Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials
In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating mo...
- Autores:
-
Castañeda, Javier
Aerts, Marc
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66547
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66547
http://bdigital.unal.edu.co/67575/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_a48fa5e0cd9a98269abc3f794c747dec |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66547 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
title |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
spellingShingle |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Bias Mean Squared Error Multimodel Estimation Seroprevalence Error cuadrado medio Estimación multi-modelo Seroprevalencia Sesgo |
title_short |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
title_full |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
title_fullStr |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
title_full_unstemmed |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
title_sort |
Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials |
dc.creator.fl_str_mv |
Castañeda, Javier Aerts, Marc |
dc.contributor.author.spa.fl_str_mv |
Castañeda, Javier Aerts, Marc |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Bias Mean Squared Error Multimodel Estimation Seroprevalence Error cuadrado medio Estimación multi-modelo Seroprevalencia Sesgo |
dc.subject.proposal.spa.fl_str_mv |
Bias Mean Squared Error Multimodel Estimation Seroprevalence Error cuadrado medio Estimación multi-modelo Seroprevalencia Sesgo |
description |
In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating model, leading to over-confident inferences. In this paper we present a methodology to account for model selection uncertainty in the estimation of age-dependent prevalence and force of infection, using model averaging of fractional polynomials. We illustrate the method on a seroprevalence crosssectional sample of hepatitis A, taken in 1993 in Belgium. In a simulation study we show that model averaged prevalence and force of infection using fractional polynomials have desirable features such as smaller mean squared error and more robust estimates as compared with the general practice of estimation based only on one selected “best” model. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:20:50Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:20:50Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66547 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67575/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66547 http://bdigital.unal.edu.co/67575/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/48808 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Castañeda, Javier and Aerts, Marc (2015) Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials. Revista Colombiana de Estadística, 38 (1). pp. 163-179. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66547/1/48808-239248-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66547/2/48808-239248-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
e07416c182b2ffb038e3a6c5cd428db3 d87b763c5231baa2d0e3c57106c812b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090240417071104 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castañeda, Javier23b3c2a9-5535-47cb-89b7-c0e9122f3d7c300Aerts, Marc0ebfae69-ca72-4a78-8fae-eca8970bba013002019-07-03T02:20:50Z2019-07-03T02:20:50Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66547http://bdigital.unal.edu.co/67575/In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating model, leading to over-confident inferences. In this paper we present a methodology to account for model selection uncertainty in the estimation of age-dependent prevalence and force of infection, using model averaging of fractional polynomials. We illustrate the method on a seroprevalence crosssectional sample of hepatitis A, taken in 1993 in Belgium. In a simulation study we show that model averaged prevalence and force of infection using fractional polynomials have desirable features such as smaller mean squared error and more robust estimates as compared with the general practice of estimation based only on one selected “best” model.En la mayoría de aplicaciones en estadística se desconoce el verdadero modelo que determina el mecanismo de generación de los datos, y los investigadores deben confrontarse con la incertidumbre en la selección del modelo. En muchas ocasiones esta incertidumbre es ignorada cuando solo se usa el modelo que mejor ajusta los datos observados, lo cual conlleva a estimaciones con nivel de confianza menor a los deseados. Las enfermedades infecciosas pueden ser estudiadas por medio de parámetros tales como la prevalencia dependiente de la edad y la fuerza de infección. En este trabajo nosotros estimamos estos dos parámetros mediante polinomios fraccionarios y proponemos el uso de promedio de modelos para incluir la variabilidad debida a la incertidumbre en la selección del modelo. Nosotros ilustramos esta metodología usando una muestra de seroprevalencia de hepatitis A en Bélgica en 1993. Por medio de simulaciones mostramos que la metodología propuesta en este artículo tiene atractivas propiedades tales como menor erro cuadrado medio y estimaciones más robustas comparado con la frecuente práctica de estimación basada en un único modelo.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48808Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaCastañeda, Javier and Aerts, Marc (2015) Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials. Revista Colombiana de Estadística, 38 (1). pp. 163-179. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsBiasMean Squared ErrorMultimodel EstimationSeroprevalenceError cuadrado medioEstimación multi-modeloSeroprevalenciaSesgoAccounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional PolynomialsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48808-239248-1-PB.pdfapplication/pdf653272https://repositorio.unal.edu.co/bitstream/unal/66547/1/48808-239248-1-PB.pdfe07416c182b2ffb038e3a6c5cd428db3MD51THUMBNAIL48808-239248-1-PB.pdf.jpg48808-239248-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5578https://repositorio.unal.edu.co/bitstream/unal/66547/2/48808-239248-1-PB.pdf.jpgd87b763c5231baa2d0e3c57106c812b3MD52unal/66547oai:repositorio.unal.edu.co:unal/665472024-05-16 23:09:44.438Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |