Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia

ilustraciones, mapas

Autores:
Buitrago Segura, Harold Steven
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84096
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84096
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::536 - Calor
Calentamiento global
Calorimetría
Global warming
Calorimeters and calorimetry
Campo térmico
Flujo de calor
Diferencias finitas
Gradiente geotérmico
Cordillera oriental
Thermal field
Heat flow
Finite difference
Geothermal gradient
Eastern cordillera
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_a1be3a50933535e37cd0818b04a9bcfd
oai_identifier_str oai:repositorio.unal.edu.co:unal/84096
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
dc.title.translated.eng.fl_str_mv Modeling of the lithospheric thermal field by the method of conservative finite differences applied around the area of the Eastern Cordillera , Colombia
title Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
spellingShingle Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::536 - Calor
Calentamiento global
Calorimetría
Global warming
Calorimeters and calorimetry
Campo térmico
Flujo de calor
Diferencias finitas
Gradiente geotérmico
Cordillera oriental
Thermal field
Heat flow
Finite difference
Geothermal gradient
Eastern cordillera
title_short Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
title_full Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
title_fullStr Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
title_full_unstemmed Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
title_sort Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia
dc.creator.fl_str_mv Buitrago Segura, Harold Steven
dc.contributor.advisor.none.fl_str_mv Vargas Jimenez, Carlos Alberto
Neumann, Florian
dc.contributor.author.none.fl_str_mv Buitrago Segura, Harold Steven
dc.contributor.researchgroup.spa.fl_str_mv Cenit
dc.contributor.subjectmatterexpert.none.fl_str_mv Contreras, Juan
dc.contributor.orcid.spa.fl_str_mv Buitrago, Harold [0000-0002-0592-0370]
dc.contributor.cvlac.spa.fl_str_mv Buitrago Segura, Harold Steven
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::536 - Calor
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::536 - Calor
Calentamiento global
Calorimetría
Global warming
Calorimeters and calorimetry
Campo térmico
Flujo de calor
Diferencias finitas
Gradiente geotérmico
Cordillera oriental
Thermal field
Heat flow
Finite difference
Geothermal gradient
Eastern cordillera
dc.subject.lemb.spa.fl_str_mv Calentamiento global
Calorimetría
dc.subject.lemb.eng.fl_str_mv Global warming
Calorimeters and calorimetry
dc.subject.proposal.spa.fl_str_mv Campo térmico
Flujo de calor
Diferencias finitas
Gradiente geotérmico
Cordillera oriental
dc.subject.proposal.eng.fl_str_mv Thermal field
Heat flow
Finite difference
Geothermal gradient
Eastern cordillera
description ilustraciones, mapas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-06-28T20:34:40Z
dc.date.available.none.fl_str_mv 2023-06-28T20:34:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Model
Software
Workflow
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84096
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84096
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alfaro, C., Alvarado, I., & Manrique, A. (2015). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia. Proceedings World Geothermal Congress 2015, 34, 19–25.
Alfaro, C., Alvarado, I., Quintero, W., Vargas, C., & Briceño, L. (2009). Mapa preliminar de gradiente geotémico de Colombia
Alfaro, C., Rueda-Gutierrez, Matiz-Leon, Beltran-Luque, Rodriguez-Rodriguez, Rodriguez-Ospina, Gonzalez-Idarraga, & Malo-Lazaro. (2020). Paipa Geothermal System, Boyacá: Review of Exploration Studies and Conceptual Model. The Geology of Colombia,
Alfè, D., Gillan, M. J., & Price, G. D. (2007). Temperature and composition of the Earth’s core. Contemporary Physics, 48(2), 63–80. https://doi.org/10.1080/00107510701529653
Allen, J. R., & Allen, P. a. (2005). The physical state of the lithosphere. In Basin analysis Principles and applications (second, Vol. 2, pp. 35–40). Blackwell Publishing Ltd. http://books.google.com/books?hl=en&lr=&id=T87dL36tcYEC&oi=fnd&pg=PR7&dq=basin+analysis&ots=QU67bAETen&sig=c8bj8CrktOqXeHqUdbWfCaNQ76A
Ávila, P., & Dávila, F. M. (2018). Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America. Tectonophysics, #pagerange#. https://doi.org/10.1016/j.tecto.2018.10.006
Bachu, S., Ramon, J. C., Villegas, M. E., & Underschultz, J. R. (1995). Llanos Geotermal Regimin 1994. AAPG Bulletin, 79(1), 116–129. https://doi.org/10.1306/8D2B14D0-171E-11D7-8645000102C1865D
Balling, N. (2013). The lithosphere beneath Northern Europe : structure and evolution over three billion years : contributions from geophysical studies.
