Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation

diagramas, ilustraciones a color, tablas

Autores:
Dorado Rojas, Sergio Andrés
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79578
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79578
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Control de frecuencia
Control de rechazo activo de perturbaciones
Control automático de generación
Control de frecuencia de carga
Frequency control
Active disturbance rejection control
Automatic generation control
Load frequency control
Energía eólica
Wind power
Fuente de energía renovable
Renewable energy sources
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_a178dc75887b6f105808d14a1373bd87
oai_identifier_str oai:repositorio.unal.edu.co:unal/79578
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
dc.title.translated.spa.fl_str_mv Control de frecuencia descentralizado para un sistema de potencia con alta penetración de generación eólica y solar fotovoltaica
title Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
spellingShingle Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
620 - Ingeniería y operaciones afines
Control de frecuencia
Control de rechazo activo de perturbaciones
Control automático de generación
Control de frecuencia de carga
Frequency control
Active disturbance rejection control
Automatic generation control
Load frequency control
Energía eólica
Wind power
Fuente de energía renovable
Renewable energy sources
title_short Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
title_full Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
title_fullStr Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
title_full_unstemmed Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
title_sort Decentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
dc.creator.fl_str_mv Dorado Rojas, Sergio Andrés
dc.contributor.advisor.none.fl_str_mv Rivera Rodríguez, Sergio Raúl
Mojica Nava, Eduardo
dc.contributor.author.none.fl_str_mv Dorado Rojas, Sergio Andrés
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación EMC-UN
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Control de frecuencia
Control de rechazo activo de perturbaciones
Control automático de generación
Control de frecuencia de carga
Frequency control
Active disturbance rejection control
Automatic generation control
Load frequency control
Energía eólica
Wind power
Fuente de energía renovable
Renewable energy sources
dc.subject.proposal.spa.fl_str_mv Control de frecuencia
Control de rechazo activo de perturbaciones
Control automático de generación
Control de frecuencia de carga
dc.subject.proposal.eng.fl_str_mv Frequency control
Active disturbance rejection control
Automatic generation control
Load frequency control
dc.subject.unesco.none.fl_str_mv Energía eólica
Wind power
Fuente de energía renovable
Renewable energy sources
description diagramas, ilustraciones a color, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T20:52:16Z
dc.date.available.none.fl_str_mv 2021-05-31T20:52:16Z
dc.date.issued.none.fl_str_mv 2021-05-31
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79578
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79578
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ali, R., Qudaih, Y. S., Mitani, Y. & Mohamed, T. H. (2013). A Robust Load Frequency Control of Power System with fluctuation of renewable energy sources, 20-23.
Anderson, G. (2012). Dynamics and Control of Electric Power Systems. Swiss Federal Institute of Technology (ETH) Zurich.
Apostolopoulou, D., Domínguez-garcía, A. D., Sauer, P. W. & Fellow, L. (2015). An Assessment of the Impact of Uncertainty on Automatic Generation Control Systems. 31(4), 1-9.
Attya, A. B., Dominguez-garcia, J. L. & Anaya-lara, O. (2018. A review on frequency support provision by wind power plants : Current and future challenges. Renewable and Sustainable Energy Reviews, & (June 2016), 2071-2087. https://doi.org/10.1016/j.rser.2017.06.016
Aziz, A., Than, A. & Stojcevski, A. (2017). Frequency regulation capabilities in wind power plant. Sustainable Energy Technologies and Assessments, (October). https://doi.org/10.1016/j.seta.2017.10.002
Aziz, A., Than, A. & Stojcevski, A. (2018). Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system. Electrical Power and Energy Systems, 99 (January), 603-617. https://do1.org/10.1016/j.ijepes.2018.01.045
Badihi, H., Zhang, Y. & Hong, H. (2015). Active power control design for supporting grid frequency regulation in wind farms. Annual Reviews in Control, 40, 70-81. https://doi.org/10.1016/j.arcontrol. 2015.09.005
Baudette, M., Castro, M., Rabuzin, T., Lavenius, J., Bogodorova, T. & Vanfretti, L. (2018). OpenIPSL: Open- Instance Power System Library - Update 1.5 to ¡Tesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX, 7, 34-36. https://doi.org/10.1016/j.softx.2018. 01.002
3evrani, H. (2014). Robust Power System. Frequency Control (and ed.). Springer. https://doi.org/10.1007/978-0- 387-84878-5
Bevrani, H., Daneshfar, F. & Hiyama, T. (2012). A new intelligent agent-based AGC design with real-time application. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(6), 994-1002. https://doi.org/10.1109/TSMCC.2011.2175916
3evrani, H. & Hiyama, T. (2011). Intelligent Automatic Generation Control. CC Press. https://doi.org/9781439849545
Bevrani, H., Mitani, Y. & Tsuji, K. (2004). Robust LFC Design Using Mixed Hz - Hinf Technique. International Conference on Electrical Engineering.
Bijami, E. & Farsangi, M. M. (2017). Networked distributed automatic generation control of power system with dynamic participation of wind turbines through uncertain delayed communication network. IT Renewable Power Generation, 11(8), 1254-1269. https://doi.org/10.1049/iet-rpg.2016.0508
Chang-Chien, L. R. Sun, C. C. & Yeh, Y. J. (2014). Modeling of wind farm participation in AGC. IEEE Transactions on Power Systems, 29(3), 1204-1211. https://doi.org/10.1109/TPWRS.2013.2291397
Chow, J. H. & Sanchez-Gasca, J. J. (2020). Power System Modeling, Computation and Control. Wiley-IEEE.
Coleman, C. (1965). Local Trajectory Equivalence of Differential Systems. Proceedings of the Americal Mathematical Society, 16(5), 890-892.
Conte, C., Jones, C. N., Morari, M. & Zeilinger, M. N. (2016). Distributed synthesis and stability of cooperative distributed model predictive control for linear systems. Automatica, 69, 117-125. https://doi.org/10. 1016/j.automatica.2016.02.009
Das, D., Aditya, S. & Kothari, D. (1999). Dynamics of diesel and wind turbine generators on an isolated power system. International Journal of Electrical Power & Energy Systems, 22(3), 183-189. https://doi.org/10. 1016/S0142-0615(98)00033-7
Datta, A., Bhattacharjee, K., S. Debbarma, S. & Kar, B. (2015). Load Frequency Control of a Renewable Energy Sources based Hybrid System, 34-38.
de Alegría, I. M., Andreu, J., Martín, J. L., Ibañez, P., Villate, J. L. & Camblong, H. (2007). Connection requirements for wind farms: A survey on technical requirements and regulation. Renewable and Sustainable Energy Reviews, 11(8), 1858-1872. hitps://doi.org/10.1016/j.rser.2006.01.008
Demetriou, P., Asprou, M., Quiros-Tortos, J. & Kyriakides, E. (2015). Dynamic IEEE Test Systems for Transient Analysis. IEEE Systems Journal, 11(4), 1-10. https://doi.org/10.1109/JSYST.2015.2444893
Díaz-González, F., Hau, M., Sumper, A. & Gomis-bellmunt, O. (2014). Participation of wind power plants in system frequency control : Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551-564. https://doi.org/10.1016/j.rser.2014.03.040
Dorado-Rojas,: A., Cortes-Romero, J., Rivera, S. & Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan Power Tech, 1-6. https://doi. org/10.1109/PTC.2019.8810873
ENTSO-E, E. N. o. T. S. O. f. E. (2015). Rate of Change of Frequency (ROCOF) withstand capability. https://www. entsoe.eu/Documents/Network%20codes%20documents/Implementation/CNC/IGD-RoCoF% 73%5C_%7Dwithstand%73%5C_%7Dcapability.pdf
Fliess, M. & Join, C. (2013). Model-free control. https://doi.org/10.1080/00207179.2013.810345
Francis, B. A. & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6
Fu, C. & Tan, W. (2017). Decentralised load frequency control for power systems with communication delays via active disturbance rejection. LET Generation, Transmission & Distribution. https://doi.org/10.1049/iet- gtd.2017.0852
Ganger, D., Zhang, J. & Vital, V. (2018). Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Transactions on Power Systems, 33(1), 1004-1012.
Ganguly, S., Shiva, C. K. & Mukherjee, V. (2018). Frequency stabilization of isolated and grid connected hybrid power system models. Journal of Energy Storage, 19, 145-159. https://doi.org/10.1016/j.est.2018.07.014
Gómez-Expósito, A., Conejo, A. & Cañizares, C. (2008). Electric Energy Systems: Analysis and Operation. CRC Press.
Grainger, J. J. & Stevenson Jr, W. D. (1994). Power System Analysis. McGraw-Hill.
Guo, Q. L. ke Tan, W. (2013). Load Frequency Control of Hybrid Power Systems via Active Disturbance Rejection Control (ADRC). Applied Mechanics and Materials, 325-326, 1145-1151. https://doi.org/10.4028/ www.scientific.net/AMM.325-326.1145
Han, J. (2009). From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56(3), 900-906. https://doi.org/10.1109/TIE.2008.2011621
Hermans, R. M., Joki, A., Lazar, M., Alessio, A., Van Den Bosch, P. P., Hiskens, I. A. & Bemporad, A. (2012). Assessment of non-centralised model predictive control techniques or electrical power networks. International Journal of Control, 85(8), 1162-1177. https://doi.org/10.1080/00207179.2012.679972
Hydro-Québec. (2005). Technical requirements for the connection of generation facilities to the Hydro-Québec transmission system: Supplementary requirements for wind generation.
Jayaweera, D. (2016). Smart Power Systems and Renewable Energy System Integration (D. Jayaweera, Ed.; Vol. 57). Springer International Publishing. https://doi.org/10.1007/978-3-319-30427-4
Kim, H., Zhu, M. & Lian, J. (2017). Distributed Robust Adaptive Frequency Control of Power Systems with Dynamic Loads. IEEE Transactions m Automatic Control, 1-10.
Klein, N. (2015). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster.
Kundur, P., Paserba, J., Ajarapu, V., Anderson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D. R., Stankovic, A., Taylor, C., Van Cutsem, T. & Vittal, V. (2004). Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems, 19(3), 1387-1401. https://doi.org/10.1109/TPWRS.2004.825981
Kundur, P. (1994). Power system stability and control. McGraw-Hill.
Lalor, G., Mullane, A. & O'Malley, M. (2005). Frequency control and wind turbine technologies. IEEE Transactions on Power Systems, 20(4), 1905-1913. https://dol.org/10.1109/TPWRS.2005.857393
Li, P., Hu, W., Hu, R., Huang, Q., Yao, J. & Chen, Z. (2017). Strategy for wind power plant contribution to frequency control under variable wind speed. Renewable Energy, 1-11. https://doi.org/10.1016/j. renene.2017.12.046
Li, Z. & Duan, Z. (2015). Cooperative Control of Multi-Agent Systems: A Consensus Region Approach. CRC Press.
Liu, F., Li, Y., Cao, Y., She, J. & Wu, M. (2016). A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System. IEEE Transactions on Power Systems, 31(4), 3320-3321. https://doi.org/10.1109/TPWRS.2015.2480005
Liu, X., Nong, H., Xi, K. & Yao, X. (2013). Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System. Mathematical Problems in Engineering.
Machowski, J., Bialek, J. W. & Bumby, J. R. (2008). Power System Dynamics, Stability and Control (and ed.). John Wiley & Sons.
Maestre, J. M. & Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Springer. https://doi. org/https://doi.org/10.1007/978-94-007-7006-5
Mejía Reyes, E. O. (2014). Regulación Primaria de Frecuencia de Sistemas Eléctricos con Alta Penetración de Energía Eólica. Instituto de Energía Eléctrica - Universidad Nacional de San Juan.
Milano, F. & Ortega Manjavacas, A. (2020). Frequency Variations in Power Systems: Modeling, State Estimation and Control. Wiley.
Mohamed, T. H., Bevrani, H., Hassan, A. A. & Hiyama, T. (2011). Decentralized model predictive based load frequency control in an interconnected power system. Energy Conversion and Management, 52(2), 1208-1214. https://doi.org/10.1016/j.enconman.2010.09.016
Morris, C. & Jungjohann, A. (2016). Energy Democracy - Germany's Energiewende to Renewables. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-31891-2
Nanou, S. I., Papakonstantinou, A. G. & Papathanassiou, S. A. (2015). A generic model of two-stage grid- connected PV systems with primary frequency response and inertia emulation. Electric Power Systems Research, 127, 186-196. https://doi.org/10.1016/j.epsr.2015.06.011
Pandey, S. K., Mohanty, S. R. & Kishor, N. (2013). A literature survey on load-frequency control for conven- tional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. https://doi.org/10.1016/j.rser.2013.04.029
Pradeepthi Pavani, A. & Abhilash, T. (2017). Multi Area Load Frequency Control of Power System Involving Renewable And Non-Renewable Energy Sources. International Conference on Innovations in Power and Advanced Computing Technologies, 1-5.
Rawat, S., Bhola, J., Panda, M. K. & Rath, B. (2016). Load Frequency control of a Renewable Hybrid Power System with Simple Fuzzy Logic controller, 918-923.
REN. (2019). Renewable Now (REN.net). ren21.net/reports/global-status-report/
Rinke, T. B. (2011). MPC-based Frequency Regulation and Inertia Mimicking for Improved Grid Integration of Renewable Energy Sources (Doctoral dissertation). Swiss Federal Institute of Technology (ETH) Zurich and Ruhr-Universität Bochum.
Rodríguez-Amenedo, J. L., Arnalte, S. & Burgos, J. C. (2002). Automatic generation control of a wind farm with variable speed. Energy Conversion, IEEE Transactions on, 17(2), 279-284. https://doi.org/10.1109/ TEC.2002.1009481
Saadat, H. (1999). Power Systems Analysis (1st). McGraw-Hill.
Shankar, R., Pradhan, S., Chatterjee, K. & Mandal, R. (2017). A comprehensive state of the art literature survey on LFC mechanism for power system. Renewable and Sustainable Energy Reviews, 76( April), 1185- 1207. https://doi.org/10.1016/j.rser.2017.02.064
Shayeghi, H., Shayanfar, H. A. & Jalili, A. (2009). Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Conversion and Management, 50(2), 344-353. https://doi. org / 10.1016/j. enconman.2008.09.014
Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. & Zurita-Bustamante, E. W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness-based Approach. Butterworth-Heinemann.
Sumathi, S., Ashok Kumar, L. & Surekha, P. (2015). Solar PV and Wind Energy Conversion Systems. Springer. https://doi.org/10.1007/978-3-319-14941-7
Tang, Y., Bai, Y., Huang, C. & Du, B. (2015). Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy. Energy Conversion and Management, 95, 259-271. https://doi.org/10.1016/j.enconman.2015.02.005
Toulabi, M., Bahrami, S. & Ranjbar, A. M. (2017). Application of Edge theorem for robust stability analysis of a power system with participating wind power plants in automatic generation control task. IET Renewable Power Generation, 12(7), 1049-1057. https://doi.org/10.1049/iet-rpg.2016.0931
Unidad de Planeación Minero Energética. (2014). Integración de energías renovables no convencionales en Colombia.
Venkat, A. N., Hiskens, I. A., Rawlings, J. B. & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Transactions on Control Systems Technology, 16(6), 1192-1206. https://doi.org/10.1109/TCST.2008.919414
Wang, C. & McCalley, J. D. (2013). Impact of wind power on control performance standards. International Journal of Electrical Power and Energy Systems, 47(1), 225-234. https://doi.org/10.1016/j.ijepes.2012.11.010
Wang, Z., Liu, F., Low, S. H., Zhao, C. & Mei, S. (2018). Distributed Frequency Control with Operational Constraints, Part II : Network Power Balance. IEEE Transactions on Smart Grid. https://doi.org/10.1109/ TSG.2017.2731811
Weitenberg, E., Jiang, Y., Zhao, C., Mallada, E., De Persis, C. & Dörfler, F. (2017). Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs. http://arxiv.org/abs/1711. 07332
Yazdani, A., Di Fazio, A. R., Ghoddami, H., Russo, M., Kazerani, M., Jatskevich, J., Strunz, K., Leva, S. & Martinez, J. A. (2011). Modeling Guidelines and a Benchmark for Power System Simulation Studies of Three-Phase Single-Stage Photovoltaic Systems Task Force on Modeling and Analysis of Electronically-Coupled Distributed Resources. IEEE Transactions on Power Delivery, 26(2), 1247-1264.
Zheng, Y., Zhou, J., Xu, Y., Zhang, Y. & Qian, Z. (2017). A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Transactions, 68, 127-140. https://doi.org/10.1016/j.isatra.2017.03.009
Zheng, Y., Li, S. & Li, N. (2011). Distributed model predictive control over network information exchange for large-scale systems. Control Engineering Practice, 19(7), 757-769. https://doi.org/10.1016/j.conengprac. 2011.04.003
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (144 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79578/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79578/2/1020775885.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79578/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79578/4/1020775885.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
0cd33e96e98ec9fa664e629bbcee3d8b
4460e5956bc1d1639be9ae6146a50347
8c6c781430b3df6521d46b9dcbd7b014
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089817488621568
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivera Rodríguez, Sergio Raúlebc09c48c256e8bad61b48321e3a32c5Mojica Nava, Eduardoe4a1a8ad2ab3b2c45a8785177a841de1600Dorado Rojas, Sergio Andrés6eb7acb9f23699a393bb37da9255b89eGrupo de Investigación EMC-UN2021-05-31T20:52:16Z2021-05-31T20:52:16Z2021-05-31https://repositorio.unal.edu.co/handle/unal/79578Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, tablasNon-conventional renewable energies represent a significant challenge for electric grids due to the technicalities associated with their implementation. Integration of such energy sources requires revisiting the grid structure and operation paradigm. The most relevant difficulty is that such a transformation must be carried out while keeping the system operational. In a conventional power system, synchronous machines are widely used as traditional electricity generators. These rotating machines store kinetic energy in their rotors. Rotor kinetic energy can be released or captured to compensate for load or generation disturbances, thus keeping the system's frequency constant (inertia characteristic). Large-scale renewable integration reduces the grid's inertia significantly since they interface to the network through inertia-less power converters. Several control strategies have been proposed to enhance the inertia capability of renewable generation units such as solar photovoltaic plants or wind turbines. However, this control loop does not guarantee frequency restoration to the nominal value. For this reason, it is critical to consider a secondary control loop to drive the frequency back to the desired steady-state operating condition. This work considers a system with high penetration of solar photovoltaic and wind energy. The main objective is to evaluate a decentralized linear controller's performance for a secondary control loop with the active contribution of renewable units. The resulting controller is benchmarked against conventional alternatives such as a linear quadratic regulator. The document focuses mostly on designing a secondary load frequency controller under the active disturbance rejection paradigm using a linear technique such as an extended-state observer.Las energías renovables no convencionales suponen un gran desafío para los sistemas eléctricos dadas las dificultades técnicas que conlleva su implementación en la red existente. La incorporación de estas fuentes de generación obliga a una transformación total de la red y a un cambio de paradigma en su operación. La dificultad más grande, empero, es que dicho proceso debe llevarse a cabo sin interrumpir el funcionamiento del sistema. En una red eléctrica tradicional, los generadores sincrónicos se utilizan ampliamiente como unidades convencionales de generación de electricidad. Estas máquinas rotativas están en la capacidad de almacenar energía cinética en sus rotores, la cual pueden entregar al sistema para recobrar el balance que conduzca la frecuencia a un valor estable luego de la ocurrencia de una perturbación de carga o generación. Esto se conoce como capacidad de inercia. La integración de renovables a gran escala disminuye la capacidad de inercia de la red, ya que gran parte de las unidades de generación eólica y solar fotovoltaica se conectan al sistema mediante convertidores de electrónica de potencia. En la actualidad se han desarrollado distintas estrategias de control para proveer de capacidad de inercia a los generadores eólicos y solares fotovoltaicos. No obstante, este lazo por sí mismo no garantiza que la frecuencia de operación del sistema vaya a retornar a su valor nominal, ya que solo se encarga de estabilizar el valor de la frecuencia después de una perturbación. Por ello, es importante