, Zhaoxia, Seng Beng Ho, and Zhiping Lin. 2019. “Stock Market Prediction Analysis by Incorporating Social and News Opinion and Sentiment.” IEEE International Conference on Data Mining Workshops, ICDMW 2018-Novem:1375–80. doi: 10.1109/ICDMW.2018.00195.Williams, Bill M. 1998. New Trading Dimensions: How to Profit from Chaos in Stocks, Bonds, and Commodities. John Wiley & Sons.Williams, Larry. 1985. “The Ultimate Oscillator.” Stocks & Commodities 3(4):140–41.Williams, Larry R. 1973. Larry R. Williams - How I Made One Million Dollars ... Last Year ... Trading Commodities.Xiong, Li, and Yue Lu. 2017. “Hybrid ARIMA-BPNN Model for Time Series Prediction of the Chinese Stock Market.” 2017 3rd International Conference on Information Management, ICIM 2017 93–97. doi: 10.1109/INFOMAN.2017.7950353.Zöller, Marc-André, and Marco F. Huber. 2019. “Benchmark and Survey of Automated Machine Learning Frameworks.”LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84201/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032417503.2023.pdf1032417503.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Industrialapplication/pdf2665022https://repositorio.unal.edu.co/bitstream/unal/84201/2/1032417503.2023.pdf151909fb247b8808be081a52248758dbMD52THUMBNAIL1032417503.2023.pdf.jpg1032417503.2023.pdf.jpgGenerated Thumbnailimage/jpeg4972https://repositorio.unal.edu.co/bitstream/unal/84201/3/1032417503.2023.pdf.jpg951db3e61f1f7e3e113cf5596c543b3bMD53unal/84201oai:repositorio.unal.edu.co:unal/842012023-08-12 23:04:04.084Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |