Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas

ilustraciones, diagramas

Autores:
Pinzón Rincón, Christian David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85028
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85028
https://repositorio.unal.edu.co/
Palabra clave:
Industria de turbinas de gas
Termotecnia
Gas-turbine industry
Heat engineering
Refrigeración por pelı́cula
Chorro en flujo cruzado
Efectividad de enfriamiento
Coeficiente de transferencia de calor por convección
Calor neto reducido
Heat transfer coefficient by convection
Film cooling
Jet in cross flow
Cooling effectiveness
Net heat flux reduction
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_a1a960f1a687165917af9ba3d8b0f345
oai_identifier_str oai:repositorio.unal.edu.co:unal/85028
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
dc.title.translated.eng.fl_str_mv Evaluation of film cooling channel geometries in gas turbine blades
title Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
spellingShingle Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
Industria de turbinas de gas
Termotecnia
Gas-turbine industry
Heat engineering
Refrigeración por pelı́cula
Chorro en flujo cruzado
Efectividad de enfriamiento
Coeficiente de transferencia de calor por convección
Calor neto reducido
Heat transfer coefficient by convection
Film cooling
Jet in cross flow
Cooling effectiveness
Net heat flux reduction
title_short Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
title_full Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
title_fullStr Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
title_full_unstemmed Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
title_sort Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
dc.creator.fl_str_mv Pinzón Rincón, Christian David
dc.contributor.advisor.none.fl_str_mv Duque Daza, Carlos Alberto
dc.contributor.author.none.fl_str_mv Pinzón Rincón, Christian David
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación: GNUM
dc.subject.lemb.spa.fl_str_mv Industria de turbinas de gas
Termotecnia
topic Industria de turbinas de gas
Termotecnia
Gas-turbine industry
Heat engineering
Refrigeración por pelı́cula
Chorro en flujo cruzado
Efectividad de enfriamiento
Coeficiente de transferencia de calor por convección
Calor neto reducido
Heat transfer coefficient by convection
Film cooling
Jet in cross flow
Cooling effectiveness
Net heat flux reduction
dc.subject.lemb.eng.fl_str_mv Gas-turbine industry
Heat engineering
dc.subject.proposal.spa.fl_str_mv Refrigeración por pelı́cula
Chorro en flujo cruzado
Efectividad de enfriamiento
Coeficiente de transferencia de calor por convección
Calor neto reducido
Heat transfer coefficient by convection
dc.subject.proposal.eng.fl_str_mv Film cooling
Jet in cross flow
Cooling effectiveness
Net heat flux reduction
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T18:49:59Z
dc.date.available.none.fl_str_mv 2023-11-30T18:49:59Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85028
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85028
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv International Energy Agency, Energy efficiency market report 2013, Paris, 2013, International Energy Agency, pp 18.
International Energy Agency, Capturing the Multiple Benefits of Energy Efficiency, Paris, 2014, International Energy Agency, pp 19.
M. M. Rahman, T. K. Ibrahim , K. Kadirgama, R. Mamat y Rosli A. Bakar, Influence of Operation Conditions and Ambient Temperature on Performance of Gas Turbine Power Plant , Advanced Materials Research. 2011, vol 189, pp 3007-3013. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3007
A. Noroozian, M. Bidi, An applicable method for gas turbine efficiency improvement. Case study: Montazar Ghaem power plant, Iran , Journal of Gas Science and Engineering. 2016, vol 28, pp 95-105. https://doi.org/10.1016/j.jngse.2015.11.032
GE9X , GE9X Engine, disponible en : https://www.geaerospace.com/propulsion/ commercial/ge9x
N Uddin , J T Gravdhal Introducing Back-up to Active Compressor Surge Control System , IFAC Proceedings Volumes. 2012, vol 45, pp 263-268. https://doi.org/10. 3182/20120531-2-NO-4020.00053
D Garcia , G Liśkiewiczb Stable or not stable? Recognizing surge based on the pressure signal , TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY. 2016, vol 133, pp 55-68.
