Accounting for Model Selection Uncertainty: Model Averaging of Prevalence and Force of Infection Using Fractional Polynomials

In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating mo...

Full description

Autores:
Castañeda, Javier
Aerts, Marc
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66547
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66547
http://bdigital.unal.edu.co/67575/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bias
Mean Squared Error
Multimodel Estimation
Seroprevalence
Error cuadrado medio
Estimación multi-modelo
Seroprevalencia
Sesgo
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In most applications in statistics the true model underlying data generation mechanisms is unknown and researchers are confronted with the critical issue of model selection uncertainty. Often this uncertainty is ignored and the model with the best goodness-of-fit is assumed as the data generating model, leading to over-confident inferences. In this paper we present a methodology to account for model selection uncertainty in the estimation of age-dependent prevalence and force of infection, using model averaging of fractional polynomials. We illustrate the method on a seroprevalence crosssectional sample of hepatitis A, taken in 1993 in Belgium. In a simulation study we show that model averaged prevalence and force of infection using fractional polynomials have desirable features such as smaller mean squared error and more robust estimates as compared with the general practice of estimation based only on one selected “best” model.