Bjørnerud, M. G., Austrheim, H., & Lund, M. G. (2002). Processes leading to eclogitization (densification) of subducted and tectonically buried crust. Journal of Geophysical Research: Solid Earth, 107(B10), ETG 14-1-ETG 14-18. https://doi.org/10.1029/2001jb000527
Blackwell, D. D. (1971). The Thermal Structure of the Continental Crust. 169–184. https://doi.org/10.1029/gm014p0169
Blackwell, D. D. (1983). HEAT FLOW IN THE NORTHERN BASIN AND RANGE PROVINCE David D . Blackwell Department of Geological Sciences Southern Methodist University. Geothermal Resources Council, 13, 81–93.
Blanco, J. F., Vargas, C. A., & Monsalve, G. (2017). Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18, 1376–1387. https://doi.org/10.1002/2016GC006785.Received
Bonilla, A., Frantz, J. C., Charao-Marques, J., Cramer, T., Franco-Victoria, J. A., Mulocher, E., & Amaya-Perea, Z. (2013). Geocronología Del Granito De Parguaza. Boletín de Geología, 35(2), 83–104.
Burg, J. P., & Gerya, T. V. (2005). The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2), 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.x
Cermak, V., & Rybach, L. (1982). Thermal properties: Thermal conductivity and specific heat of minerals and rocks. Landolt-Bornstein Zahlenwerte Und Funktionen Aus Naturwissenschaften Und Technik, Neue Serie, 1, 305–343.
Correia, A., & Šafanda, J. (2002). Geothermal modeling along a two-dimensional crustal profile in Southern Portugal. Journal of Geodynamics, 34(1), 47–61. https://doi.org/10.1016/S0264-3707(01)00080-1
Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5(3), 243–255. https://doi.org/10.1002/cpa.3160050303
Flores, E. L. (2001). Boundary conditions in thermal models: An application to the KTB site, Germany. Geofisica Internacional, 40(2), 97–109. https://doi.org/10.22201/igeof.00167169p.2001.40.2.372
Fountain, D. M., & Salisbury, M. H. (1981). Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56(C), 263–277. https://doi.org/10.1016/0012-821X(81)90133-3
Fuchs, S., Balling, N., & Förster, A. (2015). Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203(3), 1977–2000. https://doi.org/10.1093/gji/ggv403
Fuchs, S., Balling, N., & Mathiesen, A. (2020). Deep basin temperature and heat-flow field in Denmark – New insights from borehole analysis and 3D geothermal modelling. Geothermics, 83(June 2019), 101722. https://doi.org/10.1016/j.geothermics.2019.101722
Gemmer, L., & Nielsen, S. B. (2001). Three-dimensional inverse modelling of the thermal structure and implications for lithospheric strength in Denmark and adjacent areas of Northwest Europe. Geophysical Journal International, 147(1), 141–154. https://doi.org/10.1046/j.0956-540X.2001.01528.x
Gerya, T. (2010). Introduction to numerical geodynamic modelling. Cambrifge University Press.
Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3–4), 501–516. https://doi.org/10.1016/j.epsl.2011.05.024
Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2015). Continental lower crust. Annual Review of Earth and Planetary Sciences, 43, 167–205. https://doi.org/10.1146/annurev-earth-050212-124117
Hamza, V. M., & Vieira, F. (2018). Global Heat Flow: New Estimates Using Digital Maps and GIS Techniques. International Journal of Terrestrial Heat Flow and Applications, 1(1), 6–13. https://doi.org/10.31214/ijthfa.v1i1.6
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307(1–2), 59–70. https://doi.org/10.1016/j.epsl.2011.04.034
Hasterok, D., Gard, M., & Webb, J. (2017). On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers, 9(6), 1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012
Hokstad, K., Tašárová, Z. A., Clark, S. A., Kyrkjebø, R., Duffaut, K., Fichler, C., & Wiik, T. (2017). Radiogenic heat production in the crust from inversion of gravity and magnetic data. Norwegian Journal of Geology, 97(3), 241–254. https://doi.org/10.17850/njg97-3-04
Horton, B. K., & Saylor, J. E. (2010). Resolving uplift of the using detrital zircon. July. https://doi.org/10.1130/GSATG76A.1
Jaupart, C., & Mareschal, J. C. (1999). The thermal structure and thickness of continental roots. Developments in Geotectonics, 24(C), 93–114. https://doi.org/10.1016/S0419-0254(99)80007-X
Jaupart, C. (2007). 6.05 Heat Flow and Thermal Structure of the Lithosphere.
Jaupart, Claude, & Mareschal, J. C. (2011). Lithosphere, continental: Thermal structure. In H. K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 681–693). Springer. https://doi.org/10.1007/978-90-481-8702-7
Jaupart, Claude, Mareschal, J. C., & Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398–427. https://doi.org/10.1016/j.lithos.2016.07.017
Kammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural Styles of the Eastern Cordillera of Colombia.