S Naik Basic Aspects of Gas Turbine Heat Transfer, INTECH. 2017, pp 111-139. http: //dx.doi.org/10.5772/67323
S Chena, X Zhoua, W Songb, J Suna, H Zhanga, J Jianga, L Denga,S Donga, X Caoa, Mg2SiO4 as a novel thermal barrier coating material for gas turbine applications, Journal of the European Ceramic Society. 2019, vol 39, pp 2397-2408. https://doi.org/10.1016/j.jeurceramsoc.2019.02.016
I Gartshore, M Salcudean, I Hassan Film cooling injection hole geometry: hole shape comparison for compound cooling orientation, Aerospace Research Central. 2001, vol 31, pp 1493-1499. https://doi.org/10.2514/2.1500
J Zhang, S Zhang, C Wang, X Tan Recent advances in film cooling enhancement: A review, Chinese Journal of Aeronautics. 2020, vol 33 , pp 1119-1136 . https://doi. org/10.1016/j.cja.2019.12.023
S M Kim, K D Lee, K Y Kim, A comparative análisis of various shaped film-cooling holes, Heat Mass Transfer, 2012, vol 48, pp 1929-1939 . 10.1007/s00231-012-1043-5
P Kalghatgi ,S Acharya Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbumachinery. 2015, vol 137 , pp 1-9 DOI:10.1115/1.4030395
J Heidmann A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio, NASA. 2008, pp 1-11 .
M Ely, B Jubran, A numerical evaluation on the effect of sister holes on film cooling effectiveness and surrounding Flow field, Heat Mass Transfer, 2009, vol 45 , pp 1435–1446 . 10.1007/s00231-009-0523-8
P Kalghatgi, S Acharty, Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbomachinery, 2018, vol 137, 10.1115/1.4030395
S Zhang, J Zhang, X Tan, Improvement on shape-hole film cooling effectiveness by iterating upstream sand-dune-shaped ramps, Chinese Journal of Aeronautics, 2020
Zhang, S Chang, Zhang, J Zhou, Tan, X ming, Numerical investigation of film cooling enhancement using an upstream sand-dune-shaped ramp, MDPI, 2018 , vol 49, pp 2-13, https://doi.org/10.3390/computation6030049
R Goldstein, Film Colling, Department of Mechanical Engineering. University of Minnesota. Minneapolis, 1971.
F Zhang ,X Wang ,J Li The effects of upstream steps with unevenly spanwise distributed height on rectangular hole film cooling performance, International Journal of Heat and Mass Transfer. 2016, pp 1209-1221. https://doi.org/10.1016/j. ijheatmasstransfer.2016.07.001
A Coussement, O Gicquel, G Degrez, Large Eddy Simulation of a Pulsed Jet in Crossflow, Journal of Fluid Mechanics, 2012, Vol 695, pp 1-34,https://doi.org/10. 1017/jfm.2011.539.
N Rajaratnam Chapter 9 Jets in Cross-Flow , Developments in Water Science, Ed by N. Rajaratnam , Elsevier, 1976, Vol 5, pp 184-210. https://doi.org/10.1016/ S0167-5648(08)70909-2.
C Cárdenas, R Suntz, J Denev, H Bockhorn, Two-dimensional estimation of Reynolds-fluxesand - stresses in a Jet-in-Crossflow arrangement by simultaneous 2D-LIF and PIV,Lasers and Optics ,2007, Vol 88, pp 588-591, 10.1007/s00340-007-2734-3.
J Andreopoulos , W Rodi , Experimental investigation of jets in crossflow . Journal of Fluid Mechanics, 1984, vol. 138, pp 93-127, doi:10.1017/s0022112084000057.
R.J. Goldstein, E.R.G. Eckert, J.W. Ramsey , Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole, J. Eng. Power, 1968, pp 384–393, https://doi.org/10.1115/1.3609223.
