Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano

ilustraciones, diagramas

Autores:
Cañón Alvarado, Michael
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84900
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84900
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
Catalisis
Gases de combustión - medición
Contaminación - medicones
Catalysis
Flue gases - meausurement
Pollution - measurement
Metanación de CO2
Dolomita
Catalizadores duales
Captura de CO2
DRIFT
CO2 methanation,
Dolomite
Dual catalysts
CO2 capture
DRIFT
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_a17ebbfd18f92b2cc039aee813fb50f0
oai_identifier_str oai:repositorio.unal.edu.co:unal/84900
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
dc.title.translated.eng.fl_str_mv Development of dual catalysts based on dolomite for the capture and transformation of CO2 into methane
title Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
spellingShingle Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
540 - Química y ciencias afines::546 - Química inorgánica
Catalisis
Gases de combustión - medición
Contaminación - medicones
Catalysis
Flue gases - meausurement
Pollution - measurement
Metanación de CO2
Dolomita
Catalizadores duales
Captura de CO2
DRIFT
CO2 methanation,
Dolomite
Dual catalysts
CO2 capture
DRIFT
title_short Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
title_full Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
title_fullStr Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
title_full_unstemmed Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
title_sort Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano
dc.creator.fl_str_mv Cañón Alvarado, Michael
dc.contributor.advisor.none.fl_str_mv Daza Velásquez, Carlos Enrique
dc.contributor.author.none.fl_str_mv Cañón Alvarado, Michael
dc.contributor.researchgroup.spa.fl_str_mv Estado sólido y catálisis ambiental ESCA
dc.contributor.cvlac.spa.fl_str_mv Cañón Alvarado, Michael [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000046278]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
Catalisis
Gases de combustión - medición
Contaminación - medicones
Catalysis
Flue gases - meausurement
Pollution - measurement
Metanación de CO2
Dolomita
Catalizadores duales
Captura de CO2
DRIFT
CO2 methanation,
Dolomite
Dual catalysts
CO2 capture
DRIFT
dc.subject.lemb.spa.fl_str_mv Catalisis
Gases de combustión - medición
Contaminación - medicones
dc.subject.lemb.eng.fl_str_mv Catalysis
Flue gases - meausurement
Pollution - measurement
dc.subject.proposal.spa.fl_str_mv Metanación de CO2
Dolomita
Catalizadores duales
Captura de CO2
DRIFT
dc.subject.proposal.eng.fl_str_mv CO2 methanation,
Dolomite
Dual catalysts
CO2 capture
DRIFT
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-07T19:46:05Z
dc.date.available.none.fl_str_mv 2023-11-07T19:46:05Z
dc.date.issued.none.fl_str_mv 2023-11-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84900
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84900
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv A. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts,” Appl Catal B, vol. 256, no. April, p. 117845, 2019, doi: 10.1016/j.apcatb.2019.117845.
J. E. Szulejko, P. Kumar, A. Deep, and K. H. Kim, “Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor,” Atmos Pollut Res, vol. 8, no. 1, pp. 136–140, Jan. 2017, doi: 10.1016/J.APR.2016.08.002.
D. Nong, P. Simshauser, and D. B. Nguyen, “Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax,” Appl Energy, vol. 298, p. 117223, 2021, doi: 10.1016/j.apenergy.2021.117223.
K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” Advances in Carbon Capture: Methods, Technologies and Applications, pp. 3–28, Jan. 2020, doi: 10.1016/B978-0-12-819657-1.00001-3.
J. Bautista, Y. Sierra, and J. F. Bermeo, “Greenhouse Gas Emissions in Higher Education Institutions,” Produccion y Limpia, vol. 17, no. 1, pp. 169–186, Jan. 2022, doi: 10.22507/PML.V17N1A10.
M. Lennan and E. Morgera, “The Glasgow Climate Conference (COP26),” International Journal of Marine and Coastal Law, vol. 37, no. 1, pp. 137–151, 2022, doi: 10.1163/15718085-bja10083.
G. Climate, “Glasgow Climate Pact,” Glasgow, 2021. [Online]. Available: https://www.ipcc.ch/report/ar6/wg1/.
S. Di Pietro, “Acuerdo de París,” Cooperativismo & Desarrollo, vol. 25, no. 111, 2017, doi: 10.16925/co.v25i111.1874.
A. Rafiee, K. Rajab Khalilpour, D. Milani, and M. Panahi, “Trends in CO2 conversion and utilization: A review from process systems perspective,” J Environ Chem Eng, vol. 6, no. 5, pp. 5771–5794, 2018, doi: 10.1016/j.jece.2018.08.065.
M. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and methanation status review,” Renewable and Sustainable Energy Reviews, vol. 112, no. May, pp. 775–787, 2019, doi: 10.1016/j.rser.2019.06.030.
C. Wulf, J. Linßen, and P. Zapp, “Review of power-to-gas projects in Europe,” Energy Procedia, vol. 155, pp. 367–378, 2018, doi: 10.1016/j.egypro.2018.11.041.
J. C. Navarro, M. A. Centeno, O. H. Laguna, and J. A. Odriozola, “Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. A review of the most recent advances,” Catalysts, vol. 8, no. 12, pp. 1–25, 2018, doi: 10.3390/catal8120578.
C. Vogt et al., “Unravelling structure sensitivity in CO2 hydrogenation over nickel,” Nat Catal, vol. 1, no. 2, pp. 127–134, 2018, doi: 10.1038/s41929-017-0016-y.
R. P. Ye et al., “Engineering Ni/SiO2 catalysts for enhanced CO2 methanation,” Fuel, vol. 285, p. 119151, Feb. 2021, doi: 10.1016/J.FUEL.2020.119151.
L. Pastor-Pérez, E. Le Saché, C. Jones, S. Gu, H. Arellano-Garcia, and T. R. Reina, “Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity,” Catal Today, vol. 317, pp. 108–113, Nov. 2018, doi: 10.1016/J.CATTOD.2017.11.035.
K. Stangeland, D. Y. Kalai, H. Li, and Z. Yu, “Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO2 methanation,” Appl Energy, vol. 227, pp. 206–212, Oct. 2018, doi: 10.1016/J.APENERGY.2017.08.080.
C. Vogt, M. Monai, G. J. Kramer, and B. M. Weckhuysen, “The renaissance of the Sabatier reaction and its applications on Earth and in space,” Nat Catal, vol. 2, no. 3, pp. 188–197, 2019, doi: 10.1038/s41929-019-0244-4.
S. Patel, “WindGas Falkenhagen: Pioneering Green Gas Production,” News & Technology for the Global Energy Industry. Accessed: Jun. 25, 2023. [Online]. Available: https://www.powermag.com/windgas-falkenhagen-pioneering-green-gas-production/
C. J. Quarton and S. Samsatli, “Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?,” Renewable and Sustainable Energy Reviews, vol. 98, no. August, pp. 302–316, 2018, doi: 10.1016/j.rser.2018.09.007.
M. Younas, L. Loong Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, “Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO 2,” Energy and Fuels, vol. 30, no. 11, pp. 8815–8831, 2016, doi: 10.1021/acs.energyfuels.6b01723.
J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, “Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone,” Appl Energy, vol. 138, pp. 202–215, Jan. 2015, doi: 10.1016/J.APENERGY.2014.10.087.
L. M. Marques, S. M. Mota, P. Teixeira, C. I. C. Pinheiro, and H. A. Matos, “Ca-looping process using wastes of marble powders and limestones for CO2 capture from real flue gas in the cement industry,” Journal of CO2 Utilization, vol. 71, p. 102450, May 2023, doi: 10.1016/J.JCOU.2023.102450.
N. Arshad and A. Alhajaj, “Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant,” Energy, vol. 274, p. 127391, Jul. 2023, doi: 10.1016/J.ENERGY.2023.127391.
M. Díaz, M. Alonso, G. Grasa, and J. R. Fernández, “The Ca-Cu looping process using natural CO2 sorbents in a packed bed: Operation strategies to accommodate activity decay,” Chem Eng Sci, vol. 273, p. 118659, Jun. 2023, doi: 10.1016/J.CES.2023.118659.
C. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Pérez-Maqueda, and P. Gimenez-Gavarrell, “Scaling-up the calcium-looping process for co2 capture and energy storage,” KONA Powder and Particle Journal, vol. 38, pp. 189–208, 2021, doi: 10.14356/kona.2021005.
A. M. Kierzkowska, L. V. Poulikakos, M. Broda, and C. R. Müller, “Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique,” International Journal of Greenhouse Gas Control, vol. 15, pp. 48–54, 2013, doi: 10.1016/j.ijggc.2013.01.046.
R. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.
M. Heidari, M. Tahmasebpoor, S. B. Mousavi, and C. Pevida, “CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2+Al2O3+CeO2)-based additive under mild and realistic calcium looping conditions,” Journal of CO2 Utilization, vol. 53, p. 101747, Nov. 2021, doi: 10.1016/J.JCOU.2021.101747.
S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten, “Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany,” Int J Hydrogen Energy, vol. 40, no. 12, pp. 4285–4294, 2015, doi: 10.1016/j.ijhydene.2015.01.123.
T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, and A. Orth, “Methanation of CO2 - storage of renewable energy in a gas distribution system,” Energy Sustain Soc, vol. 4, no. 1, pp. 1–14, 2014, doi: 10.1186/s13705-014-0029-1.
P. Frontera, A. Macario, M. Ferraro, and P. L. Antonucci, “Supported catalysts for CO2 methanation: A review,” Catalysts, vol. 7, no. 2, pp. 1–28, 2017, doi: 10.3390/catal7020059.
J. Blamey, E. J. Anthony, J. Wang, and P. S. Fennell, “The calcium looping cycle for large-scale CO2 capture,” Progress in Energy and Combustion Science, vol. 36, no. 2. pp. 260–279, Apr. 2010. doi: 10.1016/j.pecs.2009.10.001.
S. Calderón et al., “Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets,” Energy Econ, vol. 56, pp. 575–586, 2014, doi: 10.1016/j.eneco.2015.05.010.
J. J. Bravo-Suárez, R. V. Chaudhari, and B. Subramaniam, “Design of heterogeneous catalysts for fuels and chemicals processing: An overview,” ACS Symposium Series, vol. 1132, pp. 3–68, 2013, doi: 10.1021/bk-2013-1132.ch001.
S. Hao, H. Huang, Y. Ma, Z. Zhang, and Z. Zheng, “Sensitive characterizations of natural dolomite by terahertz time-domain spectroscopy,” Opt Commun, vol. 456, no. September 2019, p. 124524, 2020, doi: 10.1016/j.optcom.2019.124524.
P. Chaiprasert and T. Vitidsant, “Effects of promoters on biomass gasification using nickel/dolomite catalyst,” Korean Journal of Chemical Engineering, vol. 26, no. 6, pp. 1545–1549, Nov. 2009, doi: 10.1007/s11814-009-0259-7.
S. Stendardo, L. Di Felice, K. Gallucci, and P. U. Foscolo, “CO2 capture with calcined dolomite: The effect of sorbent particle size,” Biomass Convers Biorefin, vol. 1, no. 3, pp. 149–161, Sep. 2011, doi: 10.1007/s13399-011-0018-y.
M. Younas, M. Sohail, L. L. Kong, M. J. K. Bashir, and S. Sethupathi, “Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems,” International Journal of Environmental Science and Technology, vol. 13, no. 7, pp. 1839–1860, 2016, doi: 10.1007/s13762-016-1008-1.
H. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001-0742(08)60002-9.
L. M. Guardela Contreras, “Evolution of climate change policy in Colombia,” Vniversitas, vol. 69, pp. 1–17, 2020, doi: 10.11144/JAVERIANA.VJ69.EPCC.
“Colombia CO2 emissions.” [Online]. Available: https://www.worldometers.info/co2-emissions/colombia-co2-emissions/
T. Heyd, “Covid-19 and climate change in the times of the Anthropocene,” Anthropocene Review, vol. 8, no. 1, pp. 21–36, 2021, doi: 10.1177/2053019620961799.
J. P. RODRIGUEZ, M. A. RUIZ-OCHOA, and A. MENESES, “Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia,” Espacios, vol. 41, no. 47, pp. 74–84, 2020, doi: 10.48082/espacios-a20v41n47p06.
M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2,” Renewable and Sustainable Energy Reviews, vol. 69, no. November 2016, pp. 292–312, 2017, doi: 10.1016/j.rser.2016.11.130.
S. González Arranz, “Power To Gas Y Metanación Subterránea,” pp. 115–117, 2020, [Online]. Available: https://oa.upm.es/63477/1/TFG_SERGIO_GONZALEZ_ARRANZ.pdf
M. Ozturk and I. Dincer, “A comprehensive review on power-to-gas with hydrogen options for cleaner applications,” Int J Hydrogen Energy, vol. 46, no. 62, pp. 31511–31522, 2021, doi: 10.1016/j.ijhydene.2021.07.066.