la consideración de un lazo de control secundario capaz de reestablecer la frecuencia a su valor nominal. Por todo lo anterior, este trabajo se enmarca en un escenario de alta penetración de generación eólica y solar fotovoltaica en un sistema de potencia. El principal propósito de esta investigación es evaluar el desempeño de un controlador descentralizado lineal en un lazo secundario de frecuencia con la participación de generadores eólicos y solar fotovoltaicos en comparación con una arquitectura basada en compensadores tradicionales como el LQR. El documento se centra en el diseño de un controlador secundario de frecuencia bajo el paradigma del rechazo activo de perturbaciones utilizando una técnica lineal como el observador de estado extendido.MaestríaMagíster en Ingeniería - Automatización IndustrialControl de frecuencia en sistemas de potencia1 recurso en línea (144 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesControl de frecuenciaControl de rechazo activo de perturbacionesControl automático de generaciónControl de frecuencia de cargaFrequency controlActive disturbance rejection controlAutomatic generation controlLoad frequency controlEnergía eólicaWind powerFuente de energía renovableRenewable energy sourcesDecentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generationControl de frecuencia descentralizado para un sistema de potencia con alta penetración de generación eólica y solar fotovoltaicaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAli, R., Qudaih, Y. S., Mitani, Y. & Mohamed, T. H. (2013). A Robust Load Frequency Control of Power System with fluctuation of renewable energy sources, 20-23.Anderson, G. (2012). Dynamics and Control of Electric Power Systems. Swiss Federal Institute of Technology (ETH) Zurich.Apostolopoulou, D., Domínguez-garcía, A. D., Sauer, P. W. & Fellow, L. (2015). An Assessment of the Impact of Uncertainty on Automatic Generation Control Systems. 31(4), 1-9.Attya, A. B., Dominguez-garcia, J. L. & Anaya-lara, O. (2018. A review on frequency support provision by wind power plants : Current and future challenges. Renewable and Sustainable Energy Reviews, & (June 2016), 2071-2087. https://doi.org/10.1016/j.rser.2017.06.016Aziz, A., Than, A. & Stojcevski, A. (2017). Frequency regulation capabilities in wind power plant. Sustainable Energy Technologies and Assessments, (October). https://doi.org/10.1016/j.seta.2017.10.002Aziz, A., Than, A. & Stojcevski, A. (2018). Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system. Electrical Power and Energy Systems, 99 (January), 603-617. https://do1.org/10.1016/j.ijepes.2018.01.045Badihi, H., Zhang, Y. & Hong, H. (2015). Active power control design for supporting grid frequency regulation in wind farms. Annual Reviews in Control, 40, 70-81. https://doi.org/10.1016/j.arcontrol. 2015.09.005Baudette, M., Castro, M., Rabuzin, T., Lavenius, J., Bogodorova, T. & Vanfretti, L. (2018). OpenIPSL: Open- Instance Power System Library - Update 1.5 to ¡Tesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX, 7, 34-36. https://doi.org/10.1016/j.softx.2018. 01.0023evrani, H. (2014). Robust Power System. Frequency Control (and ed.). Springer. https://doi.org/10.1007/978-0- 387-84878-5Bevrani, H., Daneshfar, F. & Hiyama, T. (2012). A new intelligent agent-based AGC design with real-time application. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(6), 994-1002. https://doi.org/10.1109/TSMCC.2011.21759163evrani, H. & Hiyama, T. (2011). Intelligent Automatic Generation Control. CC Press. https://doi.org/9781439849545Bevrani, H., Mitani, Y. & Tsuji, K. (2004). Robust LFC Design Using Mixed Hz - Hinf Technique. International Conference on Electrical Engineering.Bijami, E. & Farsangi, M. M. (2017). Networked distributed automatic generation control of power system with dynamic participation of wind turbines through uncertain delayed communication network. IT Renewable Power Generation, 11(8), 1254-1269. https://doi.org/10.1049/iet-rpg.2016.0508Chang-Chien, L. R. Sun, C. C. & Yeh, Y. J. (2014). Modeling of wind farm participation in AGC. IEEE Transactions on Power Systems, 29(3), 1204-1211. https://doi.org/10.1109/TPWRS.2013.2291397Chow, J. H. & Sanchez-Gasca, J. J. (2020). Power System Modeling, Computation and Control. Wiley-IEEE.Coleman, C. (1965). Local Trajectory Equivalence of Differential Systems. Proceedings of the Americal Mathematical Society, 16(5), 890-892.Conte, C., Jones, C. N., Morari, M. & Zeilinger, M. N. (2016). Distributed synthesis and stability of cooperative distributed model predictive control for linear systems. Automatica, 69, 117-125. https://doi.org/10. 