S Acharya, Y Kanani , Advances in Film Cooling Heat Transfer, Advances in Heat Transfer, Ed E.M. Sparrow, J.P. Abraham, J.M. Gorman, Elsevier, 2017, pp 91-156, https://doi.org/10.1016/bs.aiht.2017.10.001.
R.S. Colladay, L.M. Russell , Streakline flow visualization of discrete hole film cooling for gas turbine applications, J. Heat Transfer 98, 1976, pp 245–250, https: //doi.org/10.1115/1.3450526.
S. Baldauf, M. Scheurlen, A. Schulz, S. Wittig , Correlation of film-cooling effective- ness from thermographic measurements at engine like conditions, J. Turbomach 124, 2002, pp 686–698, https://doi.org/10.1115/1.1504443
D. Schmidt,, B.Sen, and D.Bogard , Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery Vol. 118, 1996, pp. 807–813., doi: 10.1115/94-gt-312
D. Bogard, K. Thole , Gas Turbine Film Cooling, Journal of Propulsion and Power Vol. 22, 2006, pp. 249-270., doi:10.2514/1.18034
J.C. Han, A.B. Mehendale , Flat-Plate Film Cooling with Steam Injection Through One Row and Two Rows of Inclined Holes, Journal of Turbomachinery, Vol. 108, 1986, pp. 137–144, https://doi.org/10.1115/1.3262013
N. W. Foster, D. Lampard , The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, Journal of Engineering for Power, Vol. 102, 1980, pp. 584–588, https://doi.org/10.1115/1.3230306
A. Kohli, D.Bogard , Adiabatic Effectiveness, Thermal Fields,and Velocity Fields for Film Cooling with Large Angle Injection, Journal of Turbomachinery,Vol. 119, 1997, pp. 352–358, https://doi.org/10.1115/1.2841118
C. Saumweber, A. Schulz, S. Wittig , Free-Stream Turbulence Effects on Film Cooling with Shaped Holes, Journal of Turbomachinery,Vol. 125, 2003, pp. 65–73, https: //doi.org/10.1115/1.1515336.
K. Kadotani, R.Goldstein , Effect of Mainstream Variables on Jets Issuing from a Row of Inclined Round Holes, Transaction of the American Society of Mechanical Engineers, Vol. 101, 1979, pp. 298–304. https://doi.org/10.1115/1.3446486.
Aokomoriuta , Law of Wall, disponible en : https://commons.wikimedia.org/ wiki/File:Law_of_the_wall_(English).svg, 2011, consultado en Enero de 2023.
J.B. Anderson, E.K. Wilkes, J.W. Mcclintic, D.G. Bogard , Effects of freestream Mach number, reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes, ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, https://doi.org/10.1115/ GT2016-56152.
S. Ito, R. Goldstein, E. Eckert, Film Cooling of a Gas Turbine Blade, Journal of Engineering for Power, Vol. 100, 1978, pp. 476–481, https://doi.org/10.1115/1. 3446382
J.P Bons, R Taylor,S McClain, R.B Rivir, The Many Faces of Turbine Surface Roughness, Journal of Turbomachinery, Vol. 123, 2001, pp. 739–748, https://doi.org/ 10.1115/1.1400115
D. G Bogard, D.L Schmidt, M Tabbita, Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery, Vol. 120, 1998, pp. 337–342, https://doi.org/10.1115/1.2841411
R. J. Goldstein, E. R. G. Eckert, H. D. Chiang, E Elovic, Effect of Surface Roughness on Film Cooling Performance, Journal of Engineering for Gas Turbines and Power, Vol. 107, 1985, pp. 111–116, https://doi.org/10.1115/1.3239669
D. L Schmidt, B Sen, D.G Bogard, Effects of Surface Roughness on Film Cooling, American Society of Mechanical Engineers, ASME Paper 96-GT-299, 1996.
VA Kurganov , Adiabatic Wall Temperature, disponible en : https://www. thermopedia.com/content/291/#ADIABATIC_WALL_TEMPERATURE_FIG1
Y Ito , Heat Transfer of Supercritical Fluid Flows and Compressible Flows, IntechOPen, capı́tulo 6, pp 140 .
