Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico

ilustraciones, diagramas

Autores:
Sánchez Sierra, Christian Camilo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84501
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84501
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Compuesto heterocíclico
iones metálicos
Heterocyclic compounds
Metal ions
Cumarinas
Piridinas
Al3+
Base de Schiff
Quimiosensor
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_a3d12693bddf39f138bef4f8f24a5097
oai_identifier_str oai:repositorio.unal.edu.co:unal/84501
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
dc.title.translated.eng.fl_str_mv Synthesis and characterization of coumarin pyridine derivatives and their application in the detection of a metal ion
title Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
spellingShingle Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
540 - Química y ciencias afines
Compuesto heterocíclico
iones metálicos
Heterocyclic compounds
Metal ions
Cumarinas
Piridinas
Al3+
Base de Schiff
Quimiosensor
title_short Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
title_full Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
title_fullStr Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
title_full_unstemmed Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
title_sort Síntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálico
dc.creator.fl_str_mv Sánchez Sierra, Christian Camilo
dc.contributor.advisor.none.fl_str_mv Granados Oliveros, Gilma
dc.contributor.author.none.fl_str_mv Sánchez Sierra, Christian Camilo
dc.contributor.researchgroup.spa.fl_str_mv Síntesis Orgánica Sostenible
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Compuesto heterocíclico
iones metálicos
Heterocyclic compounds
Metal ions
Cumarinas
Piridinas
Al3+
Base de Schiff
Quimiosensor
dc.subject.lemb.spa.fl_str_mv Compuesto heterocíclico
iones metálicos
dc.subject.lemb.eng.fl_str_mv Heterocyclic compounds
Metal ions
dc.subject.proposal.spa.fl_str_mv Cumarinas
Piridinas
Al3+
Base de Schiff
Quimiosensor
description ilustraciones, diagramas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-22
dc.date.accessioned.none.fl_str_mv 2023-08-08T21:50:59Z
dc.date.available.none.fl_str_mv 2023-08-08T21:50:59Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84501
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84501
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv (1) Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Biomed Res. Int. 2013, 2013
(2) BERENBAUM, M. R. Coumarins. Herbiv. their Interact. with Second. Plant Metab. 1991, I, 221–249.
(3) Liu, B. Y.; Zhang, C.; Zeng, K. W.; Li, J.; Guo, X. Y.; Zhao, M. B.; Tu, P. F.; Jiang, Y. Anti-Inflammatory Prenylated Phenylpropenols and Coumarin Derivatives from Murraya Exotica. J. Nat. Prod. 2018, 81 (1), 22–33.
(4) Mileski, K. S.; Trifunović, S. S.; Ćirić, A. D.; Šakić, Ž. M.; Ristić, M. S.; Todorović, N. M.; Matevski, V. S.; Marin, P. D.; Tešević, V. V.; Džamić, A. M. Research on Chemical Composition and Biological Properties Including Antiquorum Sensing Activity of Angelica Pancicii Vandas Aerial Parts and Roots. J. Agric. Food Chem. 2017, 65 (50).
(5) Wang, Y. S.; Li, B. T.; Liu, S. X.; Wen, Z. Q.; Yang, J. H.; Zhang, H. Bin; Hao, X. J. Anisucoumaramide, a Bioactive Coumarin from Clausena Anisum-Olens. J. Nat. Prod. 2017, 80 (4), 798–804.
(6) Tee, K. H.; Ee, G. C. L.; Ismail, I. S.; Karunakaran, T.; Teh, S. S.; Jong, V. Y. M.; Mohd Nor, S. M. A New Coumarin from Stem Bark of Calophyllum Wallichianum. Nat. Prod. Res. 2018, 6419, 2565–2570.
(7) Chang, F. R.; Li, P. S.; Huang Liu, R.; Hu, H. C.; Hwang, T. L.; Lee, J. C.; Chen, S. L.; Wu, Y. C.; Cheng, Y. Bin. Bioactive Phenolic Components from the Twigs of Atalantia Buxifolia. J. Nat. Prod. 2018, 81 (7), 1534–1539.
8) Kamauchi, H.; Noji, M.; Kinoshita, K.; Takanami, T.; Koyama, K. Coumarins with an Unprecedented Tetracyclic Skeleton and Coumarin Dimers from Chemically Engineered Extracts of a Marine-Derived Fungus. Tetrahedron 2018, 74 (23), 2846–2856.
(9) Ma, Q. G.; Wei, R. R.; Yang, M.; Huang, X. Y.; Wang, F.; Sang, Z. P.; Liu, W. M.; Yu, Q. Molecular Characterization and Bioactivity of Coumarin Derivatives from the Fruits of Cucumis Bisexualis. J. Agric. Food Chem. 2018, 66 (22), 5540–5548.
(10) Frost et Al. - A Coumarin as a Fluorescent Compound in Scorpion Cuticle. Scorpions. 2001. 365-368.
(11) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin Hybrids as Novel Therapeutic Agents. Bioorganic Med. Chem. 2014, 22 (15), 3806–3814.
(12) Roncalés, F. J. Tratamiento Anticoagulante Oral: ¿warfarina o Acenocumarol? Med. Clin. (Barc). 2008, 131 (3), 98–100.
