Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials

In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating mo...

Full description

Autores:
Castañeda, Javier
Aerts, Marc
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66547
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66547
http://bdigital.unal.edu.co/67575/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a48fa5e0cd9a98269abc3f794c747dec
oai_identifier_str oai:repositorio.unal.edu.co:unal/66547
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
title Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
spellingShingle Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
title_short Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
title_full Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
title_fullStr Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
title_full_unstemmed Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
title_sort Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
dc.creator.fl_str_mv Castañeda, Javier
Aerts, Marc
dc.contributor.author.spa.fl_str_mv Castañeda, Javier
Aerts, Marc
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
topic 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
dc.subject.proposal.spa.fl_str_mv Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
description In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating model, leading to over-confident inferences. In this paper we present a methodology to account for model selection uncertainty in the estimation of age-dependent prevalence and force of infection, using model averaging of fractional polynomials. We illustrate the method on a seroprevalence crosssectional sample of hepatitis A, taken in 1993 in Belgium. In a simulation study we show that model averaged prevalence and force of infection using fractional polynomials have desirable features such as smaller mean squared error and more robust estimates as compared with the general practice of estimation based only on one selected “best” model.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:20:50Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:20:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2389-8976
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66547
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67575/
identifier_str_mv ISSN: 2389-8976
url https://repositorio.unal.edu.co/handle/unal/66547
http://bdigital.unal.edu.co/67575/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/estad/article/view/48808
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.references.spa.fl_str_mv Castañeda, Javier and Aerts, Marc (2015) Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials. Revista Colombiana de Estadística, 38 (1). pp. 163-179. ISSN 2389-8976
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66547/1/48808-239248-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66547/2/48808-239248-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv e07416c182b2ffb038e3a6c5cd428db3
d87b763c5231baa2d0e3c57106c812b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090240417071104
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castañeda, Javier23b3c2a9-5535-47cb-89b7-c0e9122f3d7c300Aerts, Marc0ebfae69-ca72-4a78-8fae-eca8970bba013002019-07-03T02:20:50Z2019-07-03T02:20:50Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66547http://bdigital.unal.edu.co/67575/In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating model, leading to over-confident inferences. In this paper we present a methodology to account for model selection uncertainty in the estimation of age-dependent prevalence and force of infection, using model averaging of fractional polynomials. We illustrate the method on a seroprevalence crosssectional sample of hepatitis A, taken in 1993 in Belgium. In a simulation study we show that model averaged prevalence and force of infection using fractional polynomials have desirable features such as smaller mean squared error and more robust estimates as compared with the general practice of estimation based only on one selected “best” model.En la mayoría de aplicaciones en estadística se desconoce el verdadero modelo que determina el mecanismo de generación de los datos, y los investigadores deben confrontarse con la incertidumbre en la selección del modelo. En muchas ocasiones esta incertidumbre es ignorada cuando solo se usa el modelo que mejor ajusta los datos observados, lo cual conlleva a estimaciones con nivel de confianza menor a los deseados. Las enfermedades infecciosas pueden ser estudiadas por medio de parámetros tales como la prevalencia dependiente de la edad y la fuerza de infección. En este trabajo nosotros estimamos estos dos parámetros mediante polinomios fraccionarios y proponemos el uso de promedio de modelos para incluir la variabilidad debida a la incertidumbre en la selección del modelo. Nosotros ilustramos esta metodología usando una muestra de seroprevalencia de hepatitis A en Bélgica en 1993. Por medio de simulaciones mostramos que la metodología propuesta en este artículo tiene atractivas propiedades tales como menor erro cuadrado medio y estimaciones más robustas comparado con la frecuente práctica de estimación basada en un único modelo.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48808Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaCastañeda, Javier and Aerts, Marc (2015) Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials. Revista Colombiana de Estadística, 38 (1). pp. 163-179. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsBiasMean Squared ErrorMultimodel EstimationSeroprevalenceError cuadrado medioEstimación multi-modeloSeroprevalenciaSesgoAccounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional PolynomialsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48808-239248-1-PB.pdfapplication/pdf653272https://repositorio.unal.edu.co/bitstream/unal/66547/1/48808-239248-1-PB.pdfe07416c182b2ffb038e3a6c5cd428db3MD51THUMBNAIL48808-239248-1-PB.pdf.jpg48808-239248-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5578https://repositorio.unal.edu.co/bitstream/unal/66547/2/48808-239248-1-PB.pdf.jpgd87b763c5231baa2d0e3c57106c812b3MD52unal/66547oai:repositorio.unal.edu.co:unal/665472024-05-16 23:09:44.438Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co