J Librizzi, R Gresci, Transpiration Cooling of a Turbulent Boundary Layer in an Axisymmetric Nozzle, AIAA JOURNAL, Vol 2, 1964, pp. 617–624, https://doi.org/ 10.2514/3.2397
S. S. Kutateladze, A. I. Leont’ev, Cortina térmica con capa lı́mite turbulenta de gas, TVT, 1963, Volume 1,Issue 2, pp 281–290.
J.L. Stollery, A.A.M. El-Ehwany, On the use of a boundary-layer model for correlating film cooling data, Heat Mass Transfer, 1967, Vol 10, pp 101-105, https: //doi.org/10.1016/0017-9310(67)90186-X
Y Cengel,A Ghajar,Transferencia de Calor y Masa,editorial McGrawHill, 4 Ed, 2004.
Mora J, Análisis de Turbinas de Gas con Álabes Refrigerados, Universidad de Sevilla, en lı́nea ,disponible en : http://bibing.us.es/proyectos/abreproy/90740/fichero/ TFG_memoria.pdf.
A Lande, Complex Mesh Generation with OpenFOAM, University of South-Eastern Norway, 2021.
W Colban, K Thole, D Bogard, A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface,ASME Journal of Turbumachinery, vol 133, no 011002, pp 1-11, Enero 2011, doi:10.1115/1.4002064.
Y Cengel,J Cimbala,Fluid Mechanics Fundamentals and Applications,New York,editorial McGrawHill, 2006.
F White,Fluid Mechanics, 4th ed,editorial McGrawHill.
P.J Newton, G.D Lock, S.K Krishnababu, H.P Hodson, W.N Dawes, J Hannis, C Whitney Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part III: TIP Cooling, Journal of Turbumachinery. 2009, vol 131, pp 1-12 DOI:10.1115/1.2950060
SIMSCALE, (2021, Septiembre 3), What is Transport Equation? .en lı́nea. Disponible en : https://www.simscale.com/docs/simwiki/numerics-background/ what-is-the-transport-equation/.
D H Rhee,Y S Lee , H H Cho, Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes,Proceedings of ASME TURBO EXPO,pp 1-11, Junio 2002, doi:10.1115/GT2002-30168.
A Abdala,F Elwekeel , D Huang, Film cooling effectiveness and flow structures for novel upstream, Applied Thermal Engineering,pp 1-14, Mayo 2015,http://dx.doi. org/10.1016/j.applthermaleng.2015.05.074.
W Zhou, H Hu, Improvements of film cooling effectiveness by using Barchan dune shaped ramps, International Journal of Heat and Mass Transfer, vol 103, pp 443-455, 2016, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.066.
OpenFOAM Wiki , The PIMPLE algorithm in OpenFOAM, disponible en : https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_ in_OpenFOAM, 2023, consultado en Junio de 2023.
OpenFOAM Foundation , OpenFOAM User Guide, disponible en : https:// doc.cfd.direct/openfoam/user-guide-v6/fvsolution, 2022, consultado en Junio de 2023.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 61 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85028/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85028/2/1022396889.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85028/3/1022396889.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bae2ecf40d036dab95dcd08787cfd00a
05fc00502258d42e47587ae121e9de69
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089992394244096
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Daza, Carlos Alberto2af3fa9fc1551951a8ddefbc637c4cd8Pinzón Rincón, Christian David93d596c2305ec91fe9a113da9179e1e8Grupo de Investigación: GNUM2023-11-30T18:49:59Z2023-11-30T18:49:59Z2023https://repositorio.unal.edu.co/handle/unal/85028Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa refrigeración por película ha permitido incrementar las temperaturas de trabajo en álabes de turbinas de gas, al mantener parte de la superficie cubierta por un flujo de refrigerante de menor temperatura que el flujo principal de los gases de combustión. El rendimiento de la refrigeración por película está altamente influenciado por la relación de velocidades entre el flujo de refrigeración y el flujo principal de gases calientes, ası́ como de la geometría de descarga, principalmente. La influencia de estos parámetros genera fenómenos como la formación de vórtices, los cuales pueden atenuar o acelerar la separación del refrigerante, dependiendo el caso. Una técnica usada para mejorar el rendimiento de refrigeración ha sido colocar obstáculos o resaltos aguas arriba del agujero de descarga, los cuales retardan la mezcla del refrigerante con el flujo principal. En este trabajo se analizó, mediante simulaciones numéricas de flujo incompresible en OpenFoam, el efecto generado por la prensencia de dos diferentes obstáculos aguas arriba de la descarga de refrigerante sobre una placa plana. El análisis se llevó a cabo mediante la evaluación de diferentes indicadores de rendimiento de refrigeración, en el que se evaluarón tres configuraciones diferentes de la placa plana: sin obstáculo, con obstáculo triangular y con obstáculo curvo. En los tres casos la relación de velocidades entre el chorro y el flujo principal fue de uno (U c /U ∞ = 1). Encontrandose que al agregar obstáculos se tiene un incremento en la efectividad de enfriamiento promedio (η) y el flujo de calor neto reducido (NHFR), debido a que estos generan una mejor propagación lateral en la descarga del refrigerante al no separarse tempranamente de la superficie. El obstáculo curvo es el de mejor desempeño al tener la mayor (η) y el mayor (NHFR) respecto a los demás casos. (Texto tomado de la fuente)Film cooling technology has increased the operating temperature of gas turbine blades and vanes. The refrigerant film cools part of the surface, keeping it at a lower temperature than the main stream of combustion gases. The performance of film cooling is affected by the velocity of the refrigerant relative to the main stream (vlocity relation), and the geometry of the holes through which the refrigerant is discharged. These parameters can generate vortices, which can either diminish or accelerate the separation of the refrigerant from the surface. In this work, the effect of placing a triangular and a circular obstacle upstream of the refrigerant discharge in a flat plate was carried out by means of numerical simulation of incompressible flow with OpenFoam software. The analysis was conducted by evaluating different performance indicators of film cooling. Three different configuration of flat plate were evaluated: whithout obstacle, triangular obstacle and curve obtacle. The velocity relation of the three cases was set as one (U c /U ∞ = 1). It was found that adding obstacles increased the average cooling effectiveness (η) and the net heat flux reduction (NHFR). This is because obstacles promote better lateral spreading of the coolant, preventing early separation from the surface. Among the obstacles simulated, the circular one showed the best performance, due to their average film cooling efectiveness (η) and the net heat flux reduction (NHFR) was the highest.MaestríaIngeniería Térmica y Fluidosxvi, 61 páginasapplication/pdfEvaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gasEvaluation of film cooling channel geometries in gas turbine bladesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáInternational Energy Agency, Energy efficiency market report 2013, Paris, 2013, International Energy Agency, pp 18.International Energy Agency, Capturing the Multiple Benefits of Energy Efficiency, Paris, 2014, International Energy Agency, pp 19.M. M. Rahman, T. K. Ibrahim , K. Kadirgama, R. Mamat y Rosli A. Bakar, Influence of Operation Conditions and Ambient Temperature on Performance of Gas Turbine Power Plant , Advanced Materials Research. 2011, vol 189, pp 3007-3013. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3007A. Noroozian, M. Bidi, An applicable method for gas turbine efficiency improvement. Case study: Montazar Ghaem power plant, Iran , Journal of Gas Science and Engineering. 2016, vol 28, pp 95-105. https://doi.org/10.1016/j.jngse.2015.11.032GE9X , GE9X Engine, disponible en : https://www.geaerospace.com/propulsion/ commercial/ge9xN Uddin , J T Gravdhal Introducing Back-up to Active Compressor Surge Control System , IFAC Proceedings Volumes. 2012, vol 45, pp 263-268. https://doi.org/10. 3182/20120531-2-NO-4020.00053D Garcia , G Liśkiewiczb Stable or not stable? Recognizing surge based on the pressure signal , TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY. 2016, vol 133, pp 55-68.S Naik Basic Aspects of Gas Turbine Heat Transfer, INTECH. 2017, pp 111-139. http: //dx.doi.org/10.5772/67323S Chena, X Zhoua, W Songb, J Suna, H Zhanga, J Jianga, L Denga,S Donga, X Caoa, Mg2SiO4 as a novel thermal barrier coating material for gas turbine applications, Journal of the European Ceramic Society. 2019, vol 39, pp 2397-2408. https://doi.org/10.1016/j.jeurceramsoc.2019.02.016I Gartshore, M Salcudean, I Hassan Film cooling injection hole geometry: hole shape comparison for compound cooling orientation, Aerospace Research Central. 2001, vol 31, pp 1493-1499. https://doi.org/10.2514/2.1500J Zhang, S Zhang, C Wang, X Tan Recent advances in film cooling enhancement: A review, Chinese Journal of Aeronautics. 2020, vol 33 , pp 1119-1136 . https://doi. org/10.1016/j.cja.2019.12.023S M Kim, K D Lee, K Y Kim, A comparative análisis of various shaped film-cooling holes, Heat Mass Transfer, 2012, vol 48, pp 1929-1939 . 10.1007/s00231-012-1043-5P Kalghatgi ,S Acharya Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbumachinery. 2015, vol 137 , pp 1-9 DOI:10.1115/1.4030395J Heidmann A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio, NASA. 2008, pp 1-11 .M Ely, B Jubran, A numerical evaluation on the effect of sister holes on film cooling effectiveness and surrounding Flow field, Heat Mass Transfer, 2009, vol 45 , pp 1435–1446 . 10.1007/s00231-009-0523-8P Kalghatgi, S Acharty, Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbomachinery, 2018, vol 137, 10.1115/1.4030395S Zhang, J Zhang, X Tan, Improvement on shape-hole film cooling effectiveness by iterating upstream sand-dune-shaped ramps, Chinese Journal of Aeronautics, 2020Zhang, S Chang, Zhang, J Zhou, Tan, X ming, Numerical investigation of film cooling enhancement using an upstream sand-dune-shaped ramp, MDPI, 2018 , vol 49, pp 2-13, https://doi.org/10.3390/computation6030049R Goldstein, Film Colling, Department of Mechanical Engineering. University of Minnesota. Minneapolis, 1971.F Zhang ,X Wang ,J Li The effects of upstream steps with unevenly spanwise distributed height on rectangular hole film cooling performance, International Journal of Heat and Mass Transfer. 