E. Vidal and C. Fontalvo, “Alternativa para la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología ‘Power to Gas’ en Colombia,” Revista Fuentes el Reventón Energético, vol. 16, no. 1, pp. 71–79, 2018, doi: 10.18273/revfue.v16n1-2018006.
A. Porta, L. Falbo, C. G. Visconti, L. Lietti, C. Bassano, and P. Deiana, “Synthesis of Ru-based catalysts for CO 2 methanation and experimental assessment of intraporous transport limitations,” Catal Today, no. January, pp. 0–1, 2019, doi: 10.1016/j.cattod.2019.01.042.
S. Höpfner, “New Audi e-gas offer as standard: 80 percent lower CO2 emissions,” 2017.
M. Götz et al., “Renewable Power-to-Gas: A technological and economic review,” Renew Energy, vol. 85, pp. 1371–1390, 2016, doi: 10.1016/j.renene.2015.07.066.
A. Catarina Faria, C. V. Miguel, and L. M. Madeira, “Thermodynamic analysis of the CO2 methanation reaction with in situ water removal for biogas upgrading,” Journal of CO2 Utilization, vol. 26, no. May, pp. 271–280, 2018, doi: 10.1016/j.jcou.2018.05.005.
J. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, 2012, doi: 10.1039/c2ra00632d.
P. Collet et al., “Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology,” Appl Energy, vol. 192, pp. 282–295, 2017, doi: 10.1016/j.apenergy.2016.08.181.
A. Bolt, I. Dincer, and M. Agelin-Chaab, “A critical review of synthetic natural gas production techniques and technologies,” J Nat Gas Sci Eng, vol. 84, no. October, p. 103670, 2020, doi: 10.1016/j.jngse.2020.103670.
Y. Fu, L. Cai, R. Yan, and Y. Guan, “Thermodynamic analysis of the biomass gasification Allam cycle,” Fuel, vol. 350, p. 128781, Oct. 2023, doi: 10.1016/J.FUEL.2023.128781.
M. V. Konishcheva et al., “On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts,” Top Catal, vol. 59, no. 15–16, pp. 1424–1430, Sep. 2016, doi: 10.1007/s11244-016-0650-7.
M. A. A. Aziz, A. A. Jalil, S. Triwahyono, and A. Ahmad, “CO2 methanation over heterogeneous catalysts: Recent progress and future prospects,” Green Chemistry, vol. 17, no. 5. Royal Society of Chemistry, pp. 2647–2663, May 01, 2015. doi: 10.1039/c5gc00119f.
O. Ojeda-Niño, J. Gallego, and C. E. Daza, “Pr-promoted Ni exsolution from Ni–Mg–Al (O) as catalysts for syngas production by dry reforming of methane,” Results in Engineering, vol. 17, p. 100821, Mar. 2023, doi: 10.1016/J.RINENG.2022.100821.
A. Serrano-Lotina and L. Daza, “Influence of the operating parameters over dry reforming of methane to syngas,” Int J Hydrogen Energy, vol. 39, no. 8, pp. 4089–4094, Mar. 2014, doi: 10.1016/J.IJHYDENE.2013.05.135.
D. Sun and D. S. A. Simakov, “Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation-based analysis,” Journal of CO2 Utilization, vol. 21, no. June, pp. 368–382, 2017, doi: 10.1016/j.jcou.2017.07.015.
M. C. Seemann, T. J. Schildhauer, and S. M. A. Biollaz, “Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas,” Ind Eng Chem Res, vol. 49, no. 15, pp. 7034–7038, 2010, doi: 10.1021/ie100510m.
Y. Ren, W. Mo, J. Guo, Q. Liu, X. Fan, and S. Zhang, “Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2 -CH4 Reforming,” 2023.
A. M. Gambelli, B. Castellani, A. Nicolini, and F. Rossi, “Gas hydrate formation as a strategy for CH4/CO2 separation: Experimental study on gaseous mixtures produced via Sabatier reaction,” J Nat Gas Sci Eng, vol. 71, no. August, p. 102985, 2019, doi: 10.1016/j.jngse.2019.102985.
S. Eckle, H. G. Anfang, and R. J. Behm, “Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases,” Journal of Physical Chemistry C, vol. 115, no. 4, pp. 1361–1367, Feb. 2011, doi: 10.1021/jp108106t.
Z. Refaat et al., “Efficient CO2 methanation using nickel nanoparticles supported mesoporous carbon nitride catalysts,” Sci Rep, vol. 13, no. 1, p. 4855, Dec. 2023, doi: 10.1038/s41598-023-31958-1.
J. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, Mar. 2012, doi: 10.1039/c2ra00632d.
B. Miao, S. S. K. Ma, X. Wang, H. Su, and S. H. Chan, “Catalysis mechanisms of CO2 and CO methanation,” Catalysis Science and Technology, vol. 6, no. 12. Royal Society of Chemistry, pp. 4048–4058, 2016. doi: 10.1039/c6cy00478d.
M. Y. Shahul Hamid, S. Triwahyono, A. A. Jalil, N. W. Che Jusoh, S. M. Izan, and T. A. Tuan Abdullah, “Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR,” Inorg Chem, vol. 57, no. 10, pp. 5859–5869, May 2018, doi: 10.1021/acs.inorgchem.8b00241.
C. R. Kwawu, A. Aniagyei, R. Tia, and E. Adei, “A DFT investigation of the mechanisms of CO2 and CO methanation on Fe (111),” Mater Renew Sustain Energy, vol. 9, no. 1, Mar. 2020, doi: 10.1007/s40243-020-0164-x.
P. Schlexer, H. Y. T. Chen, and G. Pacchioni, “CO2 Activation and Hydrogenation: A Comparative DFT Study of Ru10/TiO2 and Cu10/TiO2 Model Catalysts,” Catal Letters, vol. 147, no. 8, pp. 1871–1881, Aug. 2017, doi: 10.1007/s10562-017-2098-1.
A. Solis-Garcia and J. C. Fierro-Gonzalez, “ Mechanistic Insights into the CO 2 Methanation Catalyzed by Supported Metals: A Review ,” J Nanosci Nanotechnol, vol. 19, no. 6, pp. 3110–3123, Feb. 2019, doi: 10.1166/jnn.2019.16606.
E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, and V. Tekáč, “Reaction mechanisms of carbon dioxide methanation,” Chemical Papers, vol. 70, no. 4. De Gruyter Open Ltd, pp. 395–403, Apr. 01, 2016. doi: 10.1515/chempap-2015-0216.
A. Borgschulte et al., “Sorption enhanced CO2 methanation,” Physical Chemistry Chemical Physics, vol. 15, no. 24, pp. 9620–9625, Jun. 2013, doi: 10.1039/c3cp51408k.
L. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.
S. Sharma et al., “Mechanistic Insights into CO2 Methanation over Ru-Substituted CeO2,” Journal of Physical Chemistry C, vol. 120, no. 26, pp. 14101–14112, Jul. 2016, doi: 10.1021/acs.jpcc.6b03224.
P. Riani, E. Spennati, M. V. Garcia, V. S. Escribano, G. Busca, and G. Garbarino, “Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading,” Int J Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.01.002.
H. Muroyama et al., “Carbon dioxide methanation over Ni catalysts supported on various metal oxides,” J Catal, vol. 343, pp. 178–184, 2016, doi: 10.1016/j.jcat.2016.07.018.
H. Takano, Y. Kirihata, K. Izumiya, N. Kumagai, H. Habazaki, and K. Hashimoto, “Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation,” Appl Surf Sci, vol. 388, pp. 653–663, 2016, doi: 10.1016/j.apsusc.2015.11.187.
L. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, no. May, pp. 200–210, 2017, doi: 10.1016/j.jcou.2017.07.014.
C. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, no. May 2017, pp. 181–189, 2018, doi: 10.1016/j.cattod.2017.08.060.
J. C. Matsubu, V. N. Yang, and P. Christopher, “Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity,” J Am Chem Soc, vol. 137, no. 8, pp. 3076–3084, 2015, doi: 10.1021/ja5128133.
T. A. Le, T. W. Kim, S. H. Lee, and E. D. Park, “Effects of Na content in Na/Ni/SiO2 and Na/Ni/CeO2 catalysts for CO and CO2 methanation,” Catal Today, vol. 303, no. September 2017, pp. 159–167, 2018, doi: 10.1016/j.cattod.2017.09.031.
C. Liang et al., “Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity,” Int J Hydrogen Energy, vol. 44, no. 16, pp. 8197–8213, 2019, doi: 10.1016/j.ijhydene.2019.02.014.
M. R. Abukhadra, A. S. Mohamed, A. M. El-Sherbeeny, A. T. A. Soliman, and A. E. E. Abd Elgawad, “Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization,” Chemical Engineering and Processing - Process Intensification, vol. 154, p. 108024, Aug. 2020, doi: 10.1016/J.CEP.2020.108024.
D. Murguía-Ortiz et al., “Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production,” Mater Lett, vol. 291, p. 129587, May 2021, doi: 10.1016/J.MATLET.2021.129587.
N. D. Charisiou et al., “Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction,” Int J Hydrogen Energy, vol. 44, no. 1, pp. 256–273, Jan. 2019, doi: 10.1016/J.IJHYDENE.2018.02.165.
K. N. Papageridis et al., “Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil,” Renew Energy, vol. 162, pp. 1793–1810, Dec. 2020, doi: 10.1016/J.RENENE.2020.09.133.
A. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.
A. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.
I. F. Macías-Quiroga, J. A. Rengifo-Herrera, S. M. Arredondo-López, A. Marín-Flórez, and N. R. Sanabria-González, “Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis,” Scientific World Journal, vol. 2022, 2022, doi: 10.1155/2022/5728678.
C. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, pp. 181–189, Apr. 2018, doi: 10.1016/j.cattod.2017.08.060.
F. Derekaya, A. B. Köprülü, and Y. S. Kilinç, “Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts,” Arab J Sci Eng, Jul. 2023, doi: 10.1007/s13369-022-07594-8.
А. G. Dyachenko et al., “Preparation and characterization of Ni–Co/SiO2 nanocomposite catalysts for CO2 methanation,” Applied Nanoscience (Switzerland), vol. 12, no. 3, pp. 349–359, Mar. 2022, doi: 10.1007/s13204-020-01650-1.
P. Shafiee, S. M. Alavi, and M. Rezaei, “Investigation of the effect of cobalt on the Ni–Al2O3 catalyst prepared by the mechanochemical method for CO2 methanation,” Research on Chemical Intermediates, vol. 48, no. 5, pp. 1923–1938, May 2022, doi: 10.1007/s11164-022-04700-1.
M. Guo and G. Lu, “The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni–Co bimetallic catalysts for CO2 methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 113, no. 1, pp. 101–113, Oct. 2014, doi: 10.1007/s11144-014-0732-0.
I. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50, pp. 271–304, 2016, doi: 10.1016/j.ijggc.2016.04.002.
M. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, Sep. 2014, doi: 10.1016/j.catcom.2014.05.022.
Y. Ma, J. Liu, M. Chu, J. Yue, Y. Cui, and G. Xu, “Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst,” Catal Letters, vol. 152, no. 3, pp. 872–882, Mar. 2022, doi: 10.1007/s10562-021-03677-7.
L. Zhang, L. Bian, Z. Li, and R. Xia, “The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2,” Kinetics and Catalysis, vol. 56, no. 3, pp. 329–334, May 2015, doi: 10.1134/S0023158415030143.
L. Zhou, Q. Wang, L. Ma, J. Chen, J. Ma, and Z. Zi, “CeO2 Promoted Mesoporous Ni/γ-Al2O3 Catalyst and its Reaction Conditions for CO2 Methanation,” Catal Letters, vol. 145, no. 2, pp. 612–619, Feb. 2015, doi: 10.1007/s10562-014-1426-y.
D. Wang et al., “Development of tethered dual catalysts: synergy between photo- And transition metal catalysts for enhanced catalysis,” Chem Sci, vol. 11, no. 24, pp. 6256–6267, 2020, doi: 10.1039/d0sc02703k.
K. L. Skubi, T. R. Blum, and T. P. Yoon, “Dual Catalysis Strategies in Photochemical Synthesis,” Chem Rev, vol. 116, no. 17, pp. 10035–10074, 2016, doi: 10.1021/acs.chemrev.6b00018.
Q. Zheng, R. Farrauto, and A. Chau Nguyen, “Adsorption and Methanation of Flue Gas CO2 with Dual Functional Catalytic Materials: A Parametric Study,” Ind Eng Chem Res, vol. 55, no. 24, pp. 6768–6776, 2016, doi: 10.1021/acs.iecr.6b01275.
E. Meza-Fuentes and M. do C. Rangel, “Síntesis de catalizadores de Ni/ZnO/Al2O3 para la reacción WGS a tráves del estudio de las propiedades estructurales y catalíticas de Ni/ZnO y M/Al2O3,” Revista Colombiana de Química, vol. 40, no. 1, pp. 105–123, 2011.
T. Zhang et al., “The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation,” Appl Catal B, vol. 323, p. 122190, Apr. 2023, doi: 10.1016/J.APCATB.2022.122190.
J. A. Onrubia-Calvo, A. Bermejo-López, S. Pérez-Vázquez, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane,” Fuel, vol. 320, p. 123842, Jul. 2022, doi: 10.1016/J.FUEL.2022.123842.
J. V. Veselovskaya, P. D. Parunin, O. V. Netskina, and A. G. Okunev, “A Novel Process for Renewable Methane Production: Combining Direct Air Capture by K2CO3/Alumina Sorbent with CO2 Methanation over Ru/Alumina Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1528–1536, Oct. 2018, doi: 10.1007/s11244-018-0997-z.
L. Proaño, E. Tello, M. A. Arellano-Trevino, S. Wang, R. J. Farrauto, and M. Cobo, “In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,‘Na2O’/Al2O3 Dual Functional Material,” Appl Surf Sci, vol. 479, pp. 25–30, Jun. 2019, doi: 10.1016/J.APSUSC.2019.01.281.
J. M. Gregg, D. L. Bish, S. E. Kaczmarek, and H. G. Machel, “Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review,” Sedimentology, vol. 62, no. 6, pp. 1749–1769, 2015, doi: 10.1111/sed.12202.
L. M. Correia et al., “Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production,” Chemical Engineering Journal, vol. 269, pp. 35–43, 2015, doi: 10.1016/j.cej.2015.01.097.
S. Manocha and F. Ponchon, “Management of lime in steel,” Metals (Basel), vol. 8, no. 9, pp. 1–16, 2018, doi: 10.3390/met8090686.
J. Pesonen et al., “Use of calcined dolomite as chemical precipitant in the simultaneous removal of ammonium and phosphate from synthetic wastewater and from agricultural sludge,” ChemEngineering, vol. 3, no. 2, pp. 1–12, 2019, doi: 10.3390/chemengineering3020040.
G. Ondrasek et al., “Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish,” Science of the Total Environment, vol. 753, 2021, doi: 10.1016/j.scitotenv.2020.141902.
K. Wang, X. Hu, P. Zhao, and Z. Yin, “Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture,” Appl Energy, vol. 165, pp. 14–21, 2016, doi: 10.1016/j.apenergy.2015.12.071.
T. Xu et al., “Syngas production via chemical looping reforming biomass pyrolysis oil using NiO / dolomite as oxygen carrier , catalyst or sorbent,” Energy Convers Manag, vol. 198, no. May, p. 111835, 2019, doi: 10.1016/j.enconman.2019.111835.
M. Shaaban, “Properties of concrete with binary binder system of calcined dolomite powder and rice husk ash,” Heliyon, vol. 7, no. 2, p. e06311, Feb. 2021, doi: 10.1016/J.HELIYON.2021.E06311.
X. Guo et al., “Carbon Dioxide Methanation over Nickel-Based Catalysts Supported on Various Mesoporous Material,” Energy and Fuels, vol. 32, no. 3, pp. 3681–3689, 2018, doi: 10.1021/acs.energyfuels.7b03826.
X. Guo et al., “Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO2 Methanation,” Ind Eng Chem Res, vol. 57, no. 28, pp. 9102–9111, 2018, doi: 10.1021/acs.iecr.8b01619.
Y. Jiang, T. Huang, L. Dong, Z. Qin, and H. Ji, “Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation,” Chin J Chem Eng, vol. 26, no. 11, pp. 2361–2367, 2018, doi: 10.1016/j.cjche.2018.03.029.
M. Gabrovska, R. Edreva-Kardjieva, D. Crişan, P. Tzvetkov, M. Shopska, and I. Shtereva, “Ni-Al layered double hydroxides as catalyst precursors for CO2 removal by methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 105, no. 1, pp. 79–99, 2012, doi: 10.1007/s11144-011-0378-0.
E. S. Gnanakumar et al., “Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane,” Chem Eng Sci, vol. 194, pp. 2–9, 2019, doi: 10.1016/j.ces.2018.08.038.
M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, “Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation,” Appl Catal B, vol. 147, pp. 359–368, 2014, doi: 10.1016/j.apcatb.2013.09.015.
H. Lu et al., “Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation,” Int J Hydrogen Energy, vol. 39, no. 33, pp. 18894–18907, 2014, doi: 10.1016/j.ijhydene.2014.09.076.
M. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, 2014, doi: 10.1016/j.catcom.2014.05.022.
L. Xu et al., “CO2 methanation over Co–Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities,” Int J Hydrogen Energy, vol. 43, no. 36, pp. 17172–17184, 2018, doi: 10.1016/j.ijhydene.2018.07.106.
M. R. Shamsuddin et al., “Insight into CO2 reforming of CH4 via NiO/dolomite catalysts for production of H2 rich syngas,” Int J Energy Res, vol. 45, no. 10, pp. 15463–15480, 2021, doi: 10.1002/er.6816.
M. R. Shamsuddin et al., “Promoting dry reforming of methaneviabifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas,” RSC Adv, vol. 11, no. 12, pp. 6667–6681, 2021, doi: 10.1039/d0ra09246k.
I. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50. Elsevier Ltd, pp. 271–304, Jul. 01, 2016. doi: 10.1016/j.ijggc.2016.04.002.
C. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, p. 116521, Feb. 2020, doi: 10.1016/J.FUEL.2019.116521.
X. Zhang et al., “The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite,” Mater Charact, vol. 186, no. January, 2022, doi: 10.1016/j.matchar.2022.111810.
J. Yang Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, “Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor,” Chem Eng Sci, vol. 141, pp. 28–45, Feb. 2016, doi: 10.1016/j.ces.2015.10.026.
N. Schreiter, J. Kirchner, and S. Kureti, “A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst,” Catal Commun, vol. 140, p. 105988, Jun. 2020, doi: 10.1016/J.CATCOM.2020.105988.
C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, May 2020, doi: 10.1016/j.apcatb.2019.118546.
H. Mysore Prabhakara, E. A. Bramer, and G. Brem, “Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor,” Fuel Processing Technology, vol. 224, no. August, p. 107029, 2021, doi: 10.1016/j.fuproc.2021.107029.
X. Zou et al., “Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation,” J Colloid Interface Sci, vol. 620, pp. 77–85, 2022, doi: 10.1016/j.jcis.2022.04.001.
Vibha et al., “Crystal structure determination, XRD peak profile analysis and morphological study of double perovskite SrNdFeTiO6,” Mater Today Proc, no. xxxx, 2022, doi: 10.1016/j.matpr.2022.11.364.
F. Hu et al., “Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects,” Journal of CO2 Utilization, vol. 34, pp. 676–687, 2019, doi: 10.1016/j.jcou.2019.08.020.
P. Ptáček, F. Šoukal, and T. Opravil, “Thermal decomposition of ferroan dolomite: A comparative study in nitrogen, carbon dioxide, air and oxygen,” Solid State Sci, vol. 122, no. November, 2021, doi: 10.1016/j.solidstatesciences.2021.106778.
C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, 2010, doi: 10.1016/j.fuel.2009.10.010.
P. Xu, Z. Zhou, C. Zhao, and Z. Cheng, “Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming,” Catal Today, vol. 259, pp. 347–353, Nov. 2016, doi: 10.1016/j.cattod.2015.05.026.
S. Castilho, A. Kiennemann, M. F. Costa Pereira, and A. P. Soares Dias, “Sorbents for CO2 capture from biogenesis calcium wastes,” Chemical Engineering Journal, vol. 226, pp. 146–153, Jun. 2013, doi: 10.1016/j.cej.2013.04.017.
M. Muñoz, S. Moreno, and R. Molina, “Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol,” Catal Today, vol. 213, pp. 33–41, Sep. 2013, doi: 10.1016/J.CATTOD.2013.04.037.
C. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol (OSRE) reaction,” MethodsX, vol. 10, p. 102169, Jan. 2023, doi: 10.1016/J.MEX.2023.102169.
E. Osorio-Restrepo, M. Cañón-Alvarado, and C. E. Daza, “Ce-promoted Ni/Ca-Al(O) coprecipitated catalysts with efficient synthetic natural gas generation at low temperatures,” Fuel, vol. 351, p. 128916, Nov. 2023, doi: 10.1016/J.FUEL.2023.128916.
A. Cárdenas-Arenas, H. S. Cortés, E. Bailón-García, A. Davó-Quiñonero, D. Lozano-Castelló, and A. Bueno-López, “Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation,” Fuel Processing Technology, vol. 212, Feb. 2021, doi: 10.1016/j.fuproc.2020.106637.
C. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol ( OSRE ) reaction,” MethodsX, vol. 10, no. April, p. 102169, Jan. 2023, doi: 10.1016/j.mex.2023.102169.
H. Sun et al., “XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process,” Sep Purif Technol, vol. 298, Oct. 2022, doi: 10.1016/j.seppur.2022.121622.
D. Silva, N. A. Debacher, A. Borges De Castilhos Junior, F. Rohers, and S. Catarina, “CARACTERIZAÇÃO FÍSICO-QUÍMICA E MICROESTRUTURAL DE CONCHAS DE MOLUSCOS BIVALVES PROVENIENTES DE CULTIVOS DA REGIÃO LITORÂNEA DA ILHA DE SANTA CATARINA PHYSICAL CHEMISTRY AND MICRO STRUCTURAL CHARACTERIZATION OF SHELLS OF BIVALVE MOLLUSKS FROM SEA FARMER AROUND THE SANTA CATARINA ISLAND. Samples of shells of oysters and mussels from sea farm around the,” 2010.
X. Wang et al., “In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties,” Journal of Earth Science, vol. 30, no. 5, pp. 964–976, 2019, doi: 10.1007/s12583-019-1236-7.
Y. Maor, M. B. Toffolo, Y. Feldman, J. Vardi, H. Khalaily, and Y. Asscher, “Dolomite in archaeological plaster: An FTIR study of the plaster floors at Neolithic Motza, Israel,” J Archaeol Sci Rep, vol. 48, p. 103862, Apr. 2023, doi: 10.1016/J.JASREP.2023.103862.
N. Sachdeva, N. Shrivastava, and S. Shrivastava, “Mineralogical, pozzolanic and microscopic characterization of dolomite mine overburden,” Mater Today Proc, May 2023, doi: 10.1016/J.MATPR.2023.04.465.
K. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, and T. Hirajima, “Effect of natural dolomite calcination temperature on sorption of borate onto calcined products,” Microporous and Mesoporous Materials, vol. 171, pp. 1–8, 2013, doi: 10.1016/j.micromeso.2012.12.029.
P. Wang and Y. Shen, “Catalytic pyrolysis of cellulose and chitin with calcined dolomite – Pyrolysis kinetics and products analysis,” Fuel, vol. 312, no. December 2021, 2022, doi: 10.1016/j.fuel.2021.122875.
R. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.
I. Zamboni, Y. Zimmermann, A. Kiennemann, and C. Courson, “Improvement of steam reforming of toluene by CO2 capture using Fe/CaO–Ca12Al14O33 bi-functional materials,” Int J Hydrogen Energy, vol. 40, no. 15, pp. 5297–5304, Apr. 2015, doi: 10.1016/J.IJHYDENE.2015.01.065.
A. Djaidja, S. Libs, A. Kiennemann, and A. Barama, “Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts,” Catal Today, vol. 113, no. 3–4, pp. 194–200, Apr. 2006, doi: 10.1016/J.CATTOD.2005.11.066.
A. Intiso, F. Rossi, A. Proto, and R. Cucciniello, “The fascinating world of mayenite (Ca12Al14O33) and its derivatives,” Rendiconti Lincei, vol. 32, no. 4, pp. 699–708, 2021, doi: 10.1007/s12210-021-01025-w.
M. Olszak-Humienik and M. Jablonski, “Thermal behavior of natural dolomite,” J Therm Anal Calorim, vol. 119, no. 3, pp. 2239–2248, 2015, doi: 10.1007/s10973-014-4301-6.
Y. Buyang et al., “Dolomite catalyst for fast pyrolysis of waste cooking oil into hydrocarbon fuel,” S Afr J Chem Eng, vol. 45, pp. 60–72, Jul. 2023, doi: 10.1016/J.SAJCE.2023.04.007.
