A first passage problem for three-dimensional diffusion processes

Let d(t) = [Φ(y(t)) + Ψ(z(t))]dt, where y(t) and z(t) are independent diffusion process. The problem of computing the moment generating function and the moments of[T(y, z)], where T(y, z) is a first passage time for (y(t), z(t)), is considered and solved explicitly in particular instances.

Autores:
Lefebvre, Mario
Tipo de recurso:
Article of journal
Fecha de publicación:
1999
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43732
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43732
http://bdigital.unal.edu.co/33830/
Palabra clave:
Brownian motion
similarity solutions
integrated processes
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let d(t) = [Φ(y(t)) + Ψ(z(t))]dt, where y(t) and z(t) are independent diffusion process. The problem of computing the moment generating function and the moments of[T(y, z)], where T(y, z) is a first passage time for (y(t), z(t)), is considered and solved explicitly in particular instances.