Kehle, R. O., Schoeppel, R. J., & Deford, R. K. (1970). The AAPG geothermal survey of North America. Geothermics, 2(PART 1), 358–367. https://doi.org/10.1016/0375-6505(70)90034-9
Kroonenberg, S. B. (2019). The proterozoic basement of the Western Guiana Shield and the Northern Andes. In Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_3
Labus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132(3), 1669–1676. https://doi.org/10.1007/s10973-018-7090-5
Lachenbruch, A. H. (1978). Heat flow in the Basin and Range province and thermal effects of tectonic extension. Pure and Applied Geophysics PAGEOPH, 117(1–2), 34–50. https://doi.org/10.1007/BF00879732
Lachenbruch, A., & Sass, J. H. (1978). Models of an extending lithosphere and heat flow in the Basin and Range province. Memoir of the Geological Society of America, 152, 209–250. https://doi.org/10.1130/MEM152-p209
Lagardère, C., & Vargas, C. A. (2021). Earthquake distribution and lithospheric rheology beneath the Northwestern Andes, Colombia. Geodesy and Geodynamics, 12(1), 1–10. https://doi.org/10.1016/j.geog.2020.12.002
Lambert, L., & Heier, K. (1968). Estimates of the crustal abundance of Thorium, Uranium and Potassium. Chemical Geology, 3, 233–238.
Larrota, D., & Concha, A. E. (2018). Petrografía y geoquímica de la Sienita Nefelínica de San José del Guaviare en cercanías de El Capricho. Geologia Colombiana, 41, 27–42.
Laske, G., Masters, G., Ma, Z., Pasyanos, M. E., & Livermore, L. (2013). EGU2013-2658 Update on CRUST1 . 0 : A 1-degree Global Model of Earth ’ s Crust. Geophysical Research Abstracts, 15, Abstract EGU2013–2658. https://igppweb.ucsd.edu/~gabi/crust1/laske-egu13-crust1.pdf
Lee, C. T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1–2), 20–33. https://doi.org/10.1016/j.epsl.2008.12.020
Lemenager, A., O’Neill, C., Zhang, S., & Evans, M. (2018). The effect of temperature-dependent thermal conductivity on the geothermal structure of the Sydney Basin. Geothermal Energy, 6(1). https://doi.org/10.1186/s40517-018-0092-5
Loskor, W. Z., & Sarkar, R. (2022). A Numerical Solution of Heat Equation for Several Thermal Diffusivity Using Finite Difference Scheme with Stability Conditions. Journal of Applied Mathematics and Physics, 10(02), 449–465. https://doi.org/10.4236/jamp.2022.102034
Majorowicz, J., Polkowski, M., & Grad, M. (2019). Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area of Poland from the heat flow variability and seismic data. International Journal of Earth Sciences, 108(2), 649–672. https://doi.org/10.1007/s00531-018-01673-8
Manea, M. (2014). Curie depth vs . flat subduction in Central Mexico Pure and Applied Geophysics Curie Point Depth Estimates and Correlation with Subduction in Mexico. May. https://doi.org/10.1007/s00024-010-0238-2
Mareschal, J., & Bergantz, G. (1990). Constraints on thermal models of the basin and range province. Tectonophysics, 174(1–2), 137–146. https://doi.org/10.1016/0040-1951(90)90387-N
Mareschal, J. C., Cunningham, J. P., & Lowell, R. P. (1985). Downward continuation of heat flow data: Method and examples from the western United States. Geophysics, 50(5), 846–851. https://doi.org/10.1190/1.1441960
Mareschal, J. C., & Jaupart, C. (2013). Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524–534. https://doi.org/10.1016/j.tecto.2012.12.001
Mather, B., Moresi, L., & Rayner, P. (2019). Adjoint inversion of the thermal structure of Southeastern Australia. Geophysical Journal International, 219(3), 1648–1659. https://doi.org/10.1093/gji/ggz368
Mathews, J., & Fink, K. (2000). Métodos numéricos con Matlab (I. Capella (ed.)). Prentice Hall.
Matiz-Leon, J. (2018). Metodología para determinar el modelo espacial del gradiente geotérmico en las cuencas sedimentarias del Valle Medio del Magdalena , Cordillera Oriental y Llanos Orientales en Colombia Metodología para determinar el modelo espacial del gradiente geotérmico. Universidad Distrital Francisco Jose de Caldas.
Miao, S., Li, H., & Chen, G. (2014). The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere. Geophysical Journal International, 197(2), 900–909. https://doi.org/10.1093/gji/ggu020
Middleton, M. F. (2016). Radiogenic Heat Generation in Western Australia — Implications for Geothermal Energy. In Advanges in Geothermal Energy (pp. 49–90).
Moretti, I., Mora, C., Zamora, W., Valendia, M., Mayorga, M., & Rodriguez, G. (2009). Petroleum System Variations in the Llanos Basin (Colombia). AAPG Bulletin, September.