M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.
M. Husmann, C. Zuber, V. Maitz, T. Kienberger, and C. Hochenauer, “Comparison of dolomite and lime as sorbents for in-situ H2S removal with respect to gasification parameters in biomass gasification,” Fuel, vol. 181, pp. 131–138, Oct. 2016, doi: 10.1016/J.FUEL.2016.04.124.
Y. Che, C. Zhang, J. Song, X. Shang, X. Chen, and J. He, “The silicothermic reduction of magnesium in flowing argon and numerical simulation of novel technology,” Journal of Magnesium and Alloys, vol. 8, no. 3, pp. 752–760, Sep. 2020, doi: 10.1016/J.JMA.2019.12.006.
T. Hidayat, M. Y. Siregar, I. Santoso, and Z. Zulhan, “The effects of reductant and additive on the magnesium extraction from calcined dolomite via metallothermic reduction under vacuum condition,” Vacuum, vol. 202, p. 111196, Aug. 2022, doi: 10.1016/J.VACUUM.2022.111196.
N. Stevulova, I. Schwarzova, A. Estokova, and M. Holub, “MgO-based cement as an inorganic binder for hemp hurds composites,” Chemical Technology, vol. 67, no. 1, pp. 24–29, 2016, doi: 10.5755/j01.ct.67.1.15000.
K. Praserttaweeporn, T. Vitidsant, and W. Charusiri, “Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil,” Results in Engineering, vol. 14, no. May, p. 100461, 2022, doi: 10.1016/j.rineng.2022.100461.
R. S. R. M. Hafriz et al., “Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil,” Renew Energy, vol. 178, pp. 128–143, Nov. 2021, doi: 10.1016/J.RENENE.2021.06.074.
C. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1–4, pp. 357–366, Apr. 2008, doi: 10.1016/J.CATTOD.2007.12.081.
C. E. Daza, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni-Mg-Al-Ce mixed oxides derived from hydrotalcites: Mg/Ni ratio effect | Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni,” Revista Facultad de Ingenieria, no. 57, pp. 66–74, 2011.
C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/J.FUEL.2009.10.010.
J. G. Seo, M. H. Youn, J. S. Chung, and I. K. Song, “Effect of calcination temperature of mesoporous nickel–alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas (LNG),” Journal of Industrial and Engineering Chemistry, vol. 16, no. 5, pp. 795–799, Sep. 2010, doi: 10.1016/J.JIEC.2010.05.010.
A. C. Faria, R. Trujillano, V. Rives, C. V. Miguel, A. E. Rodrigues, and L. M. Madeira, “Cyclic operation of CO2 capture and conversion into methane on Ni-hydrotalcite based dual function materials (DFMs),” Journal of CO2 Utilization, vol. 72, p. 102476, Jun. 2023, doi: 10.1016/J.JCOU.2023.102476.
L. Wei et al., “Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation,” Catal Today, vol. 362, pp. 35–46, Feb. 2021, doi: 10.1016/J.CATTOD.2020.05.025.
Y. Varun, I. Sreedhar, and S. A. Singh, “Role of Ni, La impregnation and substitution in Co3O4-ZrO2 catalysts for catalytic hydrogen combustion,” J Environ Chem Eng, vol. 10, no. 5, p. 108384, Oct. 2022, doi: 10.1016/J.JECE.2022.108384.
G. Allaedini, S. M. Tasirin, and P. Aminayi, “Synthesis of Fe-Ni-Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation,” Chemical Papers, vol. 70, no. 2, pp. 231–242, Oct. 2015, doi: 10.1515/chempap-2015-0190.
C. Zhou, P. Yrjas, and K. Engvall, “Reaction mechanisms for H2O-enhanced dolomite calcination at high pressure,” Fuel Processing Technology, vol. 217, p. 106830, Jun. 2021, doi: 10.1016/J.FUPROC.2021.106830.
Z. Gao, L. Cui, and H. Ma, “Selective methanation of CO over Ni/Al2O3 catalyst: Effects of preparation method and Ru addition,” Int J Hydrogen Energy, vol. 41, no. 12, pp. 5484–5493, Apr. 2016, doi: 10.1016/J.IJHYDENE.2016.02.085.
X. Guo et al., “Promotion of CO2 methanation at low temperature over hydrotalcite-derived catalysts-effect of the tunable metal species and basicity,” Int J Hydrogen Energy, vol. 46, no. 1, pp. 518–530, Jan. 2021, doi: 10.1016/j.ijhydene.2020.09.193.
L. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, pp. 200–210, Oct. 2017, doi: 10.1016/j.jcou.2017.07.014.
Q. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.
Y. Hu et al., “MxOy (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation,” Int J Hydrogen Energy, Nov. 2022, doi: 10.1016/J.IJHYDENE.2022.11.045.
A. Cruz-Hernández, B. Alcántar-Vázquez, J. Arenas, and H. Pfeiffer, “Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors,” Reaction Kinetics, Mechanisms and Catalysis, vol. 119, no. 2, pp. 445–455, Dec. 2016, doi: 10.1007/s11144-016-1066-x.
L. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.
B. Shao et al., “Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-36646-2.
Y. Feng, W. Yang, and W. Chu, “Effect of Ca modification on the catalytic performance of Ni/AC for CO2 methanation,” Integrated Ferroelectrics, vol. 172, no. 1, pp. 40–48, Jun. 2016, doi: 10.1080/10584587.2016.1175333.
N. Bette, J. Thielemann, M. Schreiner, and F. Mertens, “Methanation of CO2 over a (Mg,Al)Ox Supported Nickel Catalyst Derived from a (Ni,Mg,Al)-Hydrotalcite-like Precursor,” ChemCatChem, vol. 8, no. 18, pp. 2903–2906, Sep. 2016, doi: 10.1002/cctc.201600469.
A. Rajabzadeh Nobakht, M. Rezaei, S. M. Alavi, E. Akbari, M. Varbar, and J. Hafezi-Bakhtiari, “CO2 methanation over NiO catalysts supported on CaO–Al2O3: Effect of CaO:Al2O3 molar ratio and nickel loading,” Int J Hydrogen Energy, Jun. 2023, doi: 10.1016/J.IJHYDENE.2023.06.172.
Z. Boukha, A. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction,” Appl Catal B, vol. 314, p. 121500, Oct. 2022, doi: 10.1016/J.APCATB.2022.121500.
Z. Taherian, V. Shahed Gharahshiran, Y. Orooji, H. Karimi-Maleh, and A. Khataee, “The study of CO2 reforming of methane over Ce/Sm-promoted NiCaAl catalysts,” Process Safety and Environmental Protection, vol. 174, pp. 235–242, Jun. 2023, doi: 10.1016/J.PSEP.2023.03.046.
U. Sikander, S. Sufian, and M. A. Salam, “A review of hydrotalcite based catalysts for hydrogen production systems,” International Journal of Hydrogen Energy, vol. 42, no. 31. Elsevier Ltd, pp. 19851–19868, Aug. 03, 2017. doi: 10.1016/j.ijhydene.2017.06.089.
H. Liu et al., “La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures,” Fuel, vol. 182, pp. 8–16, Oct. 2016, doi: 10.1016/J.FUEL.2016.05.073.
D. Zhang et al., “Coal char supported Ni catalysts prepared for CO2 methanation by hydrogenation,” Int J Hydrogen Energy, vol. 48, no. 39, pp. 14608–14621, May 2023, doi: 10.1016/J.IJHYDENE.2023.01.042.
Q. Xue, Z. Li, B. Yan, Y. Wang, and G. Luo, “Inhibition of sintering and coking by post-coating group IIA metal oxides on trace-Rh-promoted Ni-based catalysts for high-temperature steam reforming,” J Catal, vol. 417, pp. 164–177, Jan. 2023, doi: 10.1016/J.JCAT.2022.12.005.
M. González-Castaño, J. González-Arias, L. F. Bobadilla, E. Ruíz-López, J. A. Odriozola, and H. Arellano-García, “In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts,” Fuel, vol. 338, no. December 2022, 2023, doi: 10.1016/j.fuel.2022.127241.
H. L. Huynh et al., “Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study,” J Catal, vol. 392, pp. 266–277, Dec. 2020, doi: 10.1016/j.jcat.2020.10.018.
V. V. González-Rangulan, I. Reyero, F. Bimbela, F. Romero-Sarria, M. Daturi, and L. M. Gandía, “CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements,” Catalysts, vol. 13, no. 2, Feb. 2023, doi: 10.3390/catal13020448.
A. Solis-Garcia, J. F. Louvier-Hernandez, A. Almendarez-Camarillo, and J. C. Fierro-Gonzalez, “Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni,” Appl Catal B, vol. 218, pp. 611–620, Dec. 2017, doi: 10.1016/J.APCATB.2017.06.063.
L. P. L. Gonçalves et al., “In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS,” Appl Catal B, vol. 312, p. 121376, Sep. 2022, doi: 10.1016/J.APCATB.2022.121376.
A. Cárdenas-Arenas et al., “Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact,” Appl Mater Today, vol. 19, p. 100591, Jun. 2020, doi: 10.1016/J.APMT.2020.100591.
C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, p. 118546, May 2020, doi: 10.1016/J.APCATB.2019.118546.
P. A. U. Aldana et al., “Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy,” Catal Today, vol. 215, pp. 201–207, Oct. 2013, doi: 10.1016/J.CATTOD.2013.02.019.
W. Gac, W. Zawadzki, M. Rotko, G. Słowik, and M. Greluk, “CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies,” Top Catal, vol. 62, no. 5–6, pp. 524–534, Jun. 2019, doi: 10.1007/s11244-019-01148-3.
X. Han et al., “Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods,” Int J Hydrogen Energy, vol. 41, no. 20, pp. 8401–8411, Jun. 2016, doi: 10.1016/j.ijhydene.2016.03.160.
Y. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, and Z. jun Wang, “Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 12, pp. 3780–3786, Dec. 2019, doi: 10.1002/jctb.6078.
T. T. M. Nguyen, L. Wissing, and M. S. Skjøth-Rasmussen, “High temperature methanation: Catalyst considerations,” in Catalysis Today, Oct. 2013, pp. 233–238. doi: 10.1016/j.cattod.2013.03.035.
Q. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.
Y. Cui et al., “CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment,” Fuel, vol. 334, p. 126783, Feb. 2023, doi: 10.1016/J.FUEL.2022.126783.
X. Wang, Y. Hong, H. Shi, and J. Szanyi, “Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts,” J Catal, vol. 343, pp. 185–195, Nov. 2016, doi: 10.1016/J.JCAT.2016.02.001.
S. Wang, Q. Pan, J. Peng, and S. Wang, “In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2,” Catal Sci Technol, vol. 4, no. 2, pp. 502–509, 2014, doi: 10.1039/c3cy00868a.
C. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116521.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84900/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84900/4/1010211502.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84900/5/1010211502.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fb4dd9a16aa32e12f64f1ff99d4fb505
c6c0b4060b090924d8f3058a60530f14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090207222300672
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Daza Velásquez, Carlos Enrique570beab15b4d630adc94c5b455f359ecCañón Alvarado, Michael2c5c59731944f8e790b5e3b20fc08bf2Estado sólido y catálisis ambiental ESCACañón Alvarado, Michael [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000046278]2023-11-07T19:46:05Z2023-11-07T19:46:05Z2023-11-02https://repositorio.unal.edu.co/handle/unal/84900Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa mitigación y la reducción de las emisiones de CO2 son de vital importancia para combatir el cambio climático. Una prometedora estrategia para esta lucha es la metanación de CO2 para producir metano como una potencial fuente de energía sostenible. En la investigación desarrollada para esta tesis de maestría, se sintetizaron catalizadores duales de níquel (Ni) soportados sobre una dolomita calcinada modificada con aluminio (Al) utilizando como material de partida un mineral natural. Se obtuvieron catalizadores impregnados con diferentes cargas de Ni (5, 10, 20% y 30% en masa) y se realizó una caracterización exhaustiva para evaluar las características estructurales, morfológicas, químicas y texturales del soporte y los catalizadores, así como su idoneidad para la captura de CO2 y su conversión hasta metano. Se observó que el tratamiento con 3% en masa de Al en la dolomita calcinada aumentó la estabilidad térmica, limitó la sinterización e incrementó el área superficial pasando de 16 a 39 m2∙g-1. Se utilizaron diferentes técnicas para describir la basicidad y la captura de CO2 de los catalizadores. Los sólidos presentaron capacidades de captura de CO2 medida por TGA a 400 °C entre 100 y 800 μmol∙g-1 encontrándose que con un aumento en la carga de Ni en los catalizadores, esta característica disminuye debido a la reducción de sitios básicos disponibles. Los análisis mediante TPD-CO2 revelaron que el CO2 capturado se encuentra en diferentes tipos de sitios básicos, especialmente en los sitios fuertes y se observa la fácil formación de carbonatos de alta estabilidad térmica. Los catalizadores demostraron conversiones catalíticas de CO2 a 400 °C con velocidades de WHSV: 12 Lg-1h-1 y GHSV: 1915 h-1, superiores al 50% para las cargas más altas de Ni (30% y 20%) y ligeramente inferiores al 50% para las cargas más bajas (10% y 5%). Esto indica que los catalizadores son activos en la reacción de metanación de CO2 y, combinados con su capacidad de captura de CO2, demuestran una capacidad dual efectiva. Los ensayos catalíticos demostraron que los catalizadores son 100 % selectivos a metano ya que fue demostrada la ausencia de CO o de coque y presentan rendimientos hasta del 60 % los cuales son dependientes de la carga de Ni. En este trabajo, se realizó un estudio de la reacción por la técnica DRIFT in situ y Operando con el fin de contribuir a la descripción del mecanismo de la reacción usando este tipo de catalizadores. Se realizaron experimentos en función del tiempo, de la temperatura y un experimento Operando. La técnica permitió identificar la formación de carbonatos estables sobre los catalizadores y su transformación en especies formiato, grupos metoxi y formilo que son intermediarias para la formación de metano. Los resultados señalan que el mecanismo que se sigue es el de la ruta del formiato lo cual explica la ausencia de CO y la selectividad total lograda. (Texto tomado de la fuente)Mitigation and reduction of CO2 emissions are of vital importance in the fight against climate change. A promising strategy for this battle is CO2 methanation to produce methane as a potential source of sustainable energy. In the research conducted for this master's thesis, dual nickel (Ni) catalysts supported on calcined dolomite modified with aluminum (Al) were synthesized using a natural mineral as the starting material. Catalysts impregnated with different Ni loads (5%, 10%, 20%, and 30% by weight) were obtained, and an exhaustive characterization was performed to evaluate the structural, morphological, chemical, and textural characteristics of the support and catalysts, as well as their suitability for CO2 capture and conversion to methane. It was seen that treatment with 3% by weight of Al in calcined dolomite increased thermal stability, limited sintering, and increased the specific surface area from 16 to 39 m2∙g-1. Various techniques were employed to describe the basicity and CO2 capture capacity of the catalysts. The solids showed CO2 capture capacities measured by TGA at 400 °C ranging from 100 to 800 μmol∙g-1, and it was found that with an increase in the Ni loading in the catalysts, this feature decreased due to the reduction of available basic sites. TPD-CO2 analyses revealed that the captured CO2 was found in different types of basic sites, especially in strong sites, and the easy formation of thermally stable carbonates was observed. The catalysts demonstrated catalytic CO2 conversions at 400 °C with WHSV rates of 12 Lg-1h-1 and GHSV rates of 1915 h-1, exceeding 50% for higher Ni loadings (30% and 20%) and slightly below 50% for lower loadings (10% and 5%). This indicates that the catalysts are active in the CO2 methanation reaction and, combined with their CO2 capture capacity, they demonstrate effective dual functionality. Catalytic tests showed that the catalysts are 100% selective to methane, as evidenced by the absence of CO or coke, and they exhibited yields of up to 60%, which depend on the Ni loading. In this work, an in situ and Operando study of the reaction was conducted using the DRIFT technique to contribute to the description of the reaction mechanism using these types of catalysts. Experiments were performed as a function of time, temperature, and an Operando experiment. The technique allowed the identification of the formation of stable carbonates on the catalysts and their transformation into formiate, methoxy, and formyl species, which are intermediates for methane formation. The results show that the mechanism followed is the formiate route, which explains the absence of CO and the achieved total selectivity to methane.MaestríaMagíster en Ciencias - Químicaxiv, 103 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánicaCatalisisGases de combustión - mediciónContaminación - mediconesCatalysisFlue gases - meausurementPollution - measurementMetanación de CO2DolomitaCatalizadores dualesCaptura de CO2DRIFTCO2 methanation,DolomiteDual catalystsCO2 captureDRIFTDesarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metanoDevelopment of dual catalysts based on dolomite for the capture and transformation of CO2 into methaneTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts,” Appl Catal B, vol. 256, no. April, p. 117845, 2019, doi: 10.1016/j.apcatb.2019.117845.J. E. Szulejko, P. Kumar, A. Deep, and K. H. Kim, “Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor,” Atmos Pollut Res, vol. 8, no. 1, pp. 136–140, Jan. 2017, doi: 10.1016/J.APR.2016.08.002.D. Nong, P. Simshauser, and D. B. Nguyen, “Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax,” Appl Energy, vol. 298, p. 117223, 2021, doi: 10.1016/j.apenergy.2021.117223.K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” Advances in Carbon Capture: Methods, Technologies and Applications, pp. 3–28, Jan. 2020, doi: 10.1016/B978-0-12-819657-1.00001-3.J. Bautista, Y. Sierra, and J. F. Bermeo, “Greenhouse Gas Emissions in Higher Education Institutions,” Produccion y Limpia, vol. 17, no. 1, pp. 169–186, Jan. 2022, doi: 10.22507/PML.V17N1A10.M. Lennan and E. Morgera, “The Glasgow Climate Conference (COP26),” International Journal of Marine and Coastal Law, vol. 37, no. 1, pp. 137–151, 2022, doi: 10.1163/15718085-bja10083.G. Climate, “Glasgow Climate Pact,” Glasgow, 2021. [Online]. Available: https://www.ipcc.ch/report/ar6/wg1/.S. Di Pietro, “Acuerdo de París,” Cooperativismo & Desarrollo, vol. 25, no. 111, 2017, doi: 10.16925/co.v25i111.1874.A. Rafiee, K. Rajab Khalilpour, D. Milani, and M. Panahi, “Trends in CO2 conversion and utilization: A review from process systems perspective,” J Environ Chem Eng, vol. 6, no. 5, pp. 5771–5794, 2018, doi: 10.1016/j.jece.2018.08.065.M. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and methanation status review,” Renewable and Sustainable Energy Reviews, vol. 112, no. May, pp. 775–787, 2019, doi: 10.1016/j.rser.2019.06.030.C. Wulf, J. Linßen, and P. Zapp, “Review of power-to-gas projects in Europe,” Energy Procedia, vol. 155, pp. 367–378, 2018, doi: 10.1016/j.egypro.2018.11.041.J. C. Navarro, M. A. Centeno, O. H. Laguna, and J. A. Odriozola, “Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. A review of the most recent advances,” Catalysts, vol. 8, no. 12, pp. 1–25, 2018, doi: 10.3390/catal8120578.C. Vogt et al., “Unravelling structure sensitivity in CO2 hydrogenation over nickel,” Nat Catal, vol. 1, no. 2, pp. 127–134, 2018, doi: 10.1038/s41929-017-0016-y.R. P. Ye et al., “Engineering Ni/SiO2 catalysts for enhanced CO2 methanation,” Fuel, vol. 285, p. 119151, Feb. 2021, doi: 10.1016/J.FUEL.2020.119151.L. Pastor-Pérez, E. Le Saché, C. Jones, S. Gu, H. Arellano-Garcia, and T. R. Reina, “Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity,” Catal Today, vol. 317, pp. 108–113, Nov. 2018, doi: 10.1016/J.CATTOD.2017.11.035.K. Stangeland, D. Y. Kalai, H. Li, and Z. Yu, “Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO2 methanation,” Appl Energy, vol. 227, pp. 206–212, Oct. 2018, doi: 10.1016/J.APENERGY.2017.08.080.C. Vogt, M. Monai, G. J. Kramer, and B. M. Weckhuysen, “The renaissance of the Sabatier reaction and its applications on Earth and in space,” Nat Catal, vol. 2, no. 3, pp. 188–197, 2019, doi: 10.1038/s41929-019-0244-4.S. Patel, “WindGas Falkenhagen: Pioneering Green Gas Production,” News & Technology for the Global Energy Industry. Accessed: Jun. 25, 2023. [Online]. Available: https://www.powermag.com/windgas-falkenhagen-pioneering-green-gas-production/C. J. Quarton and S. Samsatli, “Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?,” Renewable and Sustainable Energy Reviews, vol. 98, no. August, pp. 302–316, 2018, doi: 10.1016/j.rser.2018.09.007.M. Younas, L. Loong Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, “Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO 2,” Energy and Fuels, vol. 30, no. 11, pp. 8815–8831, 2016, doi: 10.1021/acs.energyfuels.6b01723.J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, “Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone,” Appl Energy, vol. 138, pp. 202–215, Jan. 2015, doi: 10.1016/J.APENERGY.2014.10.087.L. M. Marques, S. M. Mota, P. Teixeira, C. I. C. Pinheiro, and H. A. Matos, “Ca-looping process using wastes of marble powders and limestones for CO2 capture from real flue gas in the cement industry,” Journal of CO2 Utilization, vol. 71, p. 102450, May 2023, doi: 10.1016/J.JCOU.2023.102450.N. Arshad and A. Alhajaj, “Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant,” Energy, vol. 274, p. 127391, Jul. 2023, doi: 10.1016/J.ENERGY.2023.127391.M. Díaz, M. Alonso, G. Grasa, and J. R. Fernández, “The Ca-Cu looping process using natural CO2 sorbents in a packed bed: Operation strategies to accommodate activity decay,” Chem Eng Sci, vol. 273, p. 118659, Jun. 2023, doi: 10.1016/J.CES.2023.118659.C. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Pérez-Maqueda, and P. Gimenez-Gavarrell, “Scaling-up the calcium-looping process for co2 capture and energy storage,” KONA Powder and Particle Journal, vol. 38, pp. 189–208, 2021, doi: 10.14356/kona.2021005.A. M. Kierzkowska, L. V. Poulikakos, M. Broda, and C. R. Müller, “Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique,” International Journal of Greenhouse Gas Control, vol. 15, pp. 48–54, 2013, doi: 10.1016/j.ijggc.2013.01.046.R. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.M. Heidari, M. Tahmasebpoor, S. B. Mousavi, and C. Pevida, “CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2+Al2O3+CeO2)-based additive under mild and realistic calcium looping conditions,” Journal of CO2 Utilization, vol. 53, p. 101747, Nov. 2021, doi: 10.1016/J.JCOU.2021.101747.S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten, “Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany,” Int J Hydrogen Energy, vol. 40, no. 12, pp. 4285–4294, 2015, doi: 10.1016/j.ijhydene.2015.01.123.T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, and A. Orth, “Methanation of CO2 - storage of renewable energy in a gas distribution system,” Energy Sustain Soc, vol. 4, no. 1, pp. 1–14, 2014, doi: 10.1186/s13705-014-0029-1.P. Frontera, A. Macario, M. Ferraro, and P. L. Antonucci, “Supported catalysts for CO2 methanation: A review,” Catalysts, vol. 7, no. 2, pp. 1–28, 2017, doi: 10.3390/catal7020059.J. Blamey, E. J. Anthony, J. Wang, and P. S. Fennell, “The calcium looping cycle for large-scale CO2 capture,” Progress in Energy and Combustion Science, vol. 36, no. 2. pp. 260–279, Apr. 2010. doi: 10.1016/j.pecs.2009.10.001.S. Calderón et al., “Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets,” Energy Econ, vol. 56, pp. 575–586, 2014, doi: 10.1016/j.eneco.2015.05.010.J. J. Bravo-Suárez, R. V. Chaudhari, and B. Subramaniam, “Design of heterogeneous catalysts for fuels and chemicals processing: An overview,” ACS Symposium Series, vol. 1132, pp. 3–68, 2013, doi: 10.1021/bk-2013-1132.ch001.S. Hao, H. Huang, Y. Ma, Z. Zhang, and Z. Zheng, “Sensitive characterizations of natural dolomite by terahertz time-domain spectroscopy,” Opt Commun, vol. 456, no. September 2019, p. 124524, 2020, doi: 10.1016/j.optcom.2019.124524.P. Chaiprasert and T. Vitidsant, “Effects of promoters on biomass gasification using nickel/dolomite catalyst,” Korean Journal of Chemical Engineering, vol. 26, no. 6, pp. 1545–1549, Nov. 2009, doi: 10.1007/s11814-009-0259-7.S. Stendardo, L. Di Felice, K. Gallucci, and P. U. Foscolo, “CO2 capture with calcined dolomite: The effect of sorbent particle size,” Biomass Convers Biorefin, vol. 1, no. 3, pp. 149–161, Sep. 2011, doi: 10.1007/s13399-011-0018-y.M. Younas, M. Sohail, L. L. Kong, M. J. K. Bashir, and S. Sethupathi, “Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems,” International Journal of Environmental Science and Technology, vol. 13, no. 7, pp. 1839–1860, 2016, doi: 10.1007/s13762-016-1008-1.H. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001-0742(08)60002-9.L. M. Guardela Contreras, “Evolution of climate change policy in Colombia,” Vniversitas, vol. 69, pp. 1–17, 2020, doi: 10.11144/JAVERIANA.VJ69.EPCC.“Colombia CO2 emissions.” [Online]. Available: https://www.worldometers.info/co2-emissions/colombia-co2-emissions/T. Heyd, “Covid-19 and climate change in the times of the Anthropocene,” Anthropocene Review, vol. 8, no. 1, pp. 21–36, 2021, doi: 10.1177/2053019620961799.J. P. RODRIGUEZ, M. A. RUIZ-OCHOA, and A. MENESES, “Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia,” Espacios, vol. 41, no. 47, pp. 74–84, 2020, doi: 10.48082/espacios-a20v41n47p06.M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2,” Renewable and Sustainable Energy Reviews, vol. 69, no. November 2016, pp. 292–312, 2017, doi: 10.1016/j.rser.2016.11.130.S. González Arranz, “Power To Gas Y Metanación Subterránea,” pp. 115–117, 2020, [Online]. Available: https://oa.upm.es/63477/1/TFG_SERGIO_GONZALEZ_ARRANZ.pdfM. Ozturk and I. Dincer, “A comprehensive review on power-to-gas with hydrogen options for cleaner applications,” Int J Hydrogen Energy, vol. 46, no. 62, pp. 31511–31522, 2021, doi: 10.1016/j.ijhydene.2021.07.066.E. Vidal and C. Fontalvo, “Alternativa para la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología ‘Power to Gas’ en Colombia,” Revista Fuentes el Reventón Energético, vol. 16, no. 1, pp. 71–79, 2018, doi: 10.18273/revfue.v16n1-2018006.A. Porta, L. Falbo, C. G. Visconti, L. Lietti, C. Bassano, and P. Deiana, “Synthesis of Ru-based catalysts for CO 2 methanation and experimental assessment of intraporous transport limitations,” Catal Today, no. January, pp. 0–1, 2019, doi: 10.1016/j.cattod.2019.01.042.S. Höpfner, “New Audi e-gas offer as standard: 80 percent lower CO2 emissions,” 2017.M. Götz et al., “Renewable Power-to-Gas: A technological and economic review,” Renew Energy, vol. 85, pp. 1371–1390, 2016, doi: 10.1016/j.renene.2015.07.066.A. Catarina Faria, C. V. Miguel, and L. M. Madeira, “Thermodynamic analysis of the CO2 methanation reaction with in situ water removal for biogas upgrading,” Journal of CO2 Utilization, vol. 26, no. May, pp. 271–280, 2018, doi: 10.1016/j.jcou.2018.05.005.J. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, 2012, doi: 10.1039/c2ra00632d.P. Collet et al., “Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology,” Appl Energy, vol. 192, pp. 282–295, 2017, doi: 10.1016/j.apenergy.2016.08.181.A. Bolt, I. Dincer, and M. Agelin-Chaab, “A critical review of synthetic natural gas production techniques and technologies,” J Nat Gas Sci Eng, vol. 84, no. October, p. 103670, 2020, doi: 10.1016/j.jngse.2020.103670.Y. Fu, L. Cai, R. Yan, and Y. Guan, “Thermodynamic analysis of the biomass gasification Allam cycle,” Fuel, vol. 350, p. 128781, Oct. 2023, doi: 10.1016/J.FUEL.2023.128781.M. V. Konishcheva et al., “On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts,” Top Catal, vol. 59, no. 15–16, pp. 1424–1430, Sep. 2016, doi: 10.1007/s11244-016-0650-7.M. A. A. Aziz, A. A. Jalil, S. Triwahyono, and A. Ahmad, “CO2 methanation over heterogeneous catalysts: Recent progress and future prospects,” Green Chemistry, vol. 17, no. 5. Royal Society of Chemistry, pp. 2647–2663, May 01, 2015. doi: 10.1039/c5gc00119f.O. Ojeda-Niño, J. Gallego, and C. E. Daza, “Pr-promoted Ni exsolution from Ni–Mg–Al (O) as catalysts for syngas production by dry reforming of methane,” Results in Engineering, vol. 17, p. 100821, Mar. 2023, doi: 10.1016/J.RINENG.2022.100821.A. Serrano-Lotina and L. Daza, “Influence of the operating parameters over dry reforming of methane to syngas,” Int J Hydrogen Energy, vol. 39, no. 8, pp. 4089–4094, Mar. 2014, doi: 10.1016/J.IJHYDENE.2013.05.135.D. Sun and D. S. A. Simakov, “Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation-based analysis,” Journal of CO2 Utilization, vol. 21, no. June, pp. 368–382, 2017, doi: 10.1016/j.jcou.2017.07.015.M. C. Seemann, T. J. Schildhauer, and S. M. A. Biollaz, “Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas,” Ind Eng Chem Res, vol. 49, no. 15, pp. 7034–7038, 2010, doi: 10.1021/ie100510m.Y. Ren, W. Mo, J. Guo, Q. Liu, X. Fan, and S. Zhang, “Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2 -CH4 Reforming,” 2023.A. M. Gambelli, B. Castellani, A. Nicolini, and F. Rossi, “Gas hydrate formation as a strategy for CH4/CO2 separation: Experimental study on gaseous mixtures produced via Sabatier reaction,” J Nat Gas Sci Eng, vol. 71, no. August, p. 102985, 2019, doi: 10.1016/j.jngse.2019.102985.S. Eckle, H. G. Anfang, and R. J. Behm, “Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases,” Journal of Physical Chemistry C, vol. 115, no. 4, pp. 1361–1367, Feb. 2011, doi: 10.1021/jp108106t.Z. Refaat et al., “Efficient CO2 methanation using nickel nanoparticles supported mesoporous carbon nitride catalysts,” Sci Rep, vol. 13, no. 1, p. 4855, Dec. 2023, doi: 10.1038/s41598-023-31958-1.J. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, Mar. 2012, doi: 10.1039/c2ra00632d.B. Miao, S. S. K. Ma, X. Wang, H. Su, and S. H. Chan, “Catalysis mechanisms of CO2 and CO methanation,” Catalysis Science and Technology, vol. 6, no. 12. Royal Society of Chemistry, pp. 4048–4058, 2016. doi: 10.1039/c6cy00478d.M. Y. Shahul Hamid, S. Triwahyono, A. A. Jalil, N. W. Che Jusoh, S. M. Izan, and T. A. Tuan Abdullah, “Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR,” Inorg Chem, vol. 57, no. 10, pp. 5859–5869, May 2018, doi: 10.1021/acs.inorgchem.8b00241.C. R. Kwawu, A. Aniagyei, R. Tia, and E. Adei, “A DFT investigation of the mechanisms of CO2 and CO methanation on Fe (111),” Mater Renew Sustain Energy, vol. 9, no. 1, Mar. 2020, doi: 10.1007/s40243-020-0164-x.P. Schlexer, H. Y. T. Chen, and G. Pacchioni, “CO2 Activation and Hydrogenation: A Comparative DFT Study of Ru10/TiO2 and Cu10/TiO2 Model Catalysts,” Catal Letters, vol. 147, no. 8, pp. 1871–1881, Aug. 2017, doi: 10.1007/s10562-017-2098-1.A. Solis-Garcia and J. C. Fierro-Gonzalez, “ Mechanistic Insights into the CO 2 Methanation Catalyzed by Supported Metals: A Review ,” J Nanosci Nanotechnol, vol. 19, no. 6, pp. 3110–3123, Feb. 2019, doi: 10.1166/jnn.2019.16606.E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, and V. Tekáč, “Reaction mechanisms of carbon dioxide methanation,” Chemical Papers, vol. 70, no. 4. De Gruyter Open Ltd, pp. 395–403, Apr. 01, 2016. doi: 10.1515/chempap-2015-0216.A. Borgschulte et al., “Sorption enhanced CO2 methanation,” Physical Chemistry Chemical Physics, vol. 15, no. 24, pp. 9620–9625, Jun. 2013, doi: 10.1039/c3cp51408k.L. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.S. Sharma et al., “Mechanistic Insights into CO2 Methanation over Ru-Substituted CeO2,” Journal of Physical Chemistry C, vol. 120, no. 26, pp. 14101–14112, Jul. 2016, doi: 10.1021/acs.jpcc.6b03224.P. Riani, E. Spennati, M. V. Garcia, V. S. Escribano, G. Busca, and G. Garbarino, “Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading,” Int J Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.01.002.H. Muroyama et al., “Carbon dioxide methanation over Ni catalysts supported on various metal oxides,” J Catal, vol. 343, pp. 178–184, 2016, doi: 10.1016/j.jcat.2016.07.018.H. Takano, Y. Kirihata, K. Izumiya, N. Kumagai, H. Habazaki, and K. Hashimoto, “Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation,” Appl Surf Sci, vol. 388, pp. 653–663, 2016, doi: 10.1016/j.apsusc.2015.11.187.L. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, no. May, pp. 200–210, 2017, doi: 10.1016/j.jcou.2017.07.014.C. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, no. May 2017, pp. 181–189, 2018, doi: 10.1016/j.cattod.2017.08.060.J. C. Matsubu, V. N. Yang, and P. Christopher, “Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity,” J Am Chem Soc, vol. 137, no. 8, pp. 3076–3084, 2015, doi: 10.1021/ja5128133.T. A. Le, T. W. Kim, S. H. Lee, and E. D. Park, “Effects of Na content in Na/Ni/SiO2 and Na/Ni/CeO2 catalysts for CO and CO2 methanation,” Catal Today, vol. 303, no. September 2017, pp. 159–167, 2018, doi: 10.1016/j.cattod.2017.09.031.C. Liang et al., “Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity,” Int J Hydrogen Energy, vol. 44, no. 16, pp. 8197–8213, 2019, doi: 10.1016/j.ijhydene.2019.02.014.M. R. Abukhadra, A. S. Mohamed, A. M. El-Sherbeeny, A. T. A. Soliman, and A. E. E. Abd Elgawad, “Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization,” Chemical Engineering and Processing - Process Intensification, vol. 154, p. 108024, Aug. 2020, doi: 10.1016/J.CEP.2020.108024.D. Murguía-Ortiz et al., “Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production,” Mater Lett, vol. 291, p. 129587, May 2021, doi: 10.1016/J.MATLET.2021.129587.N. D. Charisiou et al., “Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction,” Int J Hydrogen Energy, vol. 44, no. 1, pp. 256–273, Jan. 2019, doi: 10.1016/J.IJHYDENE.2018.02.165.K. N. Papageridis et al., “Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil,” Renew Energy, vol. 162, pp. 1793–1810, Dec. 2020, doi: 10.1016/J.RENENE.2020.09.133.A. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.A. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.I. F. Macías-Quiroga, J. A. Rengifo-Herrera, S. M. Arredondo-López, A. Marín-Flórez, and N. R. Sanabria-González, “Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis,” Scientific World Journal, vol. 2022, 2022, doi: 10.1155/2022/5728678.C. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, pp. 181–189, Apr. 2018, doi: 10.1016/j.cattod.2017.08.060.F. Derekaya, A. B. Köprülü, and Y. S. Kilinç, “Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts,” Arab J Sci Eng, Jul. 2023, doi: 10.1007/s13369-022-07594-8.А. G. Dyachenko et al., “Preparation and characterization of Ni–Co/SiO2 nanocomposite catalysts for CO2 methanation,” Applied Nanoscience (Switzerland), vol. 12, no. 3, pp. 349–359, Mar. 2022, doi: 10.1007/s13204-020-01650-1.P. Shafiee, S. M. Alavi, and M. Rezaei, “Investigation of the effect of cobalt on the Ni–Al2O3 catalyst prepared by the mechanochemical method for CO2 methanation,” Research on Chemical Intermediates, vol. 48, no. 5, pp. 1923–1938, May 2022, doi: 10.1007/s11164-022-04700-1.M. Guo and G. Lu, “The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni–Co bimetallic catalysts for CO2 methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 113, no. 1, pp. 101–113, Oct. 2014, doi: 10.1007/s11144-014-0732-0.I. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50, pp. 271–304, 2016, doi: 10.1016/j.ijggc.2016.04.002.M. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, Sep. 2014, doi: 10.1016/j.catcom.2014.05.022.Y. Ma, J. Liu, M. Chu, J. Yue, Y. Cui, and G. Xu, “Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst,” Catal Letters, vol. 152, no. 3, pp. 872–882, Mar. 2022, doi: 10.1007/s10562-021-03677-7.L. Zhang, L. Bian, Z. Li, and R. Xia, “The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2,” Kinetics and Catalysis, vol. 56, no. 3, pp. 329–334, May 2015, doi: 10.1134/S0023158415030143.L. Zhou, Q. Wang, L. Ma, J. Chen, J. Ma, and Z. Zi, “CeO2 Promoted Mesoporous Ni/γ-Al2O3 Catalyst and its Reaction Conditions for CO2 Methanation,” Catal Letters, vol. 145, no. 2, pp. 612–619, Feb. 2015, doi: 10.1007/s10562-014-1426-y.D. Wang et al., “Development of tethered dual catalysts: synergy between photo- And transition metal catalysts for enhanced catalysis,” Chem Sci, vol. 11, no. 24, pp. 6256–6267, 2020, doi: 10.1039/d0sc02703k.K. L. Skubi, T. R. Blum, and T. P. Yoon, “Dual Catalysis Strategies in Photochemical Synthesis,” Chem Rev, vol. 116, no. 17, pp. 10035–10074, 2016, doi: 10.1021/acs.chemrev.6b00018.Q. Zheng, R. Farrauto, and A. Chau Nguyen, “Adsorption and Methanation of Flue Gas CO2 with Dual Functional Catalytic Materials: A Parametric Study,” Ind Eng Chem Res, vol. 55, no. 24, pp. 6768–6776, 2016, doi: 10.1021/acs.iecr.6b01275.E. Meza-Fuentes and M. do C. Rangel, “Síntesis de catalizadores de Ni/ZnO/Al2O3 para la reacción WGS a tráves del estudio de las propiedades estructurales y catalíticas de Ni/ZnO y M/Al2O3,” Revista Colombiana de Química, vol. 40, no. 1, pp. 105–123, 2011.T. Zhang et al., “The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation,” Appl Catal B, vol. 323, p. 122190, Apr. 2023, doi: 10.1016/J.APCATB.2022.122190.J. A. Onrubia-Calvo, A. Bermejo-López, S. Pérez-Vázquez, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane,” Fuel, vol. 320, p. 123842, Jul. 2022, doi: 10.1016/J.FUEL.2022.123842.J. V. Veselovskaya, P. D. Parunin, O. V. Netskina, and A. G. Okunev, “A Novel Process for Renewable Methane Production: Combining Direct Air Capture by K2CO3/Alumina Sorbent with CO2 Methanation over Ru/Alumina Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1528–1536, Oct. 2018, doi: 10.1007/s11244-018-0997-z.L. Proaño, E. Tello, M. A. Arellano-Trevino, S. Wang, R. J. Farrauto, and M. Cobo, “In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,‘Na2O’/Al2O3 Dual Functional Material,” Appl Surf Sci, vol. 479, pp. 25–30, Jun. 2019, doi: 10.1016/J.APSUSC.2019.01.281.J. M. Gregg, D. L. Bish, S. E. Kaczmarek, and H. G. Machel, “Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review,” Sedimentology, vol. 62, no. 6, pp. 1749–1769, 2015, doi: 10.1111/sed.12202.L. M. Correia et al., “Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production,” Chemical Engineering Journal, vol. 269, pp. 35–43, 2015, doi: 10.1016/j.cej.2015.01.097.S. Manocha and F. Ponchon, “Management of lime in steel,” Metals (Basel), vol. 8, no. 9, pp. 1–16, 2018, doi: 10.3390/met8090686.J. Pesonen et al., “Use of calcined dolomite as chemical precipitant in the simultaneous removal of ammonium and phosphate from synthetic wastewater and from agricultural sludge,” ChemEngineering, vol. 3, no. 2, pp. 1–12, 2019, doi: 10.3390/chemengineering3020040.G. Ondrasek et al., “Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish,” Science of the Total Environment, vol. 753, 2021, doi: 10.1016/j.scitotenv.2020.141902.K. Wang, X. Hu, P. Zhao, and Z. Yin, “Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture,” Appl Energy, vol. 165, pp. 14–21, 2016, doi: 10.1016/j.apenergy.2015.12.071.T. Xu et al., “Syngas production via chemical looping reforming biomass pyrolysis oil using NiO / dolomite as oxygen carrier , catalyst or sorbent,” Energy Convers Manag, vol. 198, no. May, p. 111835, 2019, doi: 10.1016/j.enconman.2019.111835.M. Shaaban, “Properties of concrete with binary binder system of calcined dolomite powder and rice husk ash,” Heliyon, vol. 7, no. 2, p. e06311, Feb. 2021, doi: 10.1016/J.HELIYON.2021.E06311.X. Guo et al., “Carbon Dioxide Methanation over Nickel-Based Catalysts Supported on Various Mesoporous Material,” Energy and Fuels, vol. 32, no. 3, pp. 3681–3689, 2018, doi: 10.1021/acs.energyfuels.7b03826.X. Guo et al., “Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO2 Methanation,” Ind Eng Chem Res, vol. 57, no. 28, pp. 9102–9111, 2018, doi: 10.1021/acs.iecr.8b01619.Y. Jiang, T. Huang, L. Dong, Z. Qin, and H. Ji, “Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation,” Chin J Chem Eng, vol. 26, no. 11, pp. 2361–2367, 2018, doi: 10.1016/j.cjche.2018.03.029.M. Gabrovska, R. Edreva-Kardjieva, D. Crişan, P. Tzvetkov, M. Shopska, and I. Shtereva, “Ni-Al layered double hydroxides as catalyst precursors for CO2 removal by methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 105, no. 1, pp. 79–99, 2012, doi: 10.1007/s11144-011-0378-0.E. S. Gnanakumar et al., “Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane,” Chem Eng Sci, vol. 194, pp. 2–9, 2019, doi: 10.1016/j.ces.2018.08.038.M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, “Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation,” Appl Catal B, vol. 147, pp. 359–368, 2014, doi: 10.1016/j.apcatb.2013.09.015.H. Lu et al., “Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation,” Int J Hydrogen Energy, vol. 39, no. 33, pp. 18894–18907, 2014, doi: 10.1016/j.ijhydene.2014.09.076.M. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, 2014, doi: 10.1016/j.catcom.2014.05.022.L. Xu et al., “CO2 methanation over Co–Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities,” Int J Hydrogen Energy, vol. 43, no. 36, pp. 17172–17184, 2018, doi: 10.1016/j.ijhydene.2018.07.106.M. R. Shamsuddin et al., “Insight into CO2 reforming of CH4 via NiO/dolomite catalysts for production of H2 rich syngas,” Int J Energy Res, vol. 45, no. 10, pp. 15463–15480, 2021, doi: 10.1002/er.6816.M. R. Shamsuddin et al., “Promoting dry reforming of methaneviabifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas,” RSC Adv, vol. 11, no. 12, pp. 6667–6681, 2021, doi: 10.1039/d0ra09246k.I. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50. Elsevier Ltd, pp. 271–304, Jul. 01, 2016. doi: 10.1016/j.ijggc.2016.04.002.C. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, p. 116521, Feb. 2020, doi: 10.1016/J.FUEL.2019.116521.X. Zhang et al., “The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite,” Mater Charact, vol. 186, no. January, 2022, doi: 10.1016/j.matchar.2022.111810.J. Yang Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, “Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor,” Chem Eng Sci, vol. 141, pp. 28–45, Feb. 2016, doi: 10.1016/j.ces.2015.10.026.N. Schreiter, J. Kirchner, and S. Kureti, “A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst,” Catal Commun, vol. 140, p. 105988, Jun. 2020, doi: 10.1016/J.CATCOM.2020.105988.C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, May 2020, doi: 10.1016/j.apcatb.2019.118546.H. Mysore Prabhakara, E. A. Bramer, and G. Brem, “Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor,” Fuel Processing Technology, vol. 224, no. August, p. 107029, 2021, doi: 10.1016/j.fuproc.2021.107029.X. Zou et al., “Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation,” J Colloid Interface Sci, vol. 620, pp. 77–85, 2022, doi: 10.1016/j.jcis.2022.04.001.Vibha et al., “Crystal structure determination, XRD peak profile analysis and morphological study of double perovskite SrNdFeTiO6,” Mater Today Proc, no. xxxx, 2022, doi: 10.1016/j.matpr.2022.11.364.F. Hu et al., “Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects,” Journal of CO2 Utilization, vol. 34, pp. 676–687, 2019, doi: 10.1016/j.jcou.2019.08.020.P. Ptáček, F. Šoukal, and T. Opravil, “Thermal decomposition of ferroan dolomite: A comparative study in nitrogen, carbon dioxide, air and oxygen,” Solid State Sci, vol. 122, no. November, 2021, doi: 10.1016/j.solidstatesciences.2021.106778.C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, 2010, doi: 10.1016/j.fuel.2009.10.010.P. Xu, Z. Zhou, C. Zhao, and Z. Cheng, “Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming,” Catal Today, vol. 259, pp. 347–353, Nov. 2016, doi: 10.1016/j.cattod.2015.05.026.S. Castilho, A. Kiennemann, M. F. Costa Pereira, and A. P. Soares Dias, “Sorbents for CO2 capture from biogenesis calcium wastes,” Chemical Engineering Journal, vol. 226, pp. 146–153, Jun. 2013, doi: 10.1016/j.cej.2013.04.017.M. Muñoz, S. Moreno, and R. Molina, “Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol,” Catal Today, vol. 213, pp. 33–41, Sep. 2013, doi: 10.1016/J.CATTOD.2013.04.037.C. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol (OSRE) reaction,” MethodsX, vol. 10, p. 102169, Jan. 2023, doi: 10.1016/J.MEX.2023.102169.E. Osorio-Restrepo, M. Cañón-Alvarado, and C. E. Daza, “Ce-promoted Ni/Ca-Al(O) coprecipitated catalysts with efficient synthetic natural gas generation at low temperatures,” Fuel, vol. 351, p. 128916, Nov. 2023, doi: 10.1016/J.FUEL.2023.128916.A. Cárdenas-Arenas, H. S. Cortés, E. Bailón-García, A. Davó-Quiñonero, D. Lozano-Castelló, and A. Bueno-López, “Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation,” Fuel Processing Technology, vol. 212, Feb. 2021, doi: 10.1016/j.fuproc.2020.106637.C. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol ( OSRE ) reaction,” MethodsX, vol. 10, no. April, p. 102169, Jan. 2023, doi: 10.1016/j.mex.2023.102169.H. Sun et al., “XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process,” Sep Purif Technol, vol. 298, Oct. 2022, doi: 10.1016/j.seppur.2022.121622.D. Silva, N. A. Debacher, A. Borges De Castilhos Junior, F. Rohers, and S. Catarina, “CARACTERIZAÇÃO FÍSICO-QUÍMICA E MICROESTRUTURAL DE CONCHAS DE MOLUSCOS BIVALVES PROVENIENTES DE CULTIVOS DA REGIÃO LITORÂNEA DA ILHA DE SANTA CATARINA PHYSICAL CHEMISTRY AND MICRO STRUCTURAL CHARACTERIZATION OF SHELLS OF BIVALVE MOLLUSKS FROM SEA FARMER AROUND THE SANTA CATARINA ISLAND. Samples of shells of oysters and mussels from sea farm around the,” 2010.X. Wang et al., “In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties,” Journal of Earth Science, vol. 30, no. 5, pp. 964–976, 2019, doi: 10.1007/s12583-019-1236-7.Y. Maor, M. B. Toffolo, Y. Feldman, J. Vardi, H. Khalaily, and Y. Asscher, “Dolomite in archaeological plaster: An FTIR study of the plaster floors at Neolithic Motza, Israel,” J Archaeol Sci Rep, vol. 48, p. 103862, Apr. 2023, doi: 10.1016/J.JASREP.2023.103862.N. Sachdeva, N. Shrivastava, and S. Shrivastava, “Mineralogical, pozzolanic and microscopic characterization of dolomite mine overburden,” Mater Today Proc, May 2023, doi: 10.1016/J.MATPR.2023.04.465.K. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, and T. Hirajima, “Effect of natural dolomite calcination temperature on sorption of borate onto calcined products,” Microporous and Mesoporous Materials, vol. 171, pp. 1–8, 2013, doi: 10.1016/j.micromeso.2012.12.029.P. Wang and Y. Shen, “Catalytic pyrolysis of cellulose and chitin with calcined dolomite – Pyrolysis kinetics and products analysis,” Fuel, vol. 312, no. December 2021, 2022, doi: 10.1016/j.fuel.2021.122875.R. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.I. Zamboni, Y. Zimmermann, A. Kiennemann, and C. Courson, “Improvement of steam reforming of toluene by CO2 capture using Fe/CaO–Ca12Al14O33 bi-functional materials,” Int J Hydrogen Energy, vol. 40, no. 15, pp. 5297–5304, Apr. 2015, doi: 10.1016/J.IJHYDENE.2015.01.065.A. Djaidja, S. Libs, A. Kiennemann, and A. Barama, “Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts,” Catal Today, vol. 113, no. 3–4, pp. 194–200, Apr. 2006, doi: 10.1016/J.CATTOD.2005.11.066.A. Intiso, F. Rossi, A. Proto, and R. Cucciniello, “The fascinating world of mayenite (Ca12Al14O33) and its derivatives,” Rendiconti Lincei, vol. 32, no. 4, pp. 699–708, 2021, doi: 10.1007/s12210-021-01025-w.M. Olszak-Humienik and M. Jablonski, “Thermal behavior of natural dolomite,” J Therm Anal Calorim, vol. 119, no. 3, pp. 2239–2248, 2015, doi: 10.1007/s10973-014-4301-6.Y. Buyang et al., “Dolomite catalyst for fast pyrolysis of waste cooking oil into hydrocarbon fuel,” S Afr J Chem Eng, vol. 45, pp. 60–72, Jul. 2023, doi: 10.1016/J.SAJCE.2023.04.007.M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.M. Husmann, C. Zuber, V. Maitz, T. Kienberger, and C. Hochenauer, “Comparison of dolomite and lime as sorbents for in-situ H2S removal with respect to gasification parameters in biomass gasification,” Fuel, vol. 181, pp. 131–138, Oct. 2016, doi: 10.1016/J.FUEL.2016.04.124.Y. Che, C. Zhang, J. Song, X. Shang, X. Chen, and J. He, “The silicothermic reduction of magnesium in flowing argon and numerical simulation of novel technology,” Journal of Magnesium and Alloys, vol. 8, no. 3, pp. 752–760, Sep. 2020, doi: 10.1016/J.JMA.2019.12.006.T. Hidayat, M. Y. Siregar, I. Santoso, and Z. Zulhan, “The effects of reductant and additive on the magnesium extraction from calcined dolomite via metallothermic reduction under vacuum condition,” Vacuum, vol. 202, p. 111196, Aug. 2022, doi: 10.1016/J.VACUUM.2022.111196.N. Stevulova, I. Schwarzova, A. Estokova, and M. Holub, “MgO-based cement as an inorganic binder for hemp hurds composites,” Chemical Technology, vol. 67, no. 1, pp. 24–29, 2016, doi: 10.5755/j01.ct.67.1.15000.K. Praserttaweeporn, T. Vitidsant, and W. Charusiri, “Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil,” Results in Engineering, vol. 14, no. May, p. 100461, 2022, doi: 10.1016/j.rineng.2022.100461.R. S. R. M. Hafriz et al., “Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil,” Renew Energy, vol. 178, pp. 128–143, Nov. 2021, doi: 10.1016/J.RENENE.2021.06.074.C. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1–4, pp. 357–366, Apr. 2008, doi: 10.1016/J.CATTOD.2007.12.081.C. E. Daza, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni-Mg-Al-Ce mixed oxides derived from hydrotalcites: Mg/Ni ratio effect | Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni,” Revista Facultad de Ingenieria, no. 57, pp. 66–74, 2011.C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/J.FUEL.2009.10.010.J. G. Seo, M. H. Youn, J. S. Chung, and I. K. Song, “Effect of calcination temperature of mesoporous nickel–alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas (LNG),” Journal of Industrial and Engineering Chemistry, vol. 16, no. 5, pp. 795–799, Sep. 2010, doi: 10.1016/J.JIEC.2010.05.010.A. C. Faria, R. Trujillano, V. Rives, C. V. Miguel, A. E. Rodrigues, and L. M. Madeira, “Cyclic operation of CO2 capture and conversion into methane on Ni-hydrotalcite based dual function materials (DFMs),” Journal of CO2 Utilization, vol. 72, p. 102476, Jun. 2023, doi: 10.1016/J.JCOU.2023.102476.L. Wei et al., “Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation,” Catal Today, vol. 362, pp. 35–46, Feb. 2021, doi: 10.1016/J.CATTOD.2020.05.025.Y. Varun, I. Sreedhar, and S. A. Singh, “Role of Ni, La impregnation and substitution in Co3O4-ZrO2 catalysts for catalytic hydrogen combustion,” J Environ Chem Eng, vol. 10, no. 5, p. 108384, Oct. 2022, doi: 10.1016/J.JECE.2022.108384.G. Allaedini, S. M. Tasirin, and P. Aminayi, “Synthesis of Fe-Ni-Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation,” Chemical Papers, vol. 70, no. 2, pp. 231–242, Oct. 2015, doi: 10.1515/chempap-2015-0190.C. Zhou, P. Yrjas, and K. Engvall, “Reaction mechanisms for H2O-enhanced dolomite calcination at high pressure,” Fuel Processing Technology, vol. 217, p. 106830, Jun. 2021, doi: 10.1016/J.FUPROC.2021.106830.Z. Gao, L. Cui, and H. Ma, “Selective methanation of CO over Ni/Al2O3 catalyst: Effects of preparation method and Ru addition,” Int J Hydrogen Energy, vol. 41, no. 12, pp. 5484–5493, Apr. 2016, doi: 10.1016/J.IJHYDENE.2016.02.085.X. Guo et al., “Promotion of CO2 methanation at low temperature over hydrotalcite-derived catalysts-effect of the tunable metal species and basicity,” Int J Hydrogen Energy, vol. 46, no. 1, pp. 518–530, Jan. 2021, doi: 10.1016/j.ijhydene.2020.09.193.L. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, pp. 200–210, Oct. 2017, doi: 10.1016/j.jcou.2017.07.014.Q. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.Y. Hu et al., “MxOy (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation,” Int J Hydrogen Energy, Nov. 2022, doi: 10.1016/J.IJHYDENE.2022.11.045.A. Cruz-Hernández, B. Alcántar-Vázquez, J. Arenas, and H. Pfeiffer, “Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors,” Reaction Kinetics, Mechanisms and Catalysis, vol. 119, no. 2, pp. 445–455, Dec. 2016, doi: 10.1007/s11144-016-1066-x.L. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.B. Shao et al., “Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-36646-2.Y. Feng, W. Yang, and W. Chu, “Effect of Ca modification on the catalytic performance of Ni/AC for CO2 methanation,” Integrated Ferroelectrics, vol. 172, no. 1, pp. 40–48, Jun. 2016, doi: 10.1080/10584587.2016.1175333.N. Bette, J. Thielemann, M. Schreiner, and F. Mertens, “Methanation of CO2 over a (Mg,Al)Ox Supported Nickel Catalyst Derived from a (Ni,Mg,Al)-Hydrotalcite-like Precursor,” ChemCatChem, vol. 8, no. 18, pp. 2903–2906, Sep. 2016, doi: 10.1002/cctc.201600469.A. Rajabzadeh Nobakht, M. Rezaei, S. M. Alavi, E. Akbari, M. Varbar, and J. Hafezi-Bakhtiari, “CO2 methanation over NiO catalysts supported on CaO–Al2O3: Effect of CaO:Al2O3 molar ratio and nickel loading,” Int J Hydrogen Energy, Jun. 2023, doi: 10.1016/J.IJHYDENE.2023.06.172.Z. Boukha, A. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction,” Appl Catal B, vol. 314, p. 121500, Oct. 2022, doi: 10.1016/J.APCATB.2022.121500.Z. Taherian, V. Shahed Gharahshiran, Y. Orooji, H. Karimi-Maleh, and A. Khataee, “The study of CO2 reforming of methane over Ce/Sm-promoted NiCaAl catalysts,” Process Safety and Environmental Protection, vol. 174, pp. 235–242, Jun. 2023, doi: 10.1016/J.PSEP.2023.03.046.U. Sikander, S. Sufian, and M. A. Salam, “A review of hydrotalcite based catalysts for hydrogen production systems,” International Journal of Hydrogen Energy, vol. 42, no. 31. Elsevier Ltd, pp. 19851–19868, Aug. 03, 2017. doi: 10.1016/j.ijhydene.2017.06.089.H. Liu et al., “La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures,” Fuel, vol. 182, pp. 8–16, Oct. 2016, doi: 10.1016/J.FUEL.2016.05.073.D. Zhang et al., “Coal char supported Ni catalysts prepared for CO2 methanation by hydrogenation,” Int J Hydrogen Energy, vol. 48, no. 39, pp. 14608–14621, May 2023, doi: 10.1016/J.IJHYDENE.2023.01.042.Q. Xue, Z. Li, B. Yan, Y. Wang, and G. Luo, “Inhibition of sintering and coking by post-coating group IIA metal oxides on trace-Rh-promoted Ni-based catalysts for high-temperature steam reforming,” J Catal, vol. 417, pp. 164–177, Jan. 2023, doi: 10.1016/J.JCAT.2022.12.005.M. González-Castaño, J. González-Arias, L. F. Bobadilla, E. Ruíz-López, J. A. Odriozola, and H. Arellano-García, “In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts,” Fuel, vol. 338, no. December 2022, 2023, doi: 10.1016/j.fuel.2022.127241.H. L. Huynh et al., “Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study,” J Catal, vol. 392, pp. 266–277, Dec. 2020, doi: 10.1016/j.jcat.2020.10.018.V. V. González-Rangulan, I. Reyero, F. Bimbela, F. Romero-Sarria, M. Daturi, and L. M. Gandía, “CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements,” Catalysts, vol. 13, no. 2, Feb. 2023, doi: 10.3390/catal13020448.A. Solis-Garcia, J. F. Louvier-Hernandez, A. Almendarez-Camarillo, and J. C. Fierro-Gonzalez, “Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni,” Appl Catal B, vol. 218, pp. 611–620, Dec. 2017, doi: 10.1016/J.APCATB.2017.06.063.L. P. L. Gonçalves et al., “In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS,” Appl Catal B, vol. 312, p. 121376, Sep. 2022, doi: 10.1016/J.APCATB.2022.121376.A. Cárdenas-Arenas et al., “Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact,” Appl Mater Today, vol. 19, p. 100591, Jun. 2020, doi: 10.1016/J.APMT.2020.100591.C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, p. 118546, May 2020, doi: 10.1016/J.APCATB.2019.118546.P. A. U. Aldana et al., “Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy,” Catal Today, vol. 215, pp. 201–207, Oct. 2013, doi: 10.1016/J.CATTOD.2013.02.019.W. Gac, W. Zawadzki, M. Rotko, G. Słowik, and M. Greluk, “CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies,” Top Catal, vol. 62, no. 5–6, pp. 524–534, Jun. 2019, doi: 10.1007/s11244-019-01148-3.X. Han et al., “Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods,” Int J Hydrogen Energy, vol. 41, no. 20, pp. 8401–8411, Jun. 2016, doi: 10.1016/j.ijhydene.2016.03.160.Y. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, and Z. jun Wang, “Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 12, pp. 3780–3786, Dec. 2019, doi: 10.1002/jctb.6078.T. T. M. Nguyen, L. Wissing, and M. S. Skjøth-Rasmussen, “High temperature methanation: Catalyst considerations,” in Catalysis Today, Oct. 2013, pp. 233–238. doi: 10.1016/j.cattod.2013.03.035.Q. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.Y. Cui et al., “CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment,” Fuel, vol. 334, p. 126783, Feb. 2023, doi: 10.1016/J.FUEL.2022.126783.X. Wang, Y. Hong, H. Shi, and J. Szanyi, “Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts,” J Catal, vol. 343, pp. 185–195, Nov. 2016, doi: 10.1016/J.JCAT.2016.02.001.S. Wang, Q. Pan, J. Peng, and S. Wang, “In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2,” Catal Sci Technol, vol. 4, no. 2, pp. 502–509, 2014, doi: 10.1039/c3cy00868a.C. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116521.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84900/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1010211502.2023.pdf1010211502.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf3998557https://repositorio.unal.edu.co/bitstream/unal/84900/4/1010211502.2023.pdffb4dd9a16aa32e12f64f1ff99d4fb505MD54THUMBNAIL1010211502.2023.pdf.jpg1010211502.2023.pdf.jpgGenerated Thumbnailimage/jpeg4696https://repositorio.unal.edu.co/bitstream/unal/84900/5/1010211502.2023.pdf.jpgc6c0b4060b090924d8f3058a60530f14MD55unal/84900oai:repositorio.unal.edu.co:unal/849002023-11-07 23:06:22.485Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=