2016, pp 1209-1221. https://doi.org/10.1016/j. ijheatmasstransfer.2016.07.001A Coussement, O Gicquel, G Degrez, Large Eddy Simulation of a Pulsed Jet in Crossflow, Journal of Fluid Mechanics, 2012, Vol 695, pp 1-34,https://doi.org/10. 1017/jfm.2011.539.N Rajaratnam Chapter 9 Jets in Cross-Flow , Developments in Water Science, Ed by N. Rajaratnam , Elsevier, 1976, Vol 5, pp 184-210. https://doi.org/10.1016/ S0167-5648(08)70909-2.C Cárdenas, R Suntz, J Denev, H Bockhorn, Two-dimensional estimation of Reynolds-fluxesand - stresses in a Jet-in-Crossflow arrangement by simultaneous 2D-LIF and PIV,Lasers and Optics ,2007, Vol 88, pp 588-591, 10.1007/s00340-007-2734-3.J Andreopoulos , W Rodi , Experimental investigation of jets in crossflow . Journal of Fluid Mechanics, 1984, vol. 138, pp 93-127, doi:10.1017/s0022112084000057.R.J. Goldstein, E.R.G. Eckert, J.W. Ramsey , Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole, J. Eng. Power, 1968, pp 384–393, https://doi.org/10.1115/1.3609223.S Acharya, Y Kanani , Advances in Film Cooling Heat Transfer, Advances in Heat Transfer, Ed E.M. Sparrow, J.P. Abraham, J.M. Gorman, Elsevier, 2017, pp 91-156, https://doi.org/10.1016/bs.aiht.2017.10.001.R.S. Colladay, L.M. Russell , Streakline flow visualization of discrete hole film cooling for gas turbine applications, J. Heat Transfer 98, 1976, pp 245–250, https: //doi.org/10.1115/1.3450526.S. Baldauf, M. Scheurlen, A. Schulz, S. Wittig , Correlation of film-cooling effective- ness from thermographic measurements at engine like conditions, J. Turbomach 124, 2002, pp 686–698, https://doi.org/10.1115/1.1504443D. Schmidt,, B.Sen, and D.Bogard , Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery Vol. 118, 1996, pp. 807–813., doi: 10.1115/94-gt-312D. Bogard, K. Thole , Gas Turbine Film Cooling, Journal of Propulsion and Power Vol. 22, 2006, pp. 249-270., doi:10.2514/1.18034J.C. Han, A.B. Mehendale , Flat-Plate Film Cooling with Steam Injection Through One Row and Two Rows of Inclined Holes, Journal of Turbomachinery, Vol. 108, 1986, pp. 137–144, https://doi.org/10.1115/1.3262013N. W. Foster, D. Lampard , The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, Journal of Engineering for Power, Vol. 102, 1980, pp. 584–588, https://doi.org/10.1115/1.3230306A. Kohli, D.Bogard , Adiabatic Effectiveness, Thermal Fields,and Velocity Fields for Film Cooling with Large Angle Injection, Journal of Turbomachinery,Vol. 119, 1997, pp. 352–358, https://doi.org/10.1115/1.2841118C. Saumweber, A. Schulz, S. Wittig , Free-Stream Turbulence Effects on Film Cooling with Shaped Holes, Journal of Turbomachinery,Vol. 125, 2003, pp. 65–73, https: //doi.org/10.1115/1.1515336.K. Kadotani, R.Goldstein , Effect of Mainstream Variables on Jets Issuing from a Row of Inclined Round Holes, Transaction of the American Society of Mechanical Engineers, Vol. 101, 1979, pp. 298–304. https://doi.org/10.1115/1.3446486.Aokomoriuta , Law of Wall, disponible en : https://commons.wikimedia.org/ wiki/File:Law_of_the_wall_(English).svg, 2011, consultado en Enero de 2023.J.B. Anderson, E.K. Wilkes, J.W. Mcclintic, D.G. Bogard , Effects of freestream Mach number, reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes, ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, https://doi.org/10.1115/ GT2016-56152.S. Ito, R. Goldstein, E. Eckert, Film Cooling of a Gas Turbine Blade, Journal of Engineering for Power, Vol. 100, 1978, pp. 476–481, https://doi.org/10.1115/1. 