On the use of random sets in geotechnical engineering

ilustraciones, gráficas, tablas

Autores:
Sepúlveda García, Juan José
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80527
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80527
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Geotecnia
Engineering geology
Uncertainty
Reliability analysis
Monte Carlo simulation
Subset Simulation
Copulas
Random Sets theory
Imprecise probabilities
Lower and upper probabilities of failure
Incertidumbre
Análisis de confiabilidad
Simulación de Subconjuntos
Copulas
Teoría de conjuntos aleatorios
Probabilidades imprecisas
Probabilidades de falla superior e inferior
Simulación Monte Carlo
Análisis numérico
Numerical analysis
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a47a4c23d3e041ce17a1a83aa65e1e9a
oai_identifier_str oai:repositorio.unal.edu.co:unal/80527
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv On the use of random sets in geotechnical engineering
dc.title.translated.spa.fl_str_mv Sobre el uso de los conjuntos aleatorios en la ingeniería geotécnica
title On the use of random sets in geotechnical engineering
spellingShingle On the use of random sets in geotechnical engineering
620 - Ingeniería y operaciones afines
Geotecnia
Engineering geology
Uncertainty
Reliability analysis
Monte Carlo simulation
Subset Simulation
Copulas
Random Sets theory
Imprecise probabilities
Lower and upper probabilities of failure
Incertidumbre
Análisis de confiabilidad
Simulación de Subconjuntos
Copulas
Teoría de conjuntos aleatorios
Probabilidades imprecisas
Probabilidades de falla superior e inferior
Simulación Monte Carlo
Análisis numérico
Numerical analysis
title_short On the use of random sets in geotechnical engineering
title_full On the use of random sets in geotechnical engineering
title_fullStr On the use of random sets in geotechnical engineering
title_full_unstemmed On the use of random sets in geotechnical engineering
title_sort On the use of random sets in geotechnical engineering
dc.creator.fl_str_mv Sepúlveda García, Juan José
dc.contributor.advisor.none.fl_str_mv Álvarez Marín, Diego Andrés
dc.contributor.author.none.fl_str_mv Sepúlveda García, Juan José
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería Sísmica y Sismología
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Geotecnia
Engineering geology
Uncertainty
Reliability analysis
Monte Carlo simulation
Subset Simulation
Copulas
Random Sets theory
Imprecise probabilities
Lower and upper probabilities of failure
Incertidumbre
Análisis de confiabilidad
Simulación de Subconjuntos
Copulas
Teoría de conjuntos aleatorios
Probabilidades imprecisas
Probabilidades de falla superior e inferior
Simulación Monte Carlo
Análisis numérico
Numerical analysis
dc.subject.other.spa.fl_str_mv Geotecnia
dc.subject.other.eng.fl_str_mv Engineering geology
dc.subject.proposal.eng.fl_str_mv Uncertainty
Reliability analysis
Monte Carlo simulation
Subset Simulation
Copulas
Random Sets theory
Imprecise probabilities
Lower and upper probabilities of failure
dc.subject.proposal.spa.fl_str_mv Incertidumbre
Análisis de confiabilidad
Simulación de Subconjuntos
Copulas
Teoría de conjuntos aleatorios
Probabilidades imprecisas
Probabilidades de falla superior e inferior
Simulación Monte Carlo
dc.subject.spines.spa.fl_str_mv Análisis numérico
dc.subject.spines.eng.fl_str_mv Numerical analysis
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T22:28:03Z
dc.date.available.none.fl_str_mv 2021-10-12T22:28:03Z
dc.date.issued.none.fl_str_mv 2021-10
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80527
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80527
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence.Insurance: Mathematics and Economics, 44(2):182–198.
Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on Automatic Control, 19(6):716–723.
Alonso, E. E. (1976). Risk analysis of slopes and its application to slopes in canadian sensitive clays. Geotechnique, 26(3):453–472.
Alvarez, D. A. (2006). On the calculation of the bounds of probability of events using infinite random sets.International Journal of Approximate Reasoning, 43(3):241–267.
Alvarez, D. A. (2007).Infinite random sets and applications in uncertainty analysis. PhD thesis,Leopold-Franzens Universit at Innsbruck, Innsbruck, Austria.
Alvarez, D. A. (2009). A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type.Fuzzy Sets and Systems, 160(3):384–401.
Alvarez, D. A. and Hurtado, J. E. (2014). An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs. Computers & Structures, 142:54–63.
Alvarez, D. A., Hurtado, J. E., and Ramírez, J. (2017). Tighter bounds on the probability of failure than those provided by random set theory. Computers & Structures, 189:101–113.
Alvarez, D. A., Uribe, F., and Hurtado, J. E. (2018). Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mechanical Systems and Signal Processing, 100:782–801.
Ameratunga, J., Sivakugan, N., and Das, B. M. (2016).Correlations of soil and rock properties in geotechnical engineering. Springer.
Ang, A. H.-S. and Tang, W. H. (1984). Probability concepts in engineering planning and design, vol. 2: Decision, risk, and reliability.John Wiley&Sons, Inc.
Ang, A. H.-S. and Tang, W. H. (2007).Probability concepts in engineering planning and design: Emphasis on application to civil and environmental engineering. Wiley.
Ash, R. B. (2008).Basic probability theory. Courier Corporation.
Au, S. K. and Beck, J. (2003). Subset simulation and its application to seismic risk based on dynamic analysis. Journal of Engineering Mechanics, 129(8):901–917.
Au, S.-K. and Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation.Probabilistic Engineering Mechanics, 16(4):263–277.
Au, S. K., Ching, J., and Beck, J. (2007). Application of subset simulation methods to reliability benchmark problems.Structural Safety, 29(3):183–193.
Baecher, G. B. and Christian, J. T. (2005).Reliability and statistics in geotechnical engineering.John Wiley & Sons.
Baker, J. W. and Cornell, C. A. (2006). Correlation of response spectral values for multi-component ground motions.Bulletin of the Seismological Society of America, 96(1):215–227.
Baker, J. W. et al. (2007). Correlation of ground motion intensity parameters used for predicting structural and geotechnical response. InTenth International Conference on Application ofStatistics and Probability in Civil Engineering, volume 8. Citeseer.
Baker, J. W. and Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground-motion models. Earthquake Spectra, 24(1):299–317.
Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996). On Kendall’s process. Journal of Multivariate Analysis, 58(2):197–229.
Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines.Annals of Mathematics and Artificial Intelligence,32(1):245–268.
Bedford, T. and Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, pages 1031–1068.
Beer, M., Zhang, Y., Quek, S. T., and Phoon, K. K. (2013). Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context. Structural Safety, 41:1–10.
Benjamin, J. R. and Cornell, A. C. (1981). Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill.
Bernardini, A. and Tonon, F. (2010). Bounding uncertainty in civil engineering: theoretical background. Springer Science & Business Media.
Bertoluzza, C., Gil, M. A., and Ralescu, D. A. (2002). Statistical modeling, analysis and management of fuzzy data, volume 87. Physica Verlag.
Blockley, D. (1999). Risk based structural safety methods in context.Structural Safety, 21(4):335–348.
Blockley, D. I. (1980).The nature of structural design and safety. Ellis Horwood Chichester.
Blyth, F. G. H. and De Freitas, M. (2017). A geology for engineers. CRC Press.
Briaud, J.-L. (2007). Spread footings in sand: load settlement curve approach. Journal of Geotechnical and Geoenvironmental Engineering, 133(8):905–920.
Burnham, K. P. and Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multi-model inference, 2nd ed. Springer, New York.
Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection.Sociological Methods & Research, 33(2):261–304.
Chao, X. and Lin-de, Y. (1998). Test of goodness of fit of random variables and Bayesian estimation of distribution parameters.Journal of Tongji University, 26(3):340–344.
Chapra, S. C. et al. (2012). Applied numerical methods with MATLAB for engineers and scientists. New York: McGraw-Hill.
Chen, L., Singh, V. P., and Guo, S. (2013). Measure of correlation between river flows using the copula-entropy method. Journal of Hydrologic Engineering, 18(12):1591–1606.
Cheng, Y., Du, J., and Ji, H. (2020). Multivariate joint probability function of earthquake ground motion prediction equations based on vine copula approach. Mathematical Problems in Engineering, 2020.
Cherubini, C. (2000). Reliability evaluation of shallow foundation bearing capacity on c-φ soils. Canadian Geotechnical Journal, 37(1):264–269.
Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.
Chin, F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure. In Proceedings, 2nd Southeast Asian Conference on Soil Engineering, Singapore.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5):1583–1606.
Couso, I., Moral, S., and Walley, P. (1999). Examples of independence for imprecise probabilities. In Proceedings of 1st International Symposium on Imprecise Probabilities and Their Applications, volume 99, pages 121–130.
Crespo, L. G., Kenny, S. P., and Giesy, D. P. (2013). The NASA Langley multidisciplinary uncertainty quantification challenge. In 16th AIAA Non-Deterministic Approaches Conference, page 1347.
Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer.
Davison, M. (1972). High-capacity piles. In Proceedings, Lecture Series, Innovations in Foundation Construction, Chicago. ASCE, Illinois Section.
Dempster, A. P. (1967). Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Statist., 38(2):325–339.
Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural safety, 31(2):105–112.
Der Kiureghian, A. and Liu, P.-L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1):85–104.
Dithinde, M., Phoon, K., De Wet, M., and Retief, J. (2011). Characterization of model uncertainty in the static pile design formula. Journal of Geotechnical and Geoenvironmental Engineering, 137(1):70–85.
Ditlevsen, O. and Madsen, H. O. (1996). Structural reliability methods, volume 178. Wiley New York.
Dong, W. and Shah, H. C. (1987). Vertex method for computing functions of fuzzy variables. Fuzzy sets and Systems, 24(1):65–78.
Dubois, D. and Prade, H. (1991). Random sets and fuzzy interval analysis. Fuzzy sets and Systems, 42(1):87–101.
Durrleman, V., Nikeghbali, A., and Roncalli, T. (2000). Which copula is the right one? SSRN Electronic Journal.
Dutfoy, A. and Lebrun, R. (2009). Practical approach to dependence modelling using copulas. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(4):347–361.
Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages 569–593. Springer.
Embrechts, P., Lindskog, F., and McNeil, A. (2001). Modelling dependence with copulas and applications to risk management. Rapport technique, Département de math ́ematiques, Institut Fédéral de Technologie de Zurich, Zurich, 14.
Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 1:176–223.
Fan, S. (1989). A new extracting formula and a new distinguishing means on the one variable cubic equation. Nat. Sci. J. Hainan Teach. Coll, 2(2):91–98.
Fellin, W. and Oberguggenberger, M. (2012). Robust assessment of shear parameters from direct shear tests. International Journal of Reliability and Safety, 6(1-3):49–64.
Fenton, G. A. and Griffiths, D. (2003). Bearing-capacity prediction of spatially random c-φ soils. Canadian Geotechnical Journal, 40(1):54–65.
Ferson, S. (2002). RAMAS Risk Calc 4.0 software: risk assessment with uncertain numbers. CRC Press.
Ferson, S., Kreinovich, V., Grinzburg, L., Myers, D., and Sentz, K. (2003). Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Lab. Albuquerque.
Fetz, T. and Oberguggenberger, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering & System Safety, 85(1-3):73–87.
Forrest, W. S. and Orr, T. L. (2010). Reliability of shallow foundations designed to Eurocode 7. Georisk, 4(4):186–207.
Fredlund, D. G. and Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14(3):429–439.
Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North AmericanActuarial Journal, 2(1):1–25.
Gelman, A., Roberts, G. O., Gilks, W. R., et al. (1996). Efficient Metropolis jumping rules. Bayesian Statistics, 5(599-608):42.
Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4):347–368.
Genest, C. and MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. The American Statistician, 40(4):280–283.
Genest, C., R ́emillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2):199–213.
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate archimedean copulas.Journal of the American Statistical Association, 88(423):1034–1043.
Ghosh, S. (2010). Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrological Processes, 24(24):3558–3567.
Gilks, W., Richardson, S., and Spiegelhalter, D. (1995).Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis.
Goda, K. (2010). Statistical modeling of joint probability distribution using copula: application to peak and permanent displacement seismic demands. Structural Safety, 32(2):112–123.
Goda, K. and Atkinson, G. (2009a). Interperiod dependence of ground-motion prediction equations: A copula perspective. Bulletin of the Seismological Society of America, 99(2A):922–927.
Goda, K. and Atkinson, G. M. (2009b). Probabilistic characterization of spatially correlated response spectra for earthquakes in japan. Bulletin of the Seismological Society of America, 99(5):3003–3020.
Goda, K. and Hong, H.-P. (2008). Spatial correlation of peak ground motions and response spectra. Bulletin of the Seismological Society of America, 98(1):354–365.
Goodman, I. R. and Nguyen, H. T. (2002). Fuzziness and randomness. In Statistical modeling, analysis and management of fuzzy data, pages 3–21. Springer.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Hata, Y., Ichii, K., Tsuchida, T., Kano, S., and Yamashita, N. (2008). A practical method for identifying parameters in the seismic design of embankments. Georisk, 2(1):28–40.
Helton, J. C. (1997). Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4):3–76.
Helton, J. C., Johnson, J. D., Oberkampf, W., and Sallaberry, C. J. (2006). Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering & System Safety, 91(10-11):1414–1434.
Hoek, E. (2000).Practical Rock Engineering.
Hoek, E. and Bray, J. D. (1981). Rock slope engineering. CRC Press.
Huang, D., Yang, C., Zeng, B., and Fu, G. (2014). A Copula-based method for estimating shear strength parameters of rock mass. Mathematical Problems in Engineering, 2014.
Huffman, J. C., Strahler, A. W., and Stuedlein, A. W. (2015). Reliability-based serviceability limit state design for immediate settlement of spread footings on clay. Soils and Foundations, 55(4):798–812.
Huffman, J. C. and Stuedlein, A. W. (2014). Reliability-based serviceability limit state design of spread footings on aggregate pier reinforced clay.Journal of Geotechnical and Geoenvironmental Engineering, 140(10):04014055.
Hult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 34(3):587–608.
Hurtado, J. E. (2004). Structural reliability: statistical learning perspectives, volume 17 of Lecture Notes in Applied and Computational Mechanics. Springer Science & Business Media.
Hurtado, J. E. and Alvarez, D. A. (2000). Reliability assessment of structural systems using neural networks. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, volume 2000.
Joe, H. (1996). Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters. Lecture Notes-Monograph Series, pages 120–141.
Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.
Joe, H. and Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical report, University of British Columbia.
Jogdeo, K. (1982). Concepts of dependence.Encyclopedia of statistical sciences, 1:324–334.
Joslyn, C. and Booker, J. M. (2004). Generalized information theory for engineering modeling and simulation. Engineering Design Reliability Handbook, 9:1–40.
Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the american Statistical association, 90(430):773–795.
Katafygiotis, L. S. and Zuev, K. M. (2008). Geometric insight into the challenges of solving high-dimensional reliability problems. Probabilistic Engineering Mechanics, 23(2-3):208–218.
Kazianka, H. and Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates.Stochastic environmental research and risk assessment, 24(5):661–673.
Kazianka, H. and Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences, 37(3):310–319.
Kendall, D. (1974). Foundation of a theory of random sets. Stochastic geometry.
Klar, A., Aharonov, E., Kalderon-Asael, B., and Katz, O. (2011). Analytical and observational relations between landslide volume and surface area.Journal of Geophysical Research: Earth Surface, 116(F2).
Klir, G. J. (1995). Principles of uncertainty: What are they? why do we need them? Fuzzy Sets and Systems, 74(1):15–31.
Kolmogoroff, A. (1941). Confidence limits for an unknown distribution function. The Annals of Mathematical Statistics, 12(4):461–463.
Kottegoda, N. T. and Rosso, R. (2008). Applied statistics for civil and environmental engineers. Blackwell Malden, MA.
Kotz, S. and Drouet, D. (2001). Correlation and dependence. World Scientific.
Kramer, S. L. et al. (1996). Geotechnical earthquake engineering. Pearson Education India.
Lambe, T. W. and Whitman, R. V. (1991). Soil mechanics, volume 10. John Wiley & Sons.
Lebrun, R. and Dutfoy, A. (2009a). A generalization of the Nataf transformation to distributions with elliptical copula. Probabilistic Engineering Mechanics, 24(2):172–178.
Lebrun, R. and Dutfoy, A. (2009b). An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilistic Engineering Mechanics, 24(3):312–320.
Lee, Y.-F. and Chi, Y.-Y. (2011). Rainfall-induced landslide risk at Lushan, Taiwan. Engineering Geology, 123(1-2):113–121.
Lemaire, M. (2013). Structural reliability. John Wiley & Sons.
Li, D., Chen, Y., Lu, W., and Zhou, C. (2011). Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Computers and Geotechnics, 38(1):58–68.
Li, D., Tang, X., Zhou, C., and Phoon, K. K. (2012). Uncertainty analysis of correlated non-normal geotechnical parameters using Gaussian copula. Science China Technological Sciences, 55(11):3081–3089.
Li, D. Q., Tang, X. S., Phoon, K. K., Chen, Y. F., and Zhou, C. B. (2013). Bivariate simulation using copula and its application to probabilistic pile settlement analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6):597–617.
Li, D.-Q., Tang, X.-S., Zhou, C.-B., and Phoon, K.-K. (2015a). Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Applied Mathematical Modelling, 39(17):5310–5326.
Li, D. Q., Zhang, L., Tang, X. S., Zhou, W., Li, J. H., Zhou, C. B., and Phoon, K. K. (2015b). Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Computers and Geotechnics, 68:184–195.
Li, H., L ̈u, Z., and Yuan, X. (2008). Nataf transformation based point estimate method. Chinese Science Bulletin, 53(17):2586.
Li, K. and Lumb, P. (1987). Probabilistic design of slopes. Canadian Geotechnical Journal, 24(4):520–535.
Liu, P.-L. and Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2):105–112.
Lizarraga, H. S. and Lai, C. G. (2014). Effects of spatial variability of soil properties on the seismic response of an embankment dam. Soil Dynamics and Earthquake Engineering, 64:113–128.
Low, B. (2007). Reliability analysis of rock slopes involving correlated nonnormals. International Journal of Rock Mechanics and Mining Sciences, 44(6):922–935.
Lumb, P. (1970). Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal, 7(3):225–242.
Luo, Z., Atamturktur, S., and Juang, C. H. (2013). Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations. Journal of Geotechnical and Geoenvironmental Engineering, 139(1):13–23.
Malevergne, Y., Sornette, D., et al. (2003). Testing the Gaussian copula hypothesis for financial assets dependences. Quantitative Finance, 3(4):231–250.
Marchant, B. P., Saby, N. P., Jolivet, C. C., Arrouays, D., and Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma, 162(3-4):327–334.
Marek, P., Anagnos, T., and Gustar, M. (1996). Simulation-based reliability assessment for structural engineers. CRC Press.
Matheron, G. (1974). Random Sets and Integral Geometry. Probability and Statistics Series. Wiley.
Matsuo, M. and Kuroda, K. (1974). Probabilistic approach to design of embankments. Soils and Foundations, 14(2):1–17.
Mayne, P. W. and Poulos, H. G. (1999). Approximate displacement influence factors for elastic shallow foundations. Journal of Geotechnical and Geoenvironmental Engineering, 125(6):453–460.
McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.
McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative risk management: concepts, techniques and tools-revised edition. Princeton University Press.
Melchers, R. E. and Beck, A. T. (2018). Structural reliability analysis and prediction. John Wiley & Sons.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092.
Mitchell, J. K., Soga, K., et al. (2005). Fundamentals of Soil behavior, volume 3. John Wiley & Sons New York.
Montgomery, D. C. and Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.
Most, T. and Knabe, T. (2010). Reliability analysis of the bearing failure problem considering uncertain stochastic parameters. Computers and Geotechnics, 37(3):299–310.
Motamedi, M. and Liang, R. Y. (2014). Probabilistic landslide hazard assessment using copula modeling technique.Landslides, 11(4):565–573.
Nasekhian, A. and Schweiger, H. F. (2011). Random set finite element method application to tunnelling. International Journal of Reliability and Safety, 5(3-4):299–319.
Nataf, A. (1962). Détermination des distributions de probabilités dont les marges sont données. C.R. Acad Sci, 225:42–43.
Naylor, T., Naylor, T., Balintfy, J., Burdick, D., and Chu, K. (1966). Computer Simulation Techniques. Wiley.
Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.
Nguyen, V. and Chowdhury, R. (1984). Probabilistic study of spoil pile stability in strip coal mines — two techniques compared. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, volume 21, pages 303–312. Elsevier.
Oberguggenberger, M. and Fellin, W. (2002). From probability to fuzzy sets: the struggle for meaning in geotechnical risk assessment. In Conference Report, volume 1. Citeseer.
Oberguggenberger, M. and Fellin, W. (2004). The fuzziness and sensitivity of failure probabilities, pages 33–49.
Oberguggenberger, M. and Fellin, W. (2005). Assessing the sensitivity of failure probabilities: a random set approach. In Safety and Reliability of Engineering Systems and Structures: Proceedings of the 9th International Conference on Structural Safety and Reliability, pages 1755–1760.
Oberguggenberger, M. and Fellin, W. (2008). Reliability bounds through random sets: non-parametric methods and geotechnical applications. Computers & Structures, 86(10):1093–1101.
Oberkampf, W. L., Tucker, W. T., Zhang, J., Ginzburg, L., Berleant, D. J., Ferson, S., Hajagos, J., and Nelsen, R. B. (2004). Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Technical report, Sandia National Laboratories.
Orr, T. L. (2000). Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Computers and Geotechnics, 26(3-4):263–279.
Parker, C., Simon, A., and Thorne, C. R. (2008). The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology, 101(4):533–543.
Peck, R. B. (1969). Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 19(2):171–187.
Peschl, G. and Schweiger, H. (2004). Application of the random set finite element method (RS-FEM) in geotechnics. In Plaxis Bulletin, volume 19.
Peschl, G. M. (2004). Reliability Analyses in Geotechnics with the Random Set Finite Element Method. Phd thesis, Technische Universitat Graz, Graz, Austria.
Phoon, K., Chen, J., and Kulhawy, F. (2006). Characterization of model uncertainties for augured cast-in-place (ACIP) piles under axial compression. In Foundation Analysis and Design: Innovative Methods, pages 82–89
Phoon, K., Chen, J.-R., and Kulhawy, F. (2007). Probabilistic hyperbolic models for foundation uplift movements. In Probabilistic Applications in Geotechnical Engineering, pages 1–12.
Phoon, K.-K. (2008). Reliability-based design in geotechnical engineering: computations and applications. CRC Press.
Phoon, K.-K. (2020). The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(1):3–25.
Phoon, K.-K. and Ching, J. (2014). Risk and reliability in geotechnical engineering. CRC Press.
Phoon, K.-K., Kulhawy, F. H., and Grigoriu, M. D. (2003). Multiple resistance factor design for shallow transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering, 129(9):807–818.
Puzrin, A. M., Alonso, E. E., and Pinyol, N. M. (2010). Geomechanics of failures. Springer Science & Business Media.
Rackwitz, R. (2000). Reviewing probabilistic soils modeling. Computers and Geotechnics, 26:199–223.
Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science & Business Media.
Robertson, P. and Cabal, K. (2015). Guide to Cone Penetration Testing For Geotechnical Engineering. Gregg Drilling & Testing, Inc.
Ross, S. (2012). Simulation. Knovel Library. Elsevier Science.
Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo method, volume 10. John Wiley & Sons.
Schuëller, G., Pradlwarter, H., and Koutsourelakis, P.-S. (2004). A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, 19(4):463–474.
Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.
Schweiger, H. and Peschl, G. (2005). Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32:422–435.
Schweiger, H. and Peschl, G. M. (2004). Numerical analysis of deep excavations utilizing random set theory. In Geotechnical Innovations, pages 277–294.
Schweizer, B., Wolff, E. F., et al. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4):879–885.
Sentz, K., Ferson, S., et al. (2002). Combination of evidence in Dempster-Shafer theory, volume 4015. Sandia National Laboratories Albuquerque.
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8:229–231.
Sklar, A. (1996). Random variables, distribution functions, and copulas: A personal look backward and forward. Lecture Notes-Monograph Series, 28:1–14.
Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2):3–14.
Soubra, A.-H. and Mao, N. (2012). Probabilistic analysis of obliquely loaded strip foundations. Soils and Foundations, 52(3):524–538.
Sriboonchitta, S. and Kreinovich, V. (2018). Why are FGM copulas successful? a simple explanation. Advances in Fuzzy Systems, 2018.
Staff, M.-W. (2004). Merriam-Webster’s collegiate dictionary, volume 2. Merriam-Webster.
Stansbury, Dustin (2012). MCMC the Metropolis-Hastings sampler. https://theclevermachine.wordpress.com/2012/10/20/mcmc-the-metropolis-hastings-sampler/. [Online; accessed 28-December-2020].
Tang, X. S., Li, D. Q., Cao, Z. J., and Phoon, K. K. (2017). Impact of sample size on geotechnical probabilistic model identification. Computers and Geotechnics, 87:229–240.
Tang, X.-S., Li, D.-Q., Chen, Y.-F., Zhou, C.-B., and Zhang, L.-M. (2012). Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis. Computers and Geotechnics, 45:34–43.
Tang, X. S., Li, D. Q., Rong, G., Phoon, K. K., and Zhou, C. B. (2013). Impact of copula selection on geotechnical reliability under incomplete probability information. Computers and Geotechnics, 49:264–278.
Tang, X. S., Li, D. Q., Zhou, C. B., and Phoon, K. K. (2015). Copula-based approaches for evaluating slope reliability under incomplete probability information. Structural Safety, 52(PA):90–99.
Tarbuck, E. J., Lutgens, F. K., Tasa, D., and Linneman, S. (2005). Earth: an introduction to physical geology. Pearson/Prentice Hall Upper Saddle River.
Terazaghi, K. (1943). Theoretical soil mechanics. John Wiley and Sons.
Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.
Tobutt, D. and Richards, E. (1979). The reliability of earth slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 3(4):323–354.
Tonon, F. (2004). Using random set theory to propagate epistemic uncertainty through a mechanical system. Reliability Engineering & System Safety, 85(1-3):169–181.
Tonon, F., Bernardini, A., and Mammino, A. (2000a). Determination of parameters range in rock engineering by means of random set theory. Reliability Engineering System Safety, 70:241–261.
Tonon, F., Bernardini, A., and Mammino, A. (2000b). Reliability analysis of rock mass response by means of random set theory. Reliability Engineering & System Safety, 70:263–282.
Tonon, F., Mammino, A., Bernardini, A., et al. (1996). A random set approach to the uncertainties in rock engineering and tunnel lining design. In ISRM International Symposium-EUROCK 96. International Society for Rock Mechanics and Rock Engineering.
Uribe, F. (2011). Implementation of simulation methods in structural reliability. Master’s thesis, Universidad Nacional de Colombia.
Uzielli, M. and Mayne, P. W. (2011). Serviceability limit state CPT-based design for vertically loaded shallow footings on sand. Geomechanics and Geoengineering, 6(2):91–107.
Uzielli, M. and Mayne, P. W. (2012). Load-displacement uncertainty of vertically loaded shallow footings on sands and effects on probabilistic settlement estimation. Georisk, 6(1):50–69.
Vanmarcke, E. (2010). Random fields: analysis and synthesis. World scientific.
Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2):228.
Walsh, B. (2004). Markov chain monte carlo and gibbs sampling. Lecture notes for EEB, 581.
Wang, F. and Li, H. (2018). The role of copulas in random fields: Characterization and application. Structural Safety, 75:75–88.
Wang, J. P., Tang, X. S., Wu, Y. M., and Li, D. Q. (2018). Copula-based earthquake early warning decision-making strategy. Soil Dynamics and Earthquake Engineering, 115:324–330.
Wang, M.-X., Tang, X.-S., Li, D.-Q., and Qi, X.-H. (2020). Subset simulation for efficient slope reliability analysis involving copula-based cross-correlated random fields. Computers and Geotechnics, 118:103326.
Wang, Z. and Klir, G. (1992). Fuzzy Measure Theory. The Language of science. Springer US.
Whittle, A. and Davies, R. (2006). Nicoll highway collapse: evaluation of geotechnical factors affecting design of excavation support system. In International Conference on Deep Excavations, volume 28, page 30.
Wikipedia contributors (2021a). Autocorrelation — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Autocorrelation. [Online; accessed 3-January-2021].
Wikipedia contributors (2021b). Examples of Markov chains — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Examples_of_Markov_chains. [Online; accessed 5-January-2021].
Wikipedia contributors (2021c). Markov chain — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Markov_chain. [Online; accessed 4-Januray-2021].
Wolff, T. F. (1985). Analysis and design of embankment dam slopes: a probabilistic approach. University Microfilms.
Wu, X. Z. (2013a). Probabilistic slope stability analysis by a copula-based sampling method. Computational Geosciences, 17(5):739–755.
Wu, X. Z. (2013b). Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems. Soils and Foundations, 53(4):540–556.
Wu, X. Z. (2015). Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils and Foundations, 55(5):1243–1258.
Wyllie, D. C. (2017). Rock slope engineering: civil applications. CRC Press.
Xu, X., Li, J., Gong, J., Deng, H., and Wan, L. (2016a). Copula-Based Slope Reliability Analysis Using the Failure Domain Defined by the g-Line. Mathematical Problems in Engineering, 2016.
Xu, Y., Tang, X. S., Wang, J. P., and Kuo-Chen, H. (2016b). Copula-based joint probability function for PGA and CAV: a case study from Taiwan. Earthquake Engineering and Structural Dynamics, 45(13):2123–2136.
Xu, Z.-X. and Zhou, X.-P. (2018). Three-dimensional reliability analysis of seismic slopes using the copula-based sampling method. Engineering Geology, 242:81–91.
Yager, R. R. (1987). On the Dempster-Shafer framework and new combination rules. Information Sciences, 41(2):93–137.
Yu, Q. (2006). Slope reliability of embankment dam and its application to engineering practice. Master’s thesis, Hohai University, Nanjing, China.
Zhang, J., Huang, H. W., Juang, C. H., and Su, W. W. (2014). Geotechnical reliability analysis with limited data: Consideration of model selection uncertainty. Engineering Geology, 181:27–37.
Zhang, L. and Singh, V. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2):150–164.
Zhang, L. and Singh, V. P. (2019).Copulas and their applications in water resources engineering. Cambridge University Press.
Zhang, L., Tang, X., and Li, D. (2013). Bivariate distribution model of soil shear strength parameter using copula. Journal of Civil Engineering and Management, 30(2):11–17.
Zhu, H., Zhang, L., Xiao, T., and Li, X. (2017). Generation of multivariate cross-correlated geotechnical random fields. Computers and Geotechnics, 86:95–107.
Zou, Z.-H., Yi, Y., and Sun, J.-N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5):1020–1023.
