Topology optimization for the elasticity problem

In this work, we propose several preconditioners for the elasticity equation. The preconditioners are built based on domain decomposition and multiscale methods for the heat and elasticity equations. The main goal of the application of preconditioners is to decrease the condition number of the matri...

Full description

Autores:
Serrano De La Torre, Sintya Esmeralda
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76649
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76649
http://bdigital.unal.edu.co/73259/
Palabra clave:
Elasticity problem
Multiscale method
Domain decomposition method
Two levels Schwarz preconditioner
Topology Optimization
Ecuación de elasticidad
Método multiescala
Descomposición de dominios
Precondicionador de dos niveles de Schwarz
Optimización Topológica
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this work, we propose several preconditioners for the elasticity equation. The preconditioners are built based on domain decomposition and multiscale methods for the heat and elasticity equations. The main goal of the application of preconditioners is to decrease the condition number of the matrix associated with the elasticity problem and the number of iterations needed to arrive at the solution of the elasticity equation. We also present an elasticity topology optimization problem, where we apply the preconditioners to the minimum compliance design problems. We present numerical experiments in order to show the advantages of our approach to the solution of these type of problems.