Negrete-Aranda, R., Contreras, J., & Spelz, R. M. (2013). Viscous dissipation, slab melting, and post-subduction volcanism in south-central Baja California, Mexico. Geosphere, 9(6), 1714–1728. https://doi.org/10.1130/GES00901.1
Ouali, S. (2009). Thermal Conductivity in Relation To Porosity and Geological Stratigraphy. Os.Is, 23. https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdf%0Ahttp://www.os.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdf
Peacock, S. M. (1996). Thermal and petrologic structure of subduction zones. Geophysical Monograph Series, 96, 119–133. https://doi.org/10.1029/GM096p0119
Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3), 267–280. https://doi.org/10.1029/93RG01249
Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. Journal of Geophysical Research: Solid Earth, 123(2), 1459–1485. https://doi.org/10.1002/2017JB014688
Powell, W. G., Chapman, D. S., & Balling, N. (1988). Continental heat-flow density. In Handbook of Terrestrial Heat-Flow Density Determination (pp. 167–222).
Restrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic Terranes in Colombia: An Update First Part: Continental Terranes https://doi.org/10.32685/pub.esp.35.2019.03. The Geology of Colombia, 1.
Rudnick, R. L., & Gao, S. (2014). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Rudnick, Roberta L., & Gao, S. (2003). Composition of the Continental Crust. In Treatise on Geochemistry (Vol. 1).
Rybach, L., & Buntebarth, G. (1984). The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103(1–4), 335–344. https://doi.org/10.1016/0040-1951(84)90095-7
Šafanda, J. A. N. (1985). in Two-Dimensional Geothermal Profile. Studia Geoph. et Geod., 29, 191–207. https://doi.org/10.1007/bf01585720
Šafanda, J. A. N. (1988). HEAT FLOW VARIATIONS IN THE PRESENCE OF AN IRREGULAR CONTACT OF DIFFERENT ROCK TYPE. Studia Geoph. et Geod., 32, 159–170. https://doi.org/10.1007/bf01637579
Sarmiento-Rojas, L, Wess, J. D. Van, & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models. South American Earth Science, 21, 383–411. https://doi.org/10.1016/j.jsames.2006.07.003
Sarmiento-Rojas, Luis. (2001). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models Inferences from tectonic models [Amsterdam University]. https://doi.org/10.1016/j.jsames.2006.07.003
Sass, J. H. (1994). Thermal regime of the southern Basin and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research, 99(B11). https://doi.org/10.1029/94jb01891
Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post-mid-cretaceous sudsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/http://dx.doi.org/10.1029/JB085iB07p03711; doi:10.
Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera , Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
Turcotte, D. L., & Schubert, G. (2002). Geodynamics (Third edit). Cambridge University Press. https://doi.org/10.1017/CBO9780511807442 Vargas, C. (2020). Subduction Geometries in Northwestern South America. 4(May).
Vargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. 103(3), 2025–2046. https://doi.org/10.1785/0120120328
Vedanti, N., Srivastava, R. P., Pandey, O. P., & Dimri, V. P. (2011). Fractal behavior in continental crustal heat production. Nonlinear Processes in Geophysics, 18(1), 119–124. https://doi.org/10.5194/npg-18-119-2011
Vieira, F. P., & Hamza, V. M. (2012). Global distribution of the lithosphere-asthenosphere boundary: A new look. Solid Earth, 3(2), 199–212. https://doi.org/10.5194/se-3-199-2012
Weber, M. B. I., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1–4), 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2
Weides, S., & Majorowicz, J. (2014). Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin. April. https://doi.org/10.3390/en7042573
Whittington, A. G., Hofmeister, A. M., & Nabelek, P. I. (2009). Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458(7236), 319–321.
Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
Zhang, L., Mao, X., & Lu, A. (2009). Experimental study on the mechanical properties of rocks at high temperature. Science in China, Series E: Technological Sciences, 52(3), 641–646. https://doi.org/10.1007/s11431-009-0063-y
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 92 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84096/2/1024509176.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84096/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84096/3/1024509176.2023.pdf.jpg
bitstream.checksum.fl_str_mv dfea21049e9b8c7f96565c5e628d54ac
eb34b1cf90b7e1103fc9dfd26be24b4a
c830489dfa1fdf88f97c3c0970972cd0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886327339188224
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Jimenez, Carlos Albertob88c5098ce93a82d389779a59019f861Neumann, Floriane8dc334d15ea5cfedc49aea54db4f17eBuitrago Segura, Harold Steven9f2844a2ca5f233a5bd76ad4b9d3a417CenitContreras, JuanBuitrago, Harold [0000-0002-0592-0370]Buitrago Segura, Harold Steven2023-06-28T20:34:40Z2023-06-28T20:34:40Z2022https://repositorio.unal.edu.co/handle/unal/84096Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasEn esta tesis se discretizó la ecuación de conducción-advección por el método de diferencias finitas conservativas y se escribió un código en Matlab que resuelve el campo de temperatura de la litosfera en 2D. Este código se validó comparando sus resultados con soluciones analíticas de algunos escenarios tectónicos sencillos en 1D y 2D reportadas en la literatura. La soluciones numéricas obtenidas concuerdan con las analíticas mostrando que se alcanzan diferencias menores a 1°C siempre que la discretización sea densa (>5000 nodos verticales). Los mejores resultados se obtienen en los casos en que no existen fuentes o sumideros de calor en el espacio modelado. Posteriormente, el código se empleó para resolver el campo térmico litosférico en la Cordillera Oriental de Colombia. Para constreñir las soluciones numéricas se utilizó la base de datos de gradiente geotérmico LogDB y algunas estimaciones de flujo de calor realizadas en la cuenca de Llanos Orientales. Los valores de parámetros materiales como la conductividad térmica, calor especifico, producción de calor radiogénico, etc., fueron tomados de la literatura para las rocas que afloran en el área e inferidos para la corteza y manto superior. Las condiciones de frontera que ajustan mejor a los datos en superficie sugieren la ocurrencia de un basamento enriquecido en elementos radiactivos que sería una fuente importante de calor (1.6 – 3 μWm-3) al este del sistema de fallas de Guaicaramo en donde se han documentado sistemas geotérmicos activos. El flujo de calor astenosferico modelado oscila entre 15-25 mWm-2 excepto sobre la Cordillera Oriental al norte del desgarre de Caldas en donde el flujo necesario para elevar el límite litosfera-astenosfera hasta 70-80 km requiere de un flujo astenosferico adicional de 15-20 mWm-2 (30-45 mWm-2 total). El flujo de calor adicional podría deberse a advección por flujo mantélico no contemplado en la simulación o a la ocurrencia de procesos como el calentamiento viscoso causado por cizalla (viscous heating). (Texto tomado de la fuente)In this thesis, the conduction-advection equation was discretized by the conservative finite difference method, and a code was written in MATLAB that solves the temperature field of the lithosphere in 2D. This code was validated by comparing its results with analytical solutions of some simple 1D and 2D tectonic scenarios reported in the literature. The numerical solutions obtained agree with the analytical ones, showing that differences of less than 1°C are reached as long as the discretization is dense (>5000 vertical nodes). The best results are obtained in cases where there are no heat sources or sinks in the modeled space. Subsequently, the code was used to solve the lithospheric thermal field in the Eastern Cordillera of Colombia. To constrain the numerical solutions, the LogDB geothermal gradient database and some heat flow estimates made in the Llanos Orientales basin were used. The values of material parameters such as thermal conductivity, specific heat, radiogenic heat production, etc., were taken from the literature for the rocks that outcrop in the area and inferred for the crust and upper mantle. The boundary conditions that best fit the surface data suggest the occurrence of a basement enriched in radioactive elements that would be an important source of heat (1.6 – 3 μWm-3) to the east of the Guaicaramo fault system where active geothermal systems have been documented. The modeled asthenospheric heat flow ranges in 15-25 mWm-2 except over the Eastern Cordillera north of the Caldas tear, where heat flow needed to raise the lithosphere-asthenosphere boundary to 70-80 km requires higher values (30-45mW). The additional heat flow could be due to advection by mantle flow not considered in the simulation or to the occurrence of processes such as viscous heating.MaestríaMagister en Ciencias GeofisicaSe relizo un modelado numerico bidimensional del campo termico conductivo en la litosfera y se calibro con datos de gradiente geotermico y flujo de calor de Colombia.Campo termico litosfericoflujo de calorxiv, 92 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur530 - Física::536 - CalorCalentamiento globalCalorimetríaGlobal warmingCalorimeters and calorimetryCampo térmicoFlujo de calorDiferencias finitasGradiente geotérmicoCordillera orientalThermal fieldHeat flowFinite differenceGeothermal gradientEastern cordilleraModelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, ColombiaModeling of the lithospheric thermal field by the method of conservative finite differences applied around the area of the Eastern Cordillera , ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperModelSoftwareWorkflowhttp://purl.org/redcol/resource_type/TMColombiaAlfaro, C., Alvarado, I., & Manrique, A. (2015). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia. Proceedings World Geothermal Congress 2015, 34, 19–25.Alfaro, C., Alvarado, I., Quintero, W., Vargas, C., & Briceño, L. (2009). Mapa preliminar de gradiente geotémico de ColombiaAlfaro, C., Rueda-Gutierrez, Matiz-Leon, Beltran-Luque, Rodriguez-Rodriguez, Rodriguez-Ospina, Gonzalez-Idarraga, & Malo-Lazaro. (2020). Paipa Geothermal System, Boyacá: Review of Exploration Studies and Conceptual Model. The Geology of Colombia,Alfè, D., Gillan, M. J., & Price, G. D. (2007). Temperature and composition of the Earth’s core. Contemporary Physics, 48(2), 63–80. https://doi.org/10.1080/00107510701529653Allen, J. R., & Allen, P. a. (2005). The physical state of the lithosphere. In Basin analysis Principles and applications (second, Vol. 2, pp. 35–40). Blackwell Publishing Ltd. http://books.google.com/books?hl=en&lr=&id=T87dL36tcYEC&oi=fnd&pg=PR7&dq=basin+analysis&ots=QU67bAETen&sig=c8bj8CrktOqXeHqUdbWfCaNQ76AÁvila, P., & Dávila, F. M. (2018). Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America. Tectonophysics, #pagerange#. https://doi.org/10.1016/j.tecto.2018.10.006Bachu, S., Ramon, J. C., Villegas, M. E., & Underschultz, J. R. (1995). Llanos Geotermal Regimin 1994. AAPG Bulletin, 79(1), 116–129. https://doi.org/10.1306/8D2B14D0-171E-11D7-8645000102C1865DBalling, N. (2013). The lithosphere beneath Northern Europe : structure and evolution over three billion years : contributions from geophysical studies.Bjørnerud, M. G., Austrheim, H., & Lund, M. G. (2002). Processes leading to eclogitization (densification) of subducted and tectonically buried crust. Journal of Geophysical Research: Solid Earth, 107(B10), ETG 14-1-ETG 14-18. https://doi.org/10.1029/2001jb000527Blackwell, D. D. (1971). The Thermal Structure of the Continental Crust. 169–184. https://doi.org/10.1029/gm014p0169Blackwell, D. D. (1983). HEAT FLOW IN THE NORTHERN BASIN AND RANGE PROVINCE David D . Blackwell Department of Geological Sciences Southern Methodist University. Geothermal Resources Council, 13, 81–93.Blanco, J. F., Vargas, C. A., & Monsalve, G. (2017). Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18, 1376–1387. https://doi.org/10.1002/2016GC006785.ReceivedBonilla, A., Frantz, J. C., Charao-Marques, J., Cramer, T., Franco-Victoria, J. A., Mulocher, E., & Amaya-Perea, Z. (2013). Geocronología Del Granito De Parguaza. Boletín de Geología, 35(2), 83–104.Burg, J. P., & Gerya, T. V. (2005). The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2), 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.xCermak, V., & Rybach, L. (1982). Thermal properties: Thermal conductivity and specific heat of minerals and rocks. Landolt-Bornstein Zahlenwerte Und Funktionen Aus Naturwissenschaften Und Technik, Neue Serie, 1, 305–343.Correia, A., & Šafanda, J. (2002). Geothermal modeling along a two-dimensional crustal profile in Southern Portugal. Journal of Geodynamics, 34(1), 47–61. https://doi.org/10.1016/S0264-3707(01)00080-1Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5(3), 243–255. https://doi.org/10.1002/cpa.3160050303Flores, E. L. (2001). Boundary conditions in thermal models: An application to the KTB site, Germany. Geofisica Internacional, 40(2), 97–109. https://doi.org/10.22201/igeof.00167169p.2001.40.2.372Fountain, D. M., & Salisbury, M. H. (1981). Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56(C), 263–277. https://doi.org/10.1016/0012-821X(81)90133-3Fuchs, S., Balling, N., & Förster, A. (2015). Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203(3), 1977–2000. https://doi.org/10.1093/gji/ggv403Fuchs, S., Balling, N., & Mathiesen, A. (2020). Deep basin temperature and heat-flow field in Denmark – New insights from borehole analysis and 3D geothermal modelling. Geothermics, 83(June 2019), 101722. https://doi.org/10.1016/j.geothermics.2019.101722Gemmer, L., & Nielsen, S. B. (2001). Three-dimensional inverse modelling of the thermal structure and implications for lithospheric strength in Denmark and adjacent areas of Northwest Europe. Geophysical Journal International, 147(1), 141–154. https://doi.org/10.1046/j.0956-540X.2001.01528.xGerya, T. (2010). Introduction to numerical geodynamic modelling. Cambrifge University Press.Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3–4), 501–516. https://doi.org/10.1016/j.epsl.2011.05.024Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2015). Continental lower crust. Annual Review of Earth and Planetary Sciences, 43, 167–205. https://doi.org/10.1146/annurev-earth-050212-124117Hamza, V. M., & Vieira, F. (2018). Global Heat Flow: New Estimates Using Digital Maps and GIS Techniques. International Journal of Terrestrial Heat Flow and Applications, 1(1), 6–13. https://doi.org/10.31214/ijthfa.v1i1.6Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307(1–2), 59–70. https://doi.org/10.1016/j.epsl.2011.04.034Hasterok, D., Gard, M., & Webb, J. (2017). On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers, 9(6), 1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012Hokstad, K., Tašárová, Z. A., Clark, S. A., Kyrkjebø, R., Duffaut, K., Fichler, C., & Wiik, T. (2017). Radiogenic heat production in the crust from inversion of gravity and magnetic data. Norwegian Journal of Geology, 97(3), 241–254. https://doi.org/10.17850/njg97-3-04Horton, B. K., & Saylor, J. E. (2010). Resolving uplift of the using detrital zircon. July. https://doi.org/10.1130/GSATG76A.1Jaupart, C., & Mareschal, J. C. (1999). The thermal structure and thickness of continental roots. Developments in Geotectonics, 24(C), 93–114. https://doi.org/10.1016/S0419-0254(99)80007-XJaupart, C. (2007). 6.05 Heat Flow and Thermal Structure of the Lithosphere.Jaupart, Claude, & Mareschal, J. C. (2011). Lithosphere, continental: Thermal structure. In H. K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 681–693). Springer. https://doi.org/10.1007/978-90-481-8702-7Jaupart, Claude, Mareschal, J. C., & Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398–427. https://doi.org/10.1016/j.lithos.2016.07.017Kammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural Styles of the Eastern Cordillera of Colombia.Kehle, R. O., Schoeppel, R. J., & Deford, R. K. (1970). The AAPG geothermal survey of North America. Geothermics, 2(PART 1), 358–367. https://doi.org/10.1016/0375-6505(70)90034-9Kroonenberg, S. B. (2019). The proterozoic basement of the Western Guiana Shield and the Northern Andes. In Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_3Labus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132(3), 1669–1676. https://doi.org/10.1007/s10973-018-7090-5Lachenbruch, A. H. (1978). Heat flow in the Basin and Range province and thermal effects of tectonic extension. Pure and Applied Geophysics PAGEOPH, 117(1–2), 34–50. https://doi.org/10.1007/BF00879732Lachenbruch, A., & Sass, J. H. (1978). Models of an extending lithosphere and heat flow in the Basin and Range province. Memoir of the Geological Society of America, 152, 209–250. https://doi.org/10.1130/MEM152-p209Lagardère, C., & Vargas, C. A. (2021). Earthquake distribution and lithospheric rheology beneath the Northwestern Andes, Colombia. Geodesy and Geodynamics, 12(1), 1–10. https://doi.org/10.1016/j.geog.2020.12.002Lambert, L., & Heier, K. (1968). Estimates of the crustal abundance of Thorium, Uranium and Potassium. Chemical Geology, 3, 233–238.Larrota, D., & Concha, A. E. (2018). Petrografía y geoquímica de la Sienita Nefelínica de San José del Guaviare en cercanías de El Capricho. Geologia Colombiana, 41, 27–42.Laske, G., Masters, G., Ma, Z., Pasyanos, M. E., & Livermore, L. (2013). EGU2013-2658 Update on CRUST1 . 0 : A 1-degree Global Model of Earth ’ s Crust. Geophysical Research Abstracts, 15, Abstract EGU2013–2658. https://igppweb.ucsd.edu/~gabi/crust1/laske-egu13-crust1.pdfLee, C. T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1–2), 20–33. https://doi.org/10.1016/j.epsl.2008.12.020Lemenager, A., O’Neill, C., Zhang, S., & Evans, M. (2018). The effect of temperature-dependent thermal conductivity on the geothermal structure of the Sydney Basin. Geothermal Energy, 6(1). https://doi.org/10.1186/s40517-018-0092-5Loskor, W. Z., & Sarkar, R. (2022). A Numerical Solution of Heat Equation for Several Thermal Diffusivity Using Finite Difference Scheme with Stability Conditions. Journal of Applied Mathematics and Physics, 10(02), 449–465. https://doi.org/10.4236/jamp.2022.102034Majorowicz, J., Polkowski, M., & Grad, M. (2019). Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area of Poland from the heat flow variability and seismic data. International Journal of Earth Sciences, 108(2), 649–672. https://doi.org/10.1007/s00531-018-01673-8Manea, M. (2014). Curie depth vs . flat subduction in Central Mexico Pure and Applied Geophysics Curie Point Depth Estimates and Correlation with Subduction in Mexico. May. https://doi.org/10.1007/s00024-010-0238-2Mareschal, J., & Bergantz, G. (1990). Constraints on thermal models of the basin and range province. Tectonophysics, 174(1–2), 137–146. https://doi.org/10.1016/0040-1951(90)90387-NMareschal, J. C., Cunningham, J. P., & Lowell, R. P. (1985). Downward continuation of heat flow data: Method and examples from the western United States. Geophysics, 50(5), 846–851. https://doi.org/10.1190/1.1441960Mareschal, J. C., & Jaupart, C. (2013). Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524–534. https://doi.org/10.1016/j.tecto.2012.12.001Mather, B., Moresi, L., & Rayner, P. (2019). Adjoint inversion of the thermal structure of Southeastern Australia. Geophysical Journal International, 219(3), 1648–1659. https://doi.org/10.1093/gji/ggz368Mathews, J., & Fink, K. (2000). Métodos numéricos con Matlab (I. Capella (ed.)). Prentice Hall.Matiz-Leon, J. (2018). Metodología para determinar el modelo espacial del gradiente geotérmico en las cuencas sedimentarias del Valle Medio del Magdalena , Cordillera Oriental y Llanos Orientales en Colombia Metodología para determinar el modelo espacial del gradiente geotérmico. Universidad Distrital Francisco Jose de Caldas.Miao, S., Li, H., & Chen, G. (2014). The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere. Geophysical Journal International, 197(2), 900–909. https://doi.org/10.1093/gji/ggu020Middleton, M. F. (2016). Radiogenic Heat Generation in Western Australia — Implications for Geothermal Energy. In Advanges in Geothermal Energy (pp. 49–90).Moretti, I., Mora, C., Zamora, W., Valendia, M., Mayorga, M., & Rodriguez, G. (2009). Petroleum System Variations in the Llanos Basin (Colombia). AAPG Bulletin, September.Negrete-Aranda, R., Contreras, J., & Spelz, R. M. (2013). Viscous dissipation, slab melting, and post-subduction volcanism in south-central Baja California, Mexico. Geosphere, 9(6), 1714–1728. https://doi.org/10.1130/GES00901.1Ouali, S. (2009). Thermal Conductivity in Relation To Porosity and Geological Stratigraphy. Os.Is, 23. https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdf%0Ahttp://www.os.