Zuev, K. M., Beck, J. L., Au, S.-K., and Katafygiotis, L. S. (2012). Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Computers & structures, 92:283–296.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 221 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80527/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80527/4/1088322519.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80527/5/1088322519.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
ba9e1bff78bfe7a1af07e73edbbef971
09ba70d9ebb1e16ca521f306d744c81a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089395026788352
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Marín, Diego Andrés6c57df69d044b4c987e99e5449a87401Sepúlveda García, Juan José43be918ae52b627fb98e60b9d76ce557Ingeniería Sísmica y Sismología2021-10-12T22:28:03Z2021-10-12T22:28:03Z2021-10https://repositorio.unal.edu.co/handle/unal/80527Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasGeotechnics is subject to two major types of uncertainty: aleatory and epistemic. Aleatory uncertainty refers to the inherent variability of materials and their external agents, while epistemic uncertainty refers to the lack of information and knowledge. A comprehensive geotechnical model should take into account these two types of uncertainties in light of a reliability analysis. However, the reliability analyses that are conventionally performed in geotechnical engineering have a series of gaps and approximations that may diverge model estimations from reality. In the first place, reliability analyses have been commonly based on probability theory, which is capable of modeling aleatory but not epistemic uncertainty, so the latter is usually ignored. Second, assumptions are made about the dependence between the basic variables of the models, which are not validated and in most cases are unfounded. Third, obtaining accurate modeling results requires excessive computational costs, which in many cases are unfeasible. In order to fill these gaps in the \emph{state-of-the-art}, this thesis proposes a methodology for the evaluation of reliability in geotechnics, which is computationally efficient, takes into account the dependence between the basic variables and also their aleatory and epistemic uncertainty. Specifically, subset simulation is employed for efficient and accurate calculation of probabilities of failure, copula theory is used to model dependence among basic variables, and random set theory is employed to model both epistemic and aleatory uncertainties. The proposed methodology manages to integrate the three aforementioned developments in a single approach for the analysis of the reliability in geotechnical models. The applicability of this procedure is proved through different practical examples of geotechnical engineering. The results show the efficiency of the proposed algorithm, the importance of dependence in reliability analyses, and the impact that aleatory and epistemic uncertainties have on the final results of the modeling. In conclusion, the proposed method proves to be a fairly complete tool with a very wide application range, so that geotechnical engineers will have the possibility of implementing it in their designs and modeling (in fact, they should).La geotecnia está sujeta a dos grandes tipos de incertidumbre: aleatorias y epistémicas. La incertidumbre aleatoria se manifiesta a través de la variabilidad inherente de los materiales y de sus agentes externos, mientras que la incertidumbre epistémica se manifiesta a través de la escasez de la información y de la falta de conocimiento. Un modelo geotécnico integral debería de tener en cuenta estos dos tipos de incertidumbre a la luz de un análisis de confiabilidad. No obstante, los análisis de confiabilidad que se desarrollan convencionalmente en la ingeniería geotécnica tienen una serie de vacíos y aproximaciones que pueden generar que los resultados de los modelos disten de la realidad. En primer lugar, los análisis de confiabilidad se han basado comúnmente en la teoría de la probabilidad, la cual es capaz de modelar la incertidumbre aleatoria pero no la epistémica, por lo que esta última se suele obviar. En segundo lugar, se realizan supuestos sobre la dependencia entre las variables básicas de los modelos, las cuales no son validadas y en la mayoría de los casos carecen de fundamentos. En tercer lugar, obtener resultados precisos requiere de un costo computacional excesivo, que en muchos casos puede ser inviable. Con el objetivo de suplir estos vacíos en el estado del arte, esta tesis propone una metodología para la evaluación de la confiabilidad en geotecnia, la cual es eficiente computacionalmente, tiene en cuenta la dependencia entre las variables básicas y también su incertidumbre aleatoria y epistémica. Específicamente, se usa el algoritmo subset simulation para el cálculo eficiente y preciso de las probabilidades de falla, se hace uso de la teoría de copulas para modelar la dependencia entre las variables, y se emplea la teoría de random sets para modelar la incertidumbre epistémica y aleatoria. La metodología propuesta logra integrar los tres desarrollos anteriormente mencionados en un único enfoque para el análisis de la confiabilidad de modelos geotécnicos. La aplicabilidad de este enfoque se demuestra a través de diferentes ejemplos prácticos de la ingeniería geotécnica. Los resultados evidencian la eficiencia del algoritmo propuesto, la importancia de la dependencia en los análisis de confiabilidad, y el impacto que las incertidumbres aleatorias y epistémicas tienen en las modelaciones. En conclusión, el enfoque propuesto es una herramienta bastante completa y con una aplicación muy amplia para realizar análisis de confiabilidad, por lo que los geotecnistas tendrán la posibilidad de implementarla en sus diseños y modelaciones (de hecho, ellos deberían usarla). (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Geotecniaix, 221 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesGeotecniaEngineering geologyUncertaintyReliability analysisMonte Carlo simulationSubset SimulationCopulasRandom Sets theoryImprecise probabilitiesLower and upper probabilities of failureIncertidumbreAnálisis de confiabilidadSimulación de SubconjuntosCopulasTeoría de conjuntos aleatoriosProbabilidades imprecisasProbabilidades de falla superior e inferiorSimulación Monte CarloAnálisis numéricoNumerical analysisOn the use of random sets in geotechnical engineeringSobre el uso de los conjuntos aleatorios en la ingeniería geotécnicaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence.Insurance: Mathematics and Economics, 44(2):182–198.Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on Automatic Control, 19(6):716–723.Alonso, E. E. (1976). Risk analysis of slopes and its application to slopes in canadian sensitive clays. Geotechnique, 26(3):453–472.Alvarez, D. A. (2006). On the calculation of the bounds of probability of events using infinite random sets.International Journal of Approximate Reasoning, 43(3):241–267.Alvarez, D. A. (2007).Infinite random sets and applications in uncertainty analysis. PhD thesis,Leopold-Franzens Universit at Innsbruck, Innsbruck, Austria.Alvarez, D. A. (2009). A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type.Fuzzy Sets and Systems, 160(3):384–401.Alvarez, D. A. and Hurtado, J. E. (2014). An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs. Computers & Structures, 142:54–63.Alvarez, D. A., Hurtado, J. E., and Ramírez, J. (2017). Tighter bounds on the probability of failure than those provided by random set theory. Computers & Structures, 189:101–113.Alvarez, D. A., Uribe, F., and Hurtado, J. E. (2018). Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mechanical Systems and Signal Processing, 100:782–801.Ameratunga, J., Sivakugan, N., and Das, B. M. (2016).Correlations of soil and rock properties in geotechnical engineering. Springer.Ang, A. H.-S. and Tang, W. H. (1984). Probability concepts in engineering planning and design, vol. 2: Decision, risk, and reliability.John Wiley&Sons, Inc.Ang, A. H.-S. and Tang, W. H. (2007).Probability concepts in engineering planning and design: Emphasis on application to civil and environmental engineering. Wiley.Ash, R. B. (2008).Basic probability theory. Courier Corporation.Au, S. K. and Beck, J. (2003). Subset simulation and its application to seismic risk based on dynamic analysis. Journal of Engineering Mechanics, 129(8):901–917.Au, S.-K. and Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation.Probabilistic Engineering Mechanics, 16(4):263–277.Au, S. K., Ching, J., and Beck, J. (2007). Application of subset simulation methods to reliability benchmark problems.Structural Safety, 29(3):183–193.Baecher, G. B. and Christian, J. T. (2005).Reliability and statistics in geotechnical engineering.John Wiley & Sons.Baker, J. W. and Cornell, C. A. (2006). Correlation of response spectral values for multi-component ground motions.Bulletin of the Seismological Society of America, 96(1):215–227.Baker, J. W. et al. (2007). Correlation of ground motion intensity parameters used for predicting structural and geotechnical response. InTenth International Conference on Application ofStatistics and Probability in Civil Engineering, volume 8. Citeseer.Baker, J. W. and Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground-motion models. Earthquake Spectra, 24(1):299–317.Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996). On Kendall’s process. Journal of Multivariate Analysis, 58(2):197–229.Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines.Annals of Mathematics and Artificial Intelligence,32(1):245–268.Bedford, T. and Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, pages 1031–1068.Beer, M., Zhang, Y., Quek, S. T., and Phoon, K. K. (2013). Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context. Structural Safety, 41:1–10.Benjamin, J. R. and Cornell, A. C. (1981). Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill.Bernardini, A. and Tonon, F. (2010). Bounding uncertainty in civil engineering: theoretical background. Springer Science & Business Media.Bertoluzza, C., Gil, M. A., and Ralescu, D. A. (2002). Statistical modeling, analysis and management of fuzzy data, volume 87. Physica Verlag.Blockley, D. (1999). Risk based structural safety methods in context.Structural Safety, 21(4):335–348.Blockley, D. I. (1980).The nature of structural design and safety. Ellis Horwood Chichester.Blyth, F. G. H. and De Freitas, M. (2017). A geology for engineers. CRC Press.Briaud, J.-L. (2007). Spread footings in sand: load settlement curve approach. Journal of Geotechnical and Geoenvironmental Engineering, 133(8):905–920.Burnham, K. P. and Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multi-model inference, 2nd ed. Springer, New York.Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection.Sociological Methods & Research, 33(2):261–304.Chao, X. and Lin-de, Y. (1998). Test of goodness of fit of random variables and Bayesian estimation of distribution parameters.Journal of Tongji University, 26(3):340–344.Chapra, S. C. et al. (2012). Applied numerical methods with MATLAB for engineers and scientists. New York: McGraw-Hill.Chen, L., Singh, V. P., and Guo, S. (2013). Measure of correlation between river flows using the copula-entropy method. Journal of Hydrologic Engineering, 18(12):1591–1606.Cheng, Y., Du, J., and Ji, H. (2020). Multivariate joint probability function of earthquake ground motion prediction equations based on vine copula approach. Mathematical Problems in Engineering, 2020.Cherubini, C. (2000). Reliability evaluation of shallow foundation bearing capacity on c-φ soils. Canadian Geotechnical Journal, 37(1):264–269.Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.Chin, F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure. In Proceedings, 2nd Southeast Asian Conference on Soil Engineering, Singapore.Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5):1583–1606.Couso, I., Moral, S., and Walley, P. (1999). Examples of independence for imprecise probabilities. In Proceedings of 1st International Symposium on Imprecise Probabilities and Their Applications, volume 99, pages 121–130.Crespo, L. G., Kenny, S. P., and Giesy, D. P. (2013). The NASA Langley multidisciplinary uncertainty quantification challenge. In 16th AIAA Non-Deterministic Approaches Conference, page 1347.Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer.Davison, M. (1972). High-capacity piles. In Proceedings, Lecture Series, Innovations in Foundation Construction, Chicago. ASCE, Illinois Section.Dempster, A. P. (1967). Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Statist., 38(2):325–339.Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural safety, 31(2):105–112.Der Kiureghian, A. and Liu, P.-L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1):85–104.Dithinde, M., Phoon, K., De Wet, M., and Retief, J. (2011). Characterization of model uncertainty in the static pile design formula. Journal of Geotechnical and Geoenvironmental Engineering, 137(1):70–85.Ditlevsen, O. and Madsen, H. O. (1996). Structural reliability methods, volume 178. Wiley New York.Dong, W. and Shah, H. C. (1987). Vertex method for computing functions of fuzzy variables. Fuzzy sets and Systems, 24(1):65–78.Dubois, D. and Prade, H. (1991). Random sets and fuzzy interval analysis. Fuzzy sets and Systems, 42(1):87–101.Durrleman, V., Nikeghbali, A., and Roncalli, T. (2000). Which copula is the right one? SSRN Electronic Journal.Dutfoy, A. and Lebrun, R. (2009). Practical approach to dependence modelling using copulas. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(4):347–361.Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages 569–593. Springer.Embrechts, P., Lindskog, F., and McNeil, A. (2001). Modelling dependence with copulas and applications to risk management. Rapport technique, Département de math ́ematiques, Institut Fédéral de Technologie de Zurich, Zurich, 14.Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 1:176–223.Fan, S. (1989). A new extracting formula and a new distinguishing means on the one variable cubic equation. Nat. Sci. J. Hainan Teach. Coll, 2(2):91–98.Fellin, W. and Oberguggenberger, M. (2012). Robust assessment of shear parameters from direct shear tests. International Journal of Reliability and Safety, 6(1-3):49–64.Fenton, G. A. and Griffiths, D. (2003). Bearing-capacity prediction of spatially random c-φ soils. Canadian Geotechnical Journal, 40(1):54–65.Ferson, S. (2002). RAMAS Risk Calc 4.0 software: risk assessment with uncertain numbers. CRC Press.Ferson, S., Kreinovich, V., Grinzburg, L., Myers, D., and Sentz, K. (2003). Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Lab. Albuquerque.Fetz, T. and Oberguggenberger, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering & System Safety, 85(1-3):73–87.Forrest, W. S. and Orr, T. L. (2010). Reliability of shallow foundations designed to Eurocode 7. Georisk, 4(4):186–207.Fredlund, D. G. and Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14(3):429–439.Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North AmericanActuarial Journal, 2(1):1–25.Gelman, A., Roberts, G. O., Gilks, W. R., et al. (1996). Efficient Metropolis jumping rules. Bayesian Statistics, 5(599-608):42.Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4):347–368.Genest, C. and MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. The American Statistician, 40(4):280–283.Genest, C., R ́emillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2):199–213.Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate archimedean copulas.Journal of the American Statistical Association, 88(423):1034–1043.Ghosh, S. (2010). Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrological Processes, 24(24):3558–3567.Gilks, W., Richardson, S., and Spiegelhalter, D. (1995).Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis.Goda, K. (2010). Statistical modeling of joint probability distribution using copula: application to peak and permanent displacement seismic demands. Structural Safety, 32(2):112–123.Goda, K. and Atkinson, G. (2009a). Interperiod dependence of ground-motion prediction equations: A copula perspective. Bulletin of the Seismological Society of America, 99(2A):922–927.Goda, K. and Atkinson, G. M. (2009b). Probabilistic characterization of spatially correlated response spectra for earthquakes in japan. Bulletin of the Seismological Society of America, 99(5):3003–3020.Goda, K. and Hong, H.-P. (2008). Spatial correlation of peak ground motions and response spectra. Bulletin of the Seismological Society of America, 98(1):354–365.Goodman, I. R. and Nguyen, H. T. (2002). Fuzziness and randomness. In Statistical modeling, analysis and management of fuzzy data, pages 3–21. Springer.Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.Hata, Y., Ichii, K., Tsuchida, T., Kano, S., and Yamashita, N. (2008). A practical method for identifying parameters in the seismic design of embankments. Georisk, 2(1):28–40.Helton, J. C. (1997). Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4):3–76.Helton, J. C., Johnson, J. D., Oberkampf, W., and Sallaberry, C. J. (2006). Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering & System Safety, 91(10-11):1414–1434.Hoek, E. (2000).Practical Rock Engineering.Hoek, E. and Bray, J. D. (1981). Rock slope engineering. CRC Press.Huang, D., Yang, C., Zeng, B., and Fu, G. (2014). A Copula-based method for estimating shear strength parameters of rock mass. Mathematical Problems in Engineering, 2014.Huffman, J. C., Strahler, A. W., and Stuedlein, A. W. (2015). Reliability-based serviceability limit state design for immediate settlement of spread footings on clay. Soils and Foundations, 55(4):798–812.Huffman, J. C. and Stuedlein, A. W. (2014). Reliability-based serviceability limit state design of spread footings on aggregate pier reinforced clay.Journal of Geotechnical and Geoenvironmental Engineering, 140(10):04014055.Hult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 34(3):587–608.Hurtado, J. E. (2004). Structural reliability: statistical learning perspectives, volume 17 of Lecture Notes in Applied and Computational Mechanics. Springer Science & Business Media.Hurtado, J. E. and Alvarez, D. A. (2000). Reliability assessment of structural systems using neural networks. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, volume 2000.Joe, H. (1996). Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters. Lecture Notes-Monograph Series, pages 120–141.Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.Joe, H. and Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical report, University of British Columbia.Jogdeo, K. (1982). Concepts of dependence.Encyclopedia of statistical sciences, 1:324–334.Joslyn, C. and Booker, J. M. (2004). Generalized information theory for engineering modeling and simulation. Engineering Design Reliability Handbook, 9:1–40.Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the american Statistical association, 90(430):773–795.Katafygiotis, L. S. and Zuev, K. M. (2008). Geometric insight into the challenges of solving high-dimensional reliability problems. Probabilistic Engineering Mechanics, 23(2-3):208–218.Kazianka, H. and Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates.Stochastic environmental research and risk assessment, 24(5):661–673.Kazianka, H. and Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences, 37(3):310–319.Kendall, D. (1974). Foundation of a theory of random sets. Stochastic geometry.Klar, A., Aharonov, E., Kalderon-Asael, B., and Katz, O. (2011). Analytical and observational relations between landslide volume and surface area.Journal of Geophysical Research: Earth Surface, 116(F2).Klir, G. J. (1995). Principles of uncertainty: What are they? why do we need them? Fuzzy Sets and Systems, 74(1):15–31.Kolmogoroff, A. (1941). Confidence limits for an unknown distribution function. The Annals of Mathematical Statistics, 12(4):461–463.Kottegoda, N. T. and Rosso, R. (2008). Applied statistics for civil and environmental engineers. Blackwell Malden, MA.Kotz, S. and Drouet, D. (2001). Correlation and dependence. World Scientific.Kramer, S. L. et al. (1996). Geotechnical earthquake engineering. Pearson Education India.Lambe, T. W. and Whitman, R. V. (1991). Soil mechanics, volume 10. John Wiley & Sons.Lebrun, R. and Dutfoy, A. (2009a). A generalization of the Nataf transformation to distributions with elliptical copula. Probabilistic Engineering Mechanics, 24(2):172–178.Lebrun, R. and Dutfoy, A. (2009b). An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilistic Engineering Mechanics, 24(3):312–320.Lee, Y.-F. and Chi, Y.-Y. (2011). Rainfall-induced landslide risk at Lushan, Taiwan. Engineering Geology, 123(1-2):113–121.Lemaire, M. (2013). Structural reliability. John Wiley & Sons.Li, D., Chen, Y., Lu, W., and Zhou, C. (2011). Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Computers and Geotechnics, 38(1):58–68.Li, D., Tang, X., Zhou, C., and Phoon, K. K. (2012). Uncertainty analysis of correlated non-normal geotechnical parameters using Gaussian copula. Science China Technological Sciences, 55(11):3081–3089.Li, D. Q., Tang, X. S., Phoon, K. K., Chen, Y. F., and Zhou, C. B. (2013). Bivariate simulation using copula and its application to probabilistic pile settlement analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6):597–617.Li, D.-Q., Tang, X.-S., Zhou, C.-B., and Phoon, K.-K. (2015a). Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Applied Mathematical Modelling, 39(17):5310–5326.Li, D. Q., Zhang, L., Tang, X. S., Zhou, W., Li, J. H., Zhou, C. B., and Phoon, K. K. (2015b). Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Computers and Geotechnics, 68:184–195.Li, H., L ̈u, Z., and Yuan, X. (2008). Nataf transformation based point estimate method. Chinese Science Bulletin, 53(17):2586.Li, K. and Lumb, P. (1987). Probabilistic design of slopes. Canadian Geotechnical Journal, 24(4):520–535.Liu, P.-L. and Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2):105–112.Lizarraga, H. S. and Lai, C. G. (2014). Effects of spatial variability of soil properties on the seismic response of an embankment dam. Soil Dynamics and Earthquake Engineering, 64:113–128.Low, B. (2007). Reliability analysis of rock slopes involving correlated nonnormals. International Journal of Rock Mechanics and Mining Sciences, 44(6):922–935.Lumb, P. (1970). Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal, 7(3):225–242.Luo, Z., Atamturktur, S., and Juang, C. H. (2013). Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations. Journal of Geotechnical and Geoenvironmental Engineering, 139(1):13–23.Malevergne, Y., Sornette, D., et al. (2003). Testing the Gaussian copula hypothesis for financial assets dependences. Quantitative Finance, 3(4):231–250.Marchant, B. P., Saby, N. P., Jolivet, C. C., Arrouays, D., and Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma, 162(3-4):327–334.Marek, P., Anagnos, T., and Gustar, M. (1996). Simulation-based reliability assessment for structural engineers. CRC Press.Matheron, G. (1974). Random Sets and Integral Geometry. Probability and Statistics Series. Wiley.Matsuo, M. and Kuroda, K. (1974). Probabilistic approach to design of embankments. Soils and Foundations, 14(2):1–17.Mayne, P. W. and Poulos, H. G. (1999). Approximate displacement influence factors for elastic shallow foundations. Journal of Geotechnical and Geoenvironmental Engineering, 125(6):453–460.McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative risk management: concepts, techniques and tools-revised edition. Princeton University Press.Melchers, R. E. and Beck, A. T. (2018). Structural reliability analysis and prediction. John Wiley & Sons.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092.Mitchell, J. K., Soga, K., et al. (2005). Fundamentals of Soil behavior, volume 3. John Wiley & Sons New York.Montgomery, D. C. and Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.Most, T. and Knabe, T. (2010). Reliability analysis of the bearing failure problem considering uncertain stochastic parameters. Computers and Geotechnics, 37(3):299–310.Motamedi, M. and Liang, R. Y. (2014). Probabilistic landslide hazard assessment using copula modeling technique.Landslides, 11(4):565–573.Nasekhian, A. and Schweiger, H. F. (2011). Random set finite element method application to tunnelling. International Journal of Reliability and Safety, 5(3-4):299–319.Nataf, A. (1962). Détermination des distributions de probabilités dont les marges sont données. C.R. Acad Sci, 225:42–43.Naylor, T., Naylor, T., Balintfy, J., Burdick, D., and Chu, K. (1966). Computer Simulation Techniques. Wiley.Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.Nguyen, V. and Chowdhury, R. (1984). Probabilistic study of spoil pile stability in strip coal mines — two techniques compared. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, volume 21, pages 303–312. Elsevier.Oberguggenberger, M. and Fellin, W. (2002). From probability to fuzzy sets: the struggle for meaning in geotechnical risk assessment. In Conference Report, volume 1. Citeseer.Oberguggenberger, M. and Fellin, W. (2004). The fuzziness and sensitivity of failure probabilities, pages 33–49.Oberguggenberger, M. and Fellin, W. (2005). Assessing the sensitivity of failure probabilities: a random set approach. In Safety and Reliability of Engineering Systems and Structures: Proceedings of the 9th International Conference on Structural Safety and Reliability, pages 1755–1760.Oberguggenberger, M. and Fellin, W. (2008). Reliability bounds through random sets: non-parametric methods and geotechnical applications. Computers & Structures, 86(10):1093–1101.Oberkampf, W. L., Tucker, W. T., Zhang, J., Ginzburg, L., Berleant, D. J., Ferson, S., Hajagos, J., and Nelsen, R. B. (2004). Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Technical report, Sandia National Laboratories.Orr, T. L. (2000). Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Computers and Geotechnics, 26(3-4):263–279.Parker, C., Simon, A., and Thorne, C. R. (2008). The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology, 101(4):533–543.Peck, R. B. (1969). Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 19(2):171–187.Peschl, G. and Schweiger, H. (2004). Application of the random set finite element method (RS-FEM) in geotechnics. In Plaxis Bulletin, volume 19.Peschl, G. M. (2004). Reliability Analyses in Geotechnics with the Random Set Finite Element Method. Phd thesis, Technische Universitat Graz, Graz, Austria.Phoon, K., Chen, J., and Kulhawy, F. (2006). Characterization of model uncertainties for augured cast-in-place (ACIP) piles under axial compression. In Foundation Analysis and Design: Innovative Methods, pages 82–89Phoon, K., Chen, J.-R., and Kulhawy, F. (2007). Probabilistic hyperbolic models for foundation uplift movements. In Probabilistic Applications in Geotechnical Engineering, pages 1–12.Phoon, K.-K. (2008). Reliability-based design in geotechnical engineering: computations and applications. CRC Press.Phoon, K.-K. (2020). The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(1):3–25.Phoon, K.-K. and Ching, J. (2014). Risk and reliability in geotechnical engineering. CRC Press.Phoon, K.