(13) Yu, X.; Teng, P.; Zhang, Y.; Xu, Z.; Zhang, M.; Zhang, W. Fitoterapia Design , Synthesis and Antifungal Activity Evaluation of Coumarin-3- Carboxamide Derivatives. Fitoterapia 2018, 127 (March), 387–395.
(14) Khomenko, T. M.; Zarubaev, V. V.; Orshanskaya, I. R.; Kadyrova, R. A.; Sannikova, V. A.; Korchagina, D. V.; Volcho, K. P.; Salakhutdinov, N. F. Anti-Influenza Activity of Monoterpene-Containing Substituted Coumarins. Bioorganic Med. Chem. Lett. 2017, 27 (13), 2920–2925.
(15) Bizzarri, B. M.; Botta, L.; Capecchi, E.; Celestino, I.; Checconi, P.; Palamara, A. T.; Nencioni, L.; Saladino, R. Regioselective IBX-Mediated Synthesis of Coumarin Derivatives with Antioxidant and Anti-Influenza Activities. J. Nat. Prod. 2017, 80 (12), 3247–3254.
(16) Şahin, Ö.; Özdemir, Ü. Ö.; Seferoğlu, N.; Genc, Z. K.; Kaya, K.; Aydıner, B.; Tekin, S.; Seferoğlu, Z. New Platinum (II) and Palladium (II) Complexes of Coumarin-Thiazole Schiff Base with a Fluorescent Chemosensor Properties: Synthesis, Spectroscopic Characterization, X-Ray Structure Determination, in Vitro Anticancer Activity on Various Human Carcinoma Ce. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 428–439.
(17) Sun, S.; Phrutivorapongkul, A.; Dibwe, D. F.; Balachandran, C.; Awale, S. Chemical Constituents of Thai Citrus Hystrix and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. J. Nat. Prod. 2018, 81 (8), 1877–1883.
(18) Hu, Y. Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J. W.; Lv, Z. S.; Feng, L. S. Recent Developments of Coumarin-Containing Derivatives and Their Anti-Tubercular Activity. Eur. J. Med. Chem. 2017, 136, 122–130.
(19) Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel Tacrine-Coumarin Hybrids Linked to 1,2,3-Triazole as Anti-Alzheimer’s Compounds: In Vitro and in Vivo Biological Evaluation and Docking Study. Bioorg. Chem. 2019, 83 (October 2018), 303–316.
(20) Oliveira, E.; Nuñez, C.; Rodríguez-González, B.; Capelo, J. L.; Lodeiro, C. Novel Small Stable Gold Nanoparticles Bearing Fluorescent Cysteine-Coumarin Probes as New Metal-Modulated Chemosensors. Inorg. Chem. 2011, 50 (18), 8797–8807.
(21) Bayraktutan, T.; Onganer, Y. Spectral-Luminescent Study of Coumarin 35 as Fluorescent “Light-up” Probe for BSA and DNA Monitoring. Dye. Pigment. 2017, 142, 62–68.
(22) Zhao, J.; Zhang, D.; Hua, W.; Li, W.; Xu, G.; Gou, S. Anticancer Activity of Bifunctional Organometallic Ru(II) Arene Complexes Containing a 7-Hydroxycoumarin Group. Organometallics 2018, 37 (3), 441–447.
(23) Singh, H.; Sreedharan, S.; Tiwari, R.; Walther, C.; Smythe, C.; Pramanik, S. K.; Thomas, J. A.; Das, A. A Fluorescent Chemodosimeter for Organelle-Specific Imaging of Nucleoside Polyphosphate Dynamics in Living Cells. Cryst. Growth Des. 2018, 18 (11), 7199–7206.
(24) Yan, L.; Li, R.; Shen, W.; Qi, Z. Multiple–color AIE Coumarin–based Schiff Bases and Potential Application in Yellow OLEDs. J. Lumin. 2018, 194 (January 2017), 151–155.
(25) Karami, B.; Kiani, M. ZrOCl2.8H2O/SiO2: An Efficient and Recyclable Catalyst for the Preparation of Coumarin Derivatives by Pechmann Condensation Reaction. Catal. Commun. 2011, 14 (1), 62–67.
(26) Prousis, K. C.; Avlonitis, N.; Heropoulos, G. A.; Calogeropoulou, T. FeCl3-Catalysed Ultrasonic-Assisted, Solvent-Free Synthesis of 4-Substituted Coumarins. A Useful Complement to the Pechmann Reaction. Ultrason. Sonochem. 2014, 21 (3), 937–942.
(27) Augustine, J. K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Lett. 2012, 53 (33), 4422–4425.
(28) Patre, R. E.; Shet, J. B.; Parameswaran, P. S.; Tilve, S. G. Cascade Wittig Reaction-Double Claisen and Cope Rearrangements: One-Pot Synthesis of Diprenylated Coumarins Gravelliferone, Balsamiferone, and 6,8-Diprenylumbelliferone. Tetrahedron Lett. 2009, 50 (47), 6488–6490.
(29) Ghomi, J. S.; Akbarzadeh, Z. Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4nanocatalyst: A Rapid and Green Synthesis of Coumarins under Solvent-Free Conditions. Ultrason. Sonochem. 2018, 40 (April 2017), 78–83.
(30) Khan, D.; Mukhtar, S.; Alsharif, M. A.; Alahmdi, M. I.; Ahmed, N. PhI(OAc)2 mediated an Efficient Knoevenagel Reaction and Their Synthetic Application for Coumarin Derivatives. Tetrahedron Lett. 2017, 58 (32), 3183–3187.
(31) Matern, U.; Lüer, P.; Kreusch, D. Biosynthesis of Coumarins. Compr. Nat. Prod. Chem. 1999, 1, 623–637.
(32) Bhatta, S. R.; Bheemireddy, V.; Thakur, A. A Redox-Driven Fluorescence “Off-On” Molecular Switch Based on a 1,1′-Unsymmetrically Substituted Ferrocenyl Coumarin System: Mimicking Combinational Logic Operation. Organometallics 2017, 36 (4), 829–838.
(33) Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord. Chem. Rev. 2012, 256 (1–2), 170–192.
(34) Requena, A., Zúñiga, J. Espectroscopía, Pearson/Prentice Hall, 2004,353-358
(35) De Silva, A. P.; Moody, T. S.; Wright, G. D. Fluorescent PET (Photoinduced Electron Transfer) Sensors as Potent Analytical Tools. Analyst 2009, 134 (12), 2385–2393.
(36) Escudero, D. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles. Acc. Chem. Res. 2016, 49 (9), 1816–1824.
(37) Liu, B.; Bazan, G. C. Optimization of the Molecular Orbital Energies of Conjugated Polymers for Optical Amplification of Fluorescent Sensors. J. Am. Chem. Soc. 2006, 128 (4), 1188–1196.
(38) Yanar, U.; Babür, B.; Pekyilmaz, D.; Yahaya, I.; Aydiner, B.; Dede, Y.; Seferoʇlu, Z. A Fluorescent Coumarin-Thiophene Hybrid as a Ratiometric Chemosensor for Anions: Synthesis, Photophysics, Anion Sensing and Orbital Interactions. J. Mol. Struct. 2016, 1108, 269–277.
(39) Babür, B.; Seferoğlu, N.; Seferoğlu, Z. A Coumarin-Pyrazolone Based Fluorescent Probe for Selective Colorimetric and Fluorimetric Fluoride Detection: Synthesis, Spectroscopic Properties and DFT Calculations. J. Mol. Struct. 2018, 1161, 218–225.
(40) Wu, Q.; Liu, Z.; Cao, D.; Guan, R.; Wang, K.; Shan, Y.; Xu, Y.; Ma, L. Coumarin Amide Derivatives as Fluorescence Chemosensors for Cyanide Anions. Mater. Chem. Phys. 2015, 161, 43–48.
(41) Cheng, X.; Tang, R.; Jia, H.; Feng, J.; Qin, J.; Li, Z. New Fluorescent and Colorimetric Probe for Cyanide: Direct Reactivity, High Selectivity, and Bioimaging Application. ACS Appl. Mater. Interfaces 2012, 4 (8), 4387–4392.
(42) Meng, X.; Li, S.; Ma, W.; Wang, J.; Hu, Z.; Cao, D. Highly Sensitive and Selective Chemosensor for Cu2+ and H2PO4−based on Coumarin Fluorophore. Dye. Pigment. 2018, 154 (November 2017), 194–198.
(43) Tan, W.; Leng, T.; Lai, G.; Li, Z.; Wang, K.; Shen, Y.; Wang, C. A Novel Coumarin-Based Fluorescence Enhancement and Colorimetric Probe for Cu2+ via Selective Hydrolysis Reaction. J. Photochem. Photobiol. A Chem. 2016, 324, 81–86.
(44) Mukherjee, S.; Hazra, S.; Chowdhury, S.; Sarkar, S.; Chattopadhyay, K.; Pramanik, A. A Novel Pyrrole Fused Coumarin Based Highly Sensitive and Selective Fluorescence Chemosensor for Detection of Cu2+ ions and Applications towards Live Cell Imaging. J. Photochem. Photobiol. A Chem. 2018, 364 (May), 635–644.
(45) Lim, D. S.; Park, S. Y.; Hwang, K. S.; Chang, S. K. Colorimetric Determination of Hg2+ via Thiosemicarbazide-to-Oxadiazole Transformation of a Coumarin-Benzopyrylium Dye. Tetrahedron Lett. 2018, 59 (19), 1819–1822.
(46) Yan, Z.; Yuen, M. F.; Hu, L.; Sun, P.; Lee, C. S. Advances for the Colorimetric Detection of Hg2+ in Aqueous Solution. RSC Adv. 2014, 4 (89), 48373–48388.
(47) Wu, C.; Wang, J.; Shen, J.; Bi, C.; Zhou, H. Coumarin-Based Hg2+ fluorescent Probe: Synthesis and Turn-on Fluorescence Detection in Neat Aqueous Solution. Sensors Actuators, B Chem. 2017, 243, 678–683.