1016/j.automatica.2016.02.009Das, D., Aditya, S. & Kothari, D. (1999). Dynamics of diesel and wind turbine generators on an isolated power system. International Journal of Electrical Power & Energy Systems, 22(3), 183-189. https://doi.org/10. 1016/S0142-0615(98)00033-7Datta, A., Bhattacharjee, K., S. Debbarma, S. & Kar, B. (2015). Load Frequency Control of a Renewable Energy Sources based Hybrid System, 34-38.de Alegría, I. M., Andreu, J., Martín, J. L., Ibañez, P., Villate, J. L. & Camblong, H. (2007). Connection requirements for wind farms: A survey on technical requirements and regulation. Renewable and Sustainable Energy Reviews, 11(8), 1858-1872. hitps://doi.org/10.1016/j.rser.2006.01.008Demetriou, P., Asprou, M., Quiros-Tortos, J. & Kyriakides, E. (2015). Dynamic IEEE Test Systems for Transient Analysis. IEEE Systems Journal, 11(4), 1-10. https://doi.org/10.1109/JSYST.2015.2444893Díaz-González, F., Hau, M., Sumper, A. & Gomis-bellmunt, O. (2014). Participation of wind power plants in system frequency control : Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551-564. https://doi.org/10.1016/j.rser.2014.03.040Dorado-Rojas,: A., Cortes-Romero, J., Rivera, S. & Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan Power Tech, 1-6. https://doi. org/10.1109/PTC.2019.8810873ENTSO-E, E. N. o. T. S. O. f. E. (2015). Rate of Change of Frequency (ROCOF) withstand capability. https://www. entsoe.eu/Documents/Network%20codes%20documents/Implementation/CNC/IGD-RoCoF% 73%5C_%7Dwithstand%73%5C_%7Dcapability.pdfFliess, M. & Join, C. (2013). Model-free control. https://doi.org/10.1080/00207179.2013.810345Francis, B. A. & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6Fu, C. & Tan, W. (2017). Decentralised load frequency control for power systems with communication delays via active disturbance rejection. LET Generation, Transmission & Distribution. https://doi.org/10.1049/iet- gtd.2017.0852Ganger, D., Zhang, J. & Vital, V. (2018). Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Transactions on Power Systems, 33(1), 1004-1012.Ganguly, S., Shiva, C. K. & Mukherjee, V. (2018). Frequency stabilization of isolated and grid connected hybrid power system models. Journal of Energy Storage, 19, 145-159. https://doi.org/10.1016/j.est.2018.07.014Gómez-Expósito, A., Conejo, A. & Cañizares, C. (2008). Electric Energy Systems: Analysis and Operation. CRC Press.Grainger, J. J. & Stevenson Jr, W. D. (1994). Power System Analysis. McGraw-Hill.Guo, Q. L. ke Tan, W. (2013). Load Frequency Control of Hybrid Power Systems via Active Disturbance Rejection Control (ADRC). Applied Mechanics and Materials, 325-326, 1145-1151. https://doi.org/10.4028/ www.scientific.net/AMM.325-326.1145Han, J. (2009). From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56(3), 900-906. https://doi.org/10.1109/TIE.2008.2011621Hermans, R. M., Joki, A., Lazar, M., Alessio, A., Van Den Bosch, P. P., Hiskens, I. A. & Bemporad, A. (2012). Assessment of non-centralised model predictive control techniques or electrical power networks. International Journal of Control, 85(8), 1162-1177. https://doi.org/10.1080/00207179.2012.679972Hydro-Québec. (2005). Technical requirements for the connection of generation facilities to the Hydro-Québec transmission system: Supplementary requirements for wind generation.Jayaweera, D. (2016). Smart Power Systems and Renewable Energy System Integration (D. Jayaweera, Ed.; Vol. 57). Springer International Publishing. https://doi.org/10.1007/978-3-319-30427-4Kim, H., Zhu, M. & Lian, J. (2017). Distributed Robust Adaptive Frequency Control of Power Systems with Dynamic Loads. IEEE Transactions m Automatic Control, 1-10.Klein, N. (2015). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster.Kundur, P., Paserba, J., Ajarapu, V., Anderson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D. R., Stankovic, A., Taylor, C., Van Cutsem, T. & Vittal, V. (2004). Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems, 19(3), 1387-1401. https://doi.org/10.1109/TPWRS.2004.825981Kundur, P. (1994). Power system stability and control. McGraw-Hill.Lalor, G., Mullane, A. & O'Malley, M. (2005). Frequency control and wind turbine technologies. IEEE Transactions on Power Systems, 20(4), 1905-1913. https://dol.org/10.1109/TPWRS.2005.857393Li, P., Hu, W., Hu, R., Huang, Q., Yao, J. & Chen, Z. (2017). Strategy for wind power plant contribution to frequency control under variable wind speed. Renewable Energy, 1-11. https://doi.org/10.1016/j. renene.2017.12.046Li, Z. & Duan, Z. (2015). Cooperative Control of Multi-Agent Systems: A Consensus Region Approach. CRC Press.Liu, F., Li, Y., Cao, Y., She, J. & Wu, M. (2016). A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System. IEEE Transactions on Power Systems, 31(4), