A counterexample in the theory of linear singularly perturbed systems
In this note we compare the bounded solutions of the linear singularly perturbed system ε X' = A (t) x + f (t), with the solutions of the algebraic system A (t) x + f (t) = 0. Here A and f are bounded C1 functions with bounded derivatives. We assume that the eigenvalues of A (t) satisfy | R...
- Autores:
-
Naulin, Raúl
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1991
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43433
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43433
http://bdigital.unal.edu.co/33531/
- Palabra clave:
- 51 Matemáticas / Mathematics
Bounded solutions
system linear algebraic system
bounded functions
Lipschitz function
Soluciones acotadas
sistema lineal
sistema algebráico
funciones acotadas
función de Lipschitz
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this note we compare the bounded solutions of the linear singularly perturbed system ε X' = A (t) x + f (t), with the solutions of the algebraic system A (t) x + f (t) = 0. Here A and f are bounded C1 functions with bounded derivatives. We assume that the eigenvalues of A (t) satisfy | R e λ (t )| ≥ y and gt; 0. It is known that for small ε, the following estimate is valid hasta ||kε (f) + A-1 f || ≤ εL || f ||1, where kε(f) denotes the bounded solution of ε X' = A(t)x +f (t), || f || = sup R| f(t)|, || f ||1 : = || f || +|| f´ || and L is a constant. We prove that this estimate cannot be replaced by ||kε (f) + A-1 f || ≤ εL || f ||. Futhermore, if, instead of the condition that A be C1, we require that the function be bounded and Lipschitz continuous, we show that the same estimate, ||kε (f) + A-1 || ≤ εL || f ||1, can be obtained. |
---|