(48) Warrier, S.; Kharkar, P. S. Highly Selective On-off Fluorescence Recognition of Fe3+based on a Coumarin Derivative and Its Application in Live-Cell Imaging. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2018, 188, 659–665.
(49) Li, Z.; Zhou, Y.; Yin, K.; Yu, Z.; Li, Y.; Ren, J. A New Fluorescence “Turn-on” Type Chemosensor for Fe3+ based on Naphthalimide and Coumarin. Dye. Pigment. 2014, 105, 7–11.
(50) Yao, J.; Dou, W.; Qin, W.; Liu, W. A New Coumarin-Based Chemosensor for Fe3+ in Water. Inorg. Chem. Commun. 2009, 12 (2), 116–118.
(51) An, J. M.; Yan, M. H.; Yang, Z. Y.; Li, T. R.; Zhou, Q. X. A Turn-on Fluorescent Sensor for Zn(II) Based on Fluorescein-Coumarin Conjugate. Dye. Pigment. 2013, 99 (1), 1–5.
(52) Gao, Y.; Liu, H.; Li, P.; Liu, Q.; Wang, W.; Zhao, B. Coumarin-Based Fluorescent Chemosensor for the Selective Quantification of Zn2+and AcO−in an Aqueous Solution and Living Cells. Tetrahedron Lett. 2017, 58 (23), 2193–2198.
(53) Zhu, Q.; Li, L.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. A Ratiometric Al3+ ion Probe Based on the Coumarin-Quinoline FRET System. J. Photochem. Photobiol. A Chem. 2016, 328, 217–224.
(54) Yang, L.; Wang, C.; Chang, G.; Ren, X. Facile Synthesis of New Coumarin-Based Colorimetric and Fluorescent Chemosensors: Highly Efficient and Selective Detection of Pd2+in Aqueous Solutions. Sensors Actuators, B Chem. 2017, 240, 212–219.
(55) Liu, Z.; Wang, W.; Xu, H.; Sheng, L.; Chen, S.; Huang, D.; Sun, F. A “Naked Eye” and Ratiometric Chemosensor for Cobalt(II) Based on Coumarin Platform in Aqueous Solution. Inorg. Chem. Commun. 2015, 62, 19–23.
(56) Jiang, J.; Gou, C.; Luo, J.; Yi, C.; Liu, X. A Novel Highly Selective Colorimetric Sensor for Ni(II) Ion Using Coumarin Derivatives. Inorg. Chem. Commun. 2012, 15, 12–15.
(57) Xu, J.; Zheng, W.; Huang, X.; Cheng, Y.; Shen, P. Selective Fluorescent Probe Based on Schiff Base Derived from Hydroxymethyl Coumarin and Aminated Sudan I Dye for Mg2+ detection. Arab. J. Chem. 2017, 10, 2729–2735.
(58) Ezeh, V. C.; Harrop, T. C. A Sensitive and Selective Fluorescence Sensor for the Detection of Arsenic(III) in Organic Media. Inorg. Chem. 2012, 51 (3), 1213–1215.
(59) Tang, Y.; Li, Y.; Han, J.; Mao, Y.; Ni, L.; Wang, Y. A Coumarin Based Fluorescent Probe for Rapidly Distinguishing of Hypochlorite and Copper (II) Ion in Organisms. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019, 208, 299–308.
(60) Pang, B. jie; Li, Q.; Li, C. rui; Yang, Z. yin. A Highly Selective and Sensitive Coumarin Derived Fluorescent Probe for Detecting Hg2+ in 100% Aqueous Solutions. J. Lumin. 2019, 205 (September 2018), 446–450.
(61) Li, Q.; Hu, Y.; Hou, H. N.; Yang, W. N.; Hu, S. L. A New Coumarin-Carbonothioate-Based Turn-on Fluorescent Chemodosimeter for Selective Detection of Hg2+. Inorganica Chim. Acta 2018, 471, 705–708.
(62) Huang, K.; Jiao, X.; Liu, C.; Wang, Q.; Qiu, X.; Zheng, D.; He, S.; Zhao, L.; Zeng, X. Highly Selective and Sensitive Fluorescent Probe for Mercury Ions Based on a Novel Rhodol-Coumarin Hybrid Dye. Dye. Pigment. 2017, 142, 437–446.