-K., Kulhawy, F. H., and Grigoriu, M. D. (2003). Multiple resistance factor design for shallow transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering, 129(9):807–818.Puzrin, A. M., Alonso, E. E., and Pinyol, N. M. (2010). Geomechanics of failures. Springer Science & Business Media.Rackwitz, R. (2000). Reviewing probabilistic soils modeling. Computers and Geotechnics, 26:199–223.Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science & Business Media.Robertson, P. and Cabal, K. (2015). Guide to Cone Penetration Testing For Geotechnical Engineering. Gregg Drilling & Testing, Inc.Ross, S. (2012). Simulation. Knovel Library. Elsevier Science.Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo method, volume 10. John Wiley & Sons.Schuëller, G., Pradlwarter, H., and Koutsourelakis, P.-S. (2004). A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, 19(4):463–474.Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.Schweiger, H. and Peschl, G. (2005). Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32:422–435.Schweiger, H. and Peschl, G. M. (2004). Numerical analysis of deep excavations utilizing random set theory. In Geotechnical Innovations, pages 277–294.Schweizer, B., Wolff, E. F., et al. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4):879–885.Sentz, K., Ferson, S., et al. (2002). Combination of evidence in Dempster-Shafer theory, volume 4015. Sandia National Laboratories Albuquerque.Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8:229–231.Sklar, A. (1996). Random variables, distribution functions, and copulas: A personal look backward and forward. Lecture Notes-Monograph Series, 28:1–14.Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2):3–14.Soubra, A.-H. and Mao, N. (2012). Probabilistic analysis of obliquely loaded strip foundations. Soils and Foundations, 52(3):524–538.Sriboonchitta, S. and Kreinovich, V. (2018). Why are FGM copulas successful? a simple explanation. Advances in Fuzzy Systems, 2018.Staff, M.-W. (2004). Merriam-Webster’s collegiate dictionary, volume 2. Merriam-Webster.Stansbury, Dustin (2012). MCMC the Metropolis-Hastings sampler. https://theclevermachine.wordpress.com/2012/10/20/mcmc-the-metropolis-hastings-sampler/. [Online; accessed 28-December-2020].Tang, X. S., Li, D. Q., Cao, Z. J., and Phoon, K. K. (2017). Impact of sample size on geotechnical probabilistic model identification. Computers and Geotechnics, 87:229–240.Tang, X.-S., Li, D.-Q., Chen, Y.-F., Zhou, C.-B., and Zhang, L.-M. (2012). Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis. Computers and Geotechnics, 45:34–43.Tang, X. S., Li, D. Q., Rong, G., Phoon, K. K., and Zhou, C. B. (2013). Impact of copula selection on geotechnical reliability under incomplete probability information. Computers and Geotechnics, 49:264–278.Tang, X. S., Li, D. Q., Zhou, C. B., and Phoon, K. K. (2015). Copula-based approaches for evaluating slope reliability under incomplete probability information. Structural Safety, 52(PA):90–99.Tarbuck, E. J., Lutgens, F. K., Tasa, D., and Linneman, S. (2005). Earth: an introduction to physical geology. Pearson/Prentice Hall Upper Saddle River.Terazaghi, K. (1943). Theoretical soil mechanics. John Wiley and Sons.Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.Tobutt, D. and Richards, E. (1979). The reliability of earth slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 3(4):323–354.Tonon, F. (2004). Using random set theory to propagate epistemic uncertainty through a mechanical system. Reliability Engineering & System Safety, 85(1-3):169–181.Tonon, F., Bernardini, A., and Mammino, A. (2000a). Determination of parameters range in rock engineering by means of random set theory. Reliability Engineering System Safety, 70:241–261.Tonon, F., Bernardini, A., and Mammino, A. (2000b). Reliability analysis of rock mass response by means of random set theory. Reliability Engineering & System Safety, 70:263–282.Tonon, F., Mammino, A., Bernardini, A., et al. (1996). A random set approach to the uncertainties in rock engineering and tunnel lining design. In ISRM International Symposium-EUROCK 96. International Society for Rock Mechanics and Rock Engineering.Uribe, F. (2011). Implementation of simulation methods in structural reliability. Master’s thesis, Universidad Nacional de Colombia.Uzielli, M. and Mayne, P. W. (2011). Serviceability limit state CPT-based design for vertically loaded shallow footings on sand. Geomechanics and Geoengineering, 6(2):91–107.Uzielli, M. and Mayne, P. W. (2012). Load-displacement uncertainty of vertically loaded shallow footings on sands and effects on probabilistic settlement estimation. Georisk, 6(1):50–69.Vanmarcke, E. (2010). Random fields: analysis and synthesis. World scientific.Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2):228.Walsh, B. (2004). Markov chain monte carlo and gibbs sampling. Lecture notes for EEB, 581.Wang, F. and Li, H. (2018). The role of copulas in random fields: Characterization and application. Structural Safety, 75:75–88.Wang, J. P., Tang, X. S., Wu, Y. M., and Li, D. Q. (2018). Copula-based earthquake early warning decision-making strategy. Soil Dynamics and Earthquake Engineering, 115:324–330.Wang, M.-X., Tang, X.-S., Li, D.-Q., and Qi, X.-H. (2020). Subset simulation for efficient slope reliability analysis involving copula-based cross-correlated random fields. Computers and Geotechnics, 118:103326.Wang, Z. and Klir, G. (1992). Fuzzy Measure Theory. The Language of science. Springer US.Whittle, A. and Davies, R. (2006). Nicoll highway collapse: evaluation of geotechnical factors affecting design of excavation support system. In International Conference on Deep Excavations, volume 28, page 30.Wikipedia contributors (2021a). Autocorrelation — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Autocorrelation. [Online; accessed 3-January-2021].Wikipedia contributors (2021b). Examples of Markov chains — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Examples_of_Markov_chains. [Online; accessed 5-January-2021].Wikipedia contributors (2021c). Markov chain — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Markov_chain. [Online; accessed 4-Januray-2021].Wolff, T. F. (1985). Analysis and design of embankment dam slopes: a probabilistic approach. University Microfilms.Wu, X. Z. (2013a). Probabilistic slope stability analysis by a copula-based sampling method. Computational Geosciences, 17(5):739–755.Wu, X. Z. (2013b). Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems. Soils and Foundations, 53(4):540–556.Wu, X. Z. (2015). Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils and Foundations, 55(5):1243–1258.Wyllie, D. C. (2017). Rock slope engineering: civil applications. CRC Press.Xu, X., Li, J., Gong, J., Deng, H., and Wan, L. (2016a). Copula-Based Slope Reliability Analysis Using the Failure Domain Defined by the g-Line. Mathematical Problems in Engineering, 2016.Xu, Y., Tang, X. S., Wang, J. P., and Kuo-Chen, H. (2016b). Copula-based joint probability function for PGA and CAV: a case study from Taiwan. Earthquake Engineering and Structural Dynamics, 45(13):2123–2136.Xu, Z.-X. and Zhou, X.-P. (2018). Three-dimensional reliability analysis of seismic slopes using the copula-based sampling method. Engineering Geology, 242:81–91.Yager, R. R. (1987). On the Dempster-Shafer framework and new combination rules. Information Sciences, 41(2):93–137.Yu, Q. (2006). Slope reliability of embankment dam and its application to engineering practice. Master’s thesis, Hohai University, Nanjing, China.Zhang, J., Huang, H. W., Juang, C. H., and Su, W. W. (2014). Geotechnical reliability analysis with limited data: Consideration of model selection uncertainty. Engineering Geology, 181:27–37.Zhang, L. and Singh, V. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2):150–164.Zhang, L. and Singh, V. P. (2019).Copulas and their applications in water resources engineering. Cambridge University Press.Zhang, L., Tang, X., and Li, D. (2013). Bivariate distribution model of soil shear strength parameter using copula. Journal of Civil Engineering and Management, 30(2):11–17.Zhu, H., Zhang, L., Xiao, T., and Li, X. (2017). Generation of multivariate cross-correlated geotechnical random fields. Computers and Geotechnics, 86:95–107.Zou, Z.-H., Yi, Y., and Sun, J.-N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5):1020–1023.Zuev, K. M., Beck, J. L., Au, S.-K., and Katafygiotis, L. S. (2012). Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Computers & structures, 92:283–296.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80527/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1088322519.2021.pdf1088322519.2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf2847623https://repositorio.unal.edu.co/bitstream/unal/80527/4/1088322519.2021.pdfba9e1bff78bfe7a1af07e73edbbef971MD54THUMBNAIL1088322519.2021.pdf.jpg1088322519.2021.pdf.jpgGenerated Thumbnailimage/jpeg4324https://repositorio.unal.edu.co/bitstream/unal/80527/5/1088322519.2021.pdf.jpg09ba70d9ebb1e16ca521f306d744c81aMD55unal/80527oai:repositorio.unal.edu.co:unal/805272024-07-31 23:13:08.259Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==