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdfPeacock, S. M. (1996). Thermal and petrologic structure of subduction zones. Geophysical Monograph Series, 96, 119–133. https://doi.org/10.1029/GM096p0119Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3), 267–280. https://doi.org/10.1029/93RG01249Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. Journal of Geophysical Research: Solid Earth, 123(2), 1459–1485. https://doi.org/10.1002/2017JB014688Powell, W. G., Chapman, D. S., & Balling, N. (1988). Continental heat-flow density. In Handbook of Terrestrial Heat-Flow Density Determination (pp. 167–222).Restrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic Terranes in Colombia: An Update First Part: Continental Terranes https://doi.org/10.32685/pub.esp.35.2019.03. The Geology of Colombia, 1.Rudnick, R. L., & Gao, S. (2014). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6Rudnick, Roberta L., & Gao, S. (2003). Composition of the Continental Crust. In Treatise on Geochemistry (Vol. 1).Rybach, L., & Buntebarth, G. (1984). The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103(1–4), 335–344. https://doi.org/10.1016/0040-1951(84)90095-7Šafanda, J. A. N. (1985). in Two-Dimensional Geothermal Profile. Studia Geoph. et Geod., 29, 191–207. https://doi.org/10.1007/bf01585720Šafanda, J. A. N. (1988). HEAT FLOW VARIATIONS IN THE PRESENCE OF AN IRREGULAR CONTACT OF DIFFERENT ROCK TYPE. Studia Geoph. et Geod., 32, 159–170. https://doi.org/10.1007/bf01637579Sarmiento-Rojas, L, Wess, J. D. Van, & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models. South American Earth Science, 21, 383–411. https://doi.org/10.1016/j.jsames.2006.07.003Sarmiento-Rojas, Luis. (2001). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models Inferences from tectonic models [Amsterdam University]. https://doi.org/10.1016/j.jsames.2006.07.003Sass, J. H. (1994). Thermal regime of the southern Basin and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research, 99(B11). https://doi.org/10.1029/94jb01891Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post-mid-cretaceous sudsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/http://dx.doi.org/10.1029/JB085iB07p03711; doi:10.Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera , Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002Turcotte, D. L., & Schubert, G. (2002). Geodynamics (Third edit). Cambridge University Press. https://doi.org/10.1017/CBO9780511807442 Vargas, C. (2020). Subduction Geometries in Northwestern South America. 4(May).Vargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. 103(3), 2025–2046. https://doi.org/10.1785/0120120328Vedanti, N., Srivastava, R. P., Pandey, O. P., & Dimri, V. P. (2011). Fractal behavior in continental crustal heat production. Nonlinear Processes in Geophysics, 18(1), 119–124. https://doi.org/10.5194/npg-18-119-2011Vieira, F. P., & Hamza, V. M. (2012). Global distribution of the lithosphere-asthenosphere boundary: A new look. Solid Earth, 3(2), 199–212. https://doi.org/10.5194/se-3-199-2012Weber, M. B. I., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1–4), 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2Weides, S., & Majorowicz, J. (2014). Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin. April. https://doi.org/10.3390/en7042573Whittington, A. G., Hofmeister, A. M., & Nabelek, P. I. (2009). Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458(7236), 319–321.Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005Zhang, L., Mao, X., & Lu, A. (2009). Experimental study on the mechanical properties of rocks at high temperature. Science in China, Series E: Technological Sciences, 52(3), 641–646. https://doi.org/10.1007/s11431-009-0063-yEstudiantesInvestigadoresPúblico generalORIGINAL1024509176.2023.pdf1024509176.2023.pdfTesis de Maestría en Ciencias - Geofísicaapplication/pdf4623555https://repositorio.unal.edu.co/bitstream/unal/84096/2/1024509176.2023.pdfdfea21049e9b8c7f96565c5e628d54acMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84096/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1024509176.2023.pdf.jpg1024509176.2023.pdf.jpgGenerated Thumbnailimage/jpeg5660https://repositorio.unal.edu.co/bitstream/unal/84096/3/1024509176.2023.pdf.jpgc830489dfa1fdf88f97c3c0970972cd0MD53unal/84096oai:repositorio.unal.edu.co:unal/840962023-08-10 23:04:18.288Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=