(63) Shaily; Kumar, A.; Ahmed, N. Indirect Approach for CN-Detection: Development of “Naked-Eye” Hg2+ Induced Turn-Off Fluorescence and Turn-On Cyanide Sensing by the Hg2+Displacement Approach. Ind. Eng. Chem. Res. 2017, 56 (22), 6358–6368.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 99 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Administración
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84501/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84501/2/1032356235.2021.pdf.pdf
https://repositorio.unal.edu.co/bitstream/unal/84501/3/1032356235.2021.pdf.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f40e51cb27afe484d2e46f67982371a2
834a3da0b04358a5ddb90385062d770e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886164361117696
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Granados Oliveros, Gilma8f8e7616dcddd13710f21428daa3edfeSánchez Sierra, Christian Camilo29a61c89450c6dfe69a379b9e282fa48Síntesis Orgánica Sostenible2023-08-08T21:50:59Z2023-08-08T21:50:59Z2021-11-22https://repositorio.unal.edu.co/handle/unal/84501Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThree new and novel hybrids of coumarin pyridines with a donor π acceptor system were synthesized in a 5-step series, without metal catalysts or special experimental conditions. These compounds were characterized by melting point, IR-TF, 1H NMR, APT and 13C, UV-Vis spectroscopy and fluorescence. Also, mass spectrometry. The photophysical characteristics of the pyridine coumarin derivatives were studied, showing that they are strong emitters of blue light when excited at a λem of 300 nm, reaching quantum yields between 10 and 12%, these were evaluated against various metal ions, showing a high selectivity for Al3+. (Texto tomado de la fuente)Tres nuevos y novedosos híbridos de cumarín piridinas con un sistema donor π aceptor fueron sintetizados en una serie de 5 pasos, sin catalizadores metálicos, ni condiciones experimentales especiales. Estos compuestos fueron caracterizados por punto de fusión, IR-TF, RMN 1H, APT y 13C, espectroscopía de UV-Vis y fluorescencia. Además, de espectrometría de masas. Se estudiaron las características fotofísicas de los derivados cumarín piridínicos mostrando ser unos fuertes emisores de luz azul al ser excitados a una λem de 300 nm llegando a tener rendimientos cuánticos entre el 10 y 12 %, estos fueron evaluados frente a diversos iones metálicos, mostrando una alta selectividad por Al3+.MaestríaQuímica Orgánica, supramolecular99 páginasapplication/pdfspa540 - Química y ciencias afinesCompuesto heterocíclicoiones metálicosHeterocyclic compoundsMetal ionsCumarinasPiridinasAl3+Base de SchiffQuimiosensorSíntesis y caracterización de derivados cumarín piridínicos y su aplicación en la detección de un ion metálicoSynthesis and characterization of coumarin pyridine derivatives and their application in the detection of a metal ionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de AdministraciónBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá(1) Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Biomed Res. Int. 2013, 2013(2) BERENBAUM, M. R. Coumarins. Herbiv. their Interact. with Second. Plant Metab. 1991, I, 221–249.(3) Liu, B. Y.; Zhang, C.; Zeng, K. W.; Li, J.; Guo, X. Y.; Zhao, M. B.; Tu, P. F.; Jiang, Y. Anti-Inflammatory Prenylated Phenylpropenols and Coumarin Derivatives from Murraya Exotica. J. Nat. Prod. 2018, 81 (1), 22–33.(4) Mileski, K. S.; Trifunović, S. S.; Ćirić, A. D.; Šakić, Ž. M.; Ristić, M. S.; Todorović, N. M.; Matevski, V. S.; Marin, P. D.; Tešević, V. V.; Džamić, A. M. Research on Chemical Composition and Biological Properties Including Antiquorum Sensing Activity of Angelica Pancicii Vandas Aerial Parts and Roots. J. Agric. Food Chem. 2017, 65 (50).(5) Wang, Y. S.; Li, B. T.; Liu, S. X.; Wen, Z. Q.; Yang, J. H.; Zhang, H. Bin; Hao, X. J. Anisucoumaramide, a Bioactive Coumarin from Clausena Anisum-Olens. J. Nat. Prod. 2017, 80 (4), 798–804.(6) Tee, K. H.; Ee, G. C. L.; Ismail, I. S.; Karunakaran, T.; Teh, S. S.; Jong, V. Y. M.; Mohd Nor, S. M. A New Coumarin from Stem Bark of Calophyllum Wallichianum. Nat. Prod. Res. 2018, 6419, 2565–2570.(7) Chang, F. R.; Li, P. S.; Huang Liu, R.; Hu, H. C.; Hwang, T. L.; Lee, J. C.; Chen, S. L.; Wu, Y. C.; Cheng, Y. Bin. Bioactive Phenolic Components from the Twigs of Atalantia Buxifolia. J. Nat. Prod. 2018, 81 (7), 1534–1539.8) Kamauchi, H.; Noji, M.; Kinoshita, K.; Takanami, T.; Koyama, K. Coumarins with an Unprecedented Tetracyclic Skeleton and Coumarin Dimers from Chemically Engineered Extracts of a Marine-Derived Fungus. Tetrahedron 2018, 74 (23), 2846–2856.(9) Ma, Q. G.; Wei, R. R.; Yang, M.; Huang, X. Y.; Wang, F.; Sang, Z. P.; Liu, W. M.; Yu, Q. Molecular Characterization and Bioactivity of Coumarin Derivatives from the Fruits of Cucumis Bisexualis. J. Agric. Food Chem. 2018, 66 (22), 5540–5548.(10) Frost et Al. - A Coumarin as a Fluorescent Compound in Scorpion Cuticle. Scorpions. 2001. 365-368.(11) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin Hybrids as Novel Therapeutic Agents. Bioorganic Med. Chem. 2014, 22 (15), 3806–3814.(12) Roncalés, F. J. Tratamiento Anticoagulante Oral: ¿warfarina o Acenocumarol? Med. Clin. (Barc). 2008, 131 (3), 98–100.(13) Yu, X.; Teng, P.; Zhang, Y.; Xu, Z.; Zhang, M.; Zhang, W. Fitoterapia Design , Synthesis and Antifungal Activity Evaluation of Coumarin-3- Carboxamide Derivatives. Fitoterapia 2018, 127 (March), 387–395.(14) Khomenko, T. M.; Zarubaev, V. V.; Orshanskaya, I. R.; Kadyrova, R. A.; Sannikova, V. A.; Korchagina, D. V.; Volcho, K. P.; Salakhutdinov, N. F. Anti-Influenza Activity of Monoterpene-Containing Substituted Coumarins. Bioorganic Med. Chem. Lett. 2017, 27 (13), 2920–2925.(15) Bizzarri, B. M.; Botta, L.; Capecchi, E.; Celestino, I.; Checconi, P.; Palamara, A. T.; Nencioni, L.; Saladino, R. Regioselective IBX-Mediated Synthesis of Coumarin Derivatives with Antioxidant and Anti-Influenza Activities. J. Nat. Prod. 2017, 80 (12), 3247–3254.(16) Şahin, Ö.; Özdemir, Ü. Ö.; Seferoğlu, N.; Genc, Z. K.; Kaya, K.; Aydıner, B.; Tekin, S.; Seferoğlu, Z. New Platinum (II) and Palladium (II) Complexes of Coumarin-Thiazole Schiff Base with a Fluorescent Chemosensor Properties: Synthesis, Spectroscopic Characterization, X-Ray Structure Determination, in Vitro Anticancer Activity on Various Human Carcinoma Ce. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 428–439.(17) Sun, S.; Phrutivorapongkul, A.; Dibwe, D. F.; Balachandran, C.; Awale, S. Chemical Constituents of Thai Citrus Hystrix and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. J. Nat. Prod. 2018, 81 (8), 1877–1883.(18) Hu, Y. Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J. W.; Lv, Z. S.; Feng, L. S. Recent Developments of Coumarin-Containing Derivatives and Their Anti-Tubercular Activity. Eur. J. Med. Chem. 2017, 136, 122–130.(19) Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel Tacrine-Coumarin Hybrids Linked to 1,2,3-Triazole as Anti-Alzheimer’s Compounds: In Vitro and in Vivo Biological Evaluation and Docking Study. Bioorg. Chem. 2019, 83 (October 2018), 303–316.(20) Oliveira, E.; Nuñez, C.; Rodríguez-González, B.; Capelo, J. L.; Lodeiro, C. Novel Small Stable Gold Nanoparticles Bearing Fluorescent Cysteine-Coumarin Probes as New Metal-Modulated Chemosensors. Inorg. Chem. 2011, 50 (18), 8797–8807.(21) Bayraktutan, T.; Onganer, Y. Spectral-Luminescent Study of Coumarin 35 as Fluorescent “Light-up” Probe for BSA and DNA Monitoring. Dye. Pigment. 2017, 142, 62–68.(22) Zhao, J.; Zhang, D.; Hua, W.; Li, W.; Xu, G.; Gou, S. Anticancer Activity of Bifunctional Organometallic Ru(II) Arene Complexes Containing a 7-Hydroxycoumarin Group. Organometallics 2018, 37 (3), 441–447.(23) Singh, H.; Sreedharan, S.; Tiwari, R.; Walther, C.; Smythe, C.; Pramanik, S. K.; Thomas, J. A.; Das, A. A Fluorescent Chemodosimeter for Organelle-Specific Imaging of Nucleoside Polyphosphate Dynamics in Living Cells. Cryst. Growth Des. 2018, 18 (11), 7199–7206.(24) Yan, L.; Li, R.; Shen, W.; Qi, Z. Multiple–color AIE Coumarin–based Schiff Bases and Potential Application in Yellow OLEDs. J. Lumin. 2018, 194 (January 2017), 151–155.(25) Karami, B.; Kiani, M. ZrOCl2.8H2O/SiO2: An Efficient and Recyclable Catalyst for the Preparation of Coumarin Derivatives by Pechmann Condensation Reaction. Catal. Commun. 2011, 14 (1), 62–67.(26) Prousis, K. C.; Avlonitis, N.; Heropoulos, G. A.; Calogeropoulou, T. FeCl3-Catalysed Ultrasonic-Assisted, Solvent-Free Synthesis of 4-Substituted Coumarins. A Useful Complement to the Pechmann Reaction. Ultrason. Sonochem. 2014, 21 (3), 937–942.(27) Augustine, J. K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An Efficient One-Pot Synthesis of Coumarins Mediated by Propylphosphonic Anhydride (T3P) via the Perkin Condensation. Tetrahedron Lett. 2012, 53 (33), 4422–4425.(28) Patre, R. E.; Shet, J. B.; Parameswaran, P. S.; Tilve, S. G. Cascade Wittig Reaction-Double Claisen and Cope Rearrangements: One-Pot Synthesis of Diprenylated Coumarins Gravelliferone, Balsamiferone, and 6,8-Diprenylumbelliferone. Tetrahedron Lett. 2009, 50 (47), 6488–6490.(29) Ghomi, J. S.; Akbarzadeh, Z. Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4nanocatalyst: A Rapid and Green Synthesis of Coumarins under Solvent-Free Conditions. Ultrason. Sonochem. 2018, 40 (April 2017), 78–83.(30) Khan, D.; Mukhtar, S.; Alsharif, M. A.; Alahmdi, M. I.; Ahmed, N. PhI(OAc)2 mediated an Efficient Knoevenagel Reaction and Their Synthetic Application for Coumarin Derivatives. Tetrahedron Lett. 2017, 58 (32), 3183–3187.(31) Matern, U.; Lüer, P.; Kreusch, D. Biosynthesis of Coumarins. Compr. Nat. Prod. Chem. 1999, 1, 623–637.(32) Bhatta, S. R.; Bheemireddy, V.; Thakur, A. A Redox-Driven Fluorescence “Off-On” Molecular Switch Based on a 1,1′-Unsymmetrically Substituted Ferrocenyl Coumarin System: Mimicking Combinational Logic Operation. Organometallics 2017, 36 (4), 829–838.(33) Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord. Chem. Rev. 2012, 256 (1–2), 170–192.(34) Requena, A., Zúñiga, J. Espectroscopía, Pearson/Prentice Hall, 2004,353-358(35) De Silva, A. P.; Moody, T. S.; Wright, G. D. Fluorescent PET (Photoinduced Electron Transfer) Sensors as Potent Analytical Tools. Analyst 2009, 134 (12), 2385–2393.(36) Escudero, D. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles. Acc. Chem. Res. 2016, 49 (9), 1816–1824.(37) Liu, B.; Bazan, G. C. Optimization of the Molecular Orbital Energies of Conjugated Polymers for Optical Amplification of Fluorescent Sensors. J. Am. Chem. Soc. 2006, 128 (4), 1188–1196.(38) Yanar, U.; Babür, B.; Pekyilmaz, D.; Yahaya, I.; Aydiner, B.; Dede, Y.; Seferoʇlu, Z. A Fluorescent Coumarin-Thiophene Hybrid as a Ratiometric Chemosensor for Anions: Synthesis, Photophysics, Anion Sensing and Orbital Interactions. J. Mol. Struct. 2016, 1108, 269–277.(39) Babür, B.; Seferoğlu, N.; Seferoğlu, Z. A Coumarin-Pyrazolone Based Fluorescent Probe for Selective Colorimetric and Fluorimetric Fluoride Detection: Synthesis, Spectroscopic Properties and DFT Calculations. J. Mol. Struct. 2018, 1161, 218–225.(40) Wu, Q.; Liu, Z.; Cao, D.; Guan, R.; Wang, K.; Shan, Y.; Xu, Y.; Ma, L. Coumarin Amide Derivatives as Fluorescence Chemosensors for Cyanide Anions. Mater. Chem. Phys. 2015, 161, 43–48.(41) Cheng, X.; Tang, R.; Jia, H.; Feng, J.; Qin, J.; Li, Z. New Fluorescent and Colorimetric Probe for Cyanide: Direct Reactivity, High Selectivity, and Bioimaging Application. ACS Appl. Mater. Interfaces 2012, 4 (8), 4387–4392.(42) Meng, X.; Li, S.; Ma, W.; Wang, J.; Hu, Z.; Cao, D. Highly Sensitive and Selective Chemosensor for Cu2+ and H2PO4−based on Coumarin Fluorophore. Dye. Pigment. 2018, 154 (November 2017), 194–198.(43) Tan, W.; Leng, T.; Lai, G.; Li, Z.; Wang, K.; Shen, Y.; Wang, C. A Novel Coumarin-Based Fluorescence Enhancement and Colorimetric Probe for Cu2+ via Selective Hydrolysis Reaction. J. Photochem. Photobiol. A Chem. 2016, 324, 81–86.(44) Mukherjee, S.; Hazra, S.; Chowdhury, S.; Sarkar, S.; Chattopadhyay, K.; Pramanik, A. A Novel Pyrrole Fused Coumarin Based Highly Sensitive and Selective Fluorescence Chemosensor for Detection of Cu2+ ions and Applications towards Live Cell Imaging. J. Photochem. Photobiol. A Chem. 2018, 364 (May), 635–644.(45) Lim, D. S.; Park, S. Y.; Hwang, K. S.; Chang, S. K. Colorimetric Determination of Hg2+ via Thiosemicarbazide-to-Oxadiazole Transformation of a Coumarin-Benzopyrylium Dye. Tetrahedron Lett. 2018, 59 (19), 1819–1822.(46) Yan, Z.; Yuen, M. F.; Hu, L.; Sun, P.; Lee, C. S. Advances for the Colorimetric Detection of Hg2+ in Aqueous Solution. RSC Adv. 2014, 4 (89), 48373–48388.