3446382J.P Bons, R Taylor,S McClain, R.B Rivir, The Many Faces of Turbine Surface Roughness, Journal of Turbomachinery, Vol. 123, 2001, pp. 739–748, https://doi.org/ 10.1115/1.1400115D. G Bogard, D.L Schmidt, M Tabbita, Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery, Vol. 120, 1998, pp. 337–342, https://doi.org/10.1115/1.2841411R. J. Goldstein, E. R. G. Eckert, H. D. Chiang, E Elovic, Effect of Surface Roughness on Film Cooling Performance, Journal of Engineering for Gas Turbines and Power, Vol. 107, 1985, pp. 111–116, https://doi.org/10.1115/1.3239669D. L Schmidt, B Sen, D.G Bogard, Effects of Surface Roughness on Film Cooling, American Society of Mechanical Engineers, ASME Paper 96-GT-299, 1996.VA Kurganov , Adiabatic Wall Temperature, disponible en : https://www. thermopedia.com/content/291/#ADIABATIC_WALL_TEMPERATURE_FIG1Y Ito , Heat Transfer of Supercritical Fluid Flows and Compressible Flows, IntechOPen, capı́tulo 6, pp 140 .J Librizzi, R Gresci, Transpiration Cooling of a Turbulent Boundary Layer in an Axisymmetric Nozzle, AIAA JOURNAL, Vol 2, 1964, pp. 617–624, https://doi.org/ 10.2514/3.2397S. S. Kutateladze, A. I. Leont’ev, Cortina térmica con capa lı́mite turbulenta de gas, TVT, 1963, Volume 1,Issue 2, pp 281–290.J.L. Stollery, A.A.M. El-Ehwany, On the use of a boundary-layer model for correlating film cooling data, Heat Mass Transfer, 1967, Vol 10, pp 101-105, https: //doi.org/10.1016/0017-9310(67)90186-XY Cengel,A Ghajar,Transferencia de Calor y Masa,editorial McGrawHill, 4 Ed, 2004.Mora J, Análisis de Turbinas de Gas con Álabes Refrigerados, Universidad de Sevilla, en lı́nea ,disponible en : http://bibing.us.es/proyectos/abreproy/90740/fichero/ TFG_memoria.pdf.A Lande, Complex Mesh Generation with OpenFOAM, University of South-Eastern Norway, 2021.W Colban, K Thole, D Bogard, A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface,ASME Journal of Turbumachinery, vol 133, no 011002, pp 1-11, Enero 2011, doi:10.1115/1.4002064.Y Cengel,J Cimbala,Fluid Mechanics Fundamentals and Applications,New York,editorial McGrawHill, 2006.F White,Fluid Mechanics, 4th ed,editorial McGrawHill.P.J Newton, G.D Lock, S.K Krishnababu, H.P Hodson, W.N Dawes, J Hannis, C Whitney Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part III: TIP Cooling, Journal of Turbumachinery. 2009, vol 131, pp 1-12 DOI:10.1115/1.2950060SIMSCALE, (2021, Septiembre 3), What is Transport Equation? .en lı́nea. Disponible en : https://www.simscale.com/docs/simwiki/numerics-background/ what-is-the-transport-equation/.D H Rhee,Y S Lee , H H Cho, Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes,Proceedings of ASME TURBO EXPO,pp 1-11, Junio 2002, doi:10.1115/GT2002-30168.A Abdala,F Elwekeel , D Huang, Film cooling effectiveness and flow structures for novel upstream, Applied Thermal Engineering,pp 1-14, Mayo 2015,http://dx.doi. org/10.1016/j.applthermaleng.2015.05.074.W Zhou, H Hu, Improvements of film cooling effectiveness by using Barchan dune shaped ramps, International Journal of Heat and Mass Transfer, vol 103, pp 443-455, 2016, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.066.OpenFOAM Wiki , The PIMPLE algorithm in OpenFOAM, disponible en : https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_ in_OpenFOAM, 2023, consultado en Junio de 2023.OpenFOAM Foundation , OpenFOAM User Guide, disponible en : https:// doc.cfd.direct/openfoam/user-guide-v6/fvsolution, 2022, consultado en Junio de 2023.Industria de turbinas de gasTermotecniaGas-turbine industryHeat engineeringRefrigeración por pelı́culaChorro en flujo cruzadoEfectividad de enfriamientoCoeficiente de transferencia de calor por convecciónCalor neto reducidoHeat transfer coefficient by convectionFilm coolingJet in cross flowCooling effectivenessNet heat flux reductionLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85028/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022396889.2023.pdf1022396889.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf11818034https://repositorio.unal.edu.co/bitstream/unal/85028/2/1022396889.2023.pdfbae2ecf40d036dab95dcd08787cfd00aMD52THUMBNAIL1022396889.2023.pdf.jpg1022396889.2023.pdf.jpgGenerated Thumbnailimage/jpeg4430https://repositorio.unal.edu.co/bitstream/unal/85028/3/1022396889.2023.pdf.jpg05fc00502258d42e47587ae121e9de69MD53unal/85028oai:repositorio.unal.edu.co:unal/850282023-12-01 23:03:43.621Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=