(47) Wu, C.; Wang, J.; Shen, J.; Bi, C.; Zhou, H. Coumarin-Based Hg2+ fluorescent Probe: Synthesis and Turn-on Fluorescence Detection in Neat Aqueous Solution. Sensors Actuators, B Chem. 2017, 243, 678–683.(48) Warrier, S.; Kharkar, P. S. Highly Selective On-off Fluorescence Recognition of Fe3+based on a Coumarin Derivative and Its Application in Live-Cell Imaging. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2018, 188, 659–665.(49) Li, Z.; Zhou, Y.; Yin, K.; Yu, Z.; Li, Y.; Ren, J. A New Fluorescence “Turn-on” Type Chemosensor for Fe3+ based on Naphthalimide and Coumarin. Dye. Pigment. 2014, 105, 7–11.(50) Yao, J.; Dou, W.; Qin, W.; Liu, W. A New Coumarin-Based Chemosensor for Fe3+ in Water. Inorg. Chem. Commun. 2009, 12 (2), 116–118.(51) An, J. M.; Yan, M. H.; Yang, Z. Y.; Li, T. R.; Zhou, Q. X. A Turn-on Fluorescent Sensor for Zn(II) Based on Fluorescein-Coumarin Conjugate. Dye. Pigment. 2013, 99 (1), 1–5.(52) Gao, Y.; Liu, H.; Li, P.; Liu, Q.; Wang, W.; Zhao, B. Coumarin-Based Fluorescent Chemosensor for the Selective Quantification of Zn2+and AcO−in an Aqueous Solution and Living Cells. Tetrahedron Lett. 2017, 58 (23), 2193–2198.(53) Zhu, Q.; Li, L.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. A Ratiometric Al3+ ion Probe Based on the Coumarin-Quinoline FRET System. J. Photochem. Photobiol. A Chem. 2016, 328, 217–224.(54) Yang, L.; Wang, C.; Chang, G.; Ren, X. Facile Synthesis of New Coumarin-Based Colorimetric and Fluorescent Chemosensors: Highly Efficient and Selective Detection of Pd2+in Aqueous Solutions. Sensors Actuators, B Chem. 2017, 240, 212–219.(55) Liu, Z.; Wang, W.; Xu, H.; Sheng, L.; Chen, S.; Huang, D.; Sun, F. A “Naked Eye” and Ratiometric Chemosensor for Cobalt(II) Based on Coumarin Platform in Aqueous Solution. Inorg. Chem. Commun. 2015, 62, 19–23.(56) Jiang, J.; Gou, C.; Luo, J.; Yi, C.; Liu, X. A Novel Highly Selective Colorimetric Sensor for Ni(II) Ion Using Coumarin Derivatives. Inorg. Chem. Commun. 2012, 15, 12–15.(57) Xu, J.; Zheng, W.; Huang, X.; Cheng, Y.; Shen, P. Selective Fluorescent Probe Based on Schiff Base Derived from Hydroxymethyl Coumarin and Aminated Sudan I Dye for Mg2+ detection. Arab. J. Chem. 2017, 10, 2729–2735.(58) Ezeh, V. C.; Harrop, T. C. A Sensitive and Selective Fluorescence Sensor for the Detection of Arsenic(III) in Organic Media. Inorg. Chem. 2012, 51 (3), 1213–1215.(59) Tang, Y.; Li, Y.; Han, J.; Mao, Y.; Ni, L.; Wang, Y. A Coumarin Based Fluorescent Probe for Rapidly Distinguishing of Hypochlorite and Copper (II) Ion in Organisms. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019, 208, 299–308.(60) Pang, B. jie; Li, Q.; Li, C. rui; Yang, Z. yin. A Highly Selective and Sensitive Coumarin Derived Fluorescent Probe for Detecting Hg2+ in 100% Aqueous Solutions. J. Lumin. 2019, 205 (September 2018), 446–450.(61) Li, Q.; Hu, Y.; Hou, H. N.; Yang, W. N.; Hu, S. L. A New Coumarin-Carbonothioate-Based Turn-on Fluorescent Chemodosimeter for Selective Detection of Hg2+. Inorganica Chim. Acta 2018, 471, 705–708.(62) Huang, K.; Jiao, X.; Liu, C.; Wang, Q.; Qiu, X.; Zheng, D.; He, S.; Zhao, L.; Zeng, X. Highly Selective and Sensitive Fluorescent Probe for Mercury Ions Based on a Novel Rhodol-Coumarin Hybrid Dye. Dye. Pigment. 2017, 142, 437–446.(63) Shaily; Kumar, A.; Ahmed, N. Indirect Approach for CN-Detection: Development of “Naked-Eye” Hg2+ Induced Turn-Off Fluorescence and Turn-On Cyanide Sensing by the Hg2+Displacement Approach. Ind. Eng. Chem. Res. 2017, 56 (22), 6358–6368.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84501/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032356235.2021.pdf.pdf1032356235.2021.pdf.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf13648743https://repositorio.unal.edu.co/bitstream/unal/84501/2/1032356235.2021.pdf.pdff40e51cb27afe484d2e46f67982371a2MD52THUMBNAIL1032356235.2021.pdf.pdf.jpg1032356235.2021.pdf.pdf.jpgGenerated Thumbnailimage/jpeg4545https://repositorio.unal.edu.co/bitstream/unal/84501/3/1032356235.2021.pdf.pdf.jpg834a3da0b04358a5ddb90385062d770eMD53unal/84501oai:repositorio.unal.edu.co:unal/845012023-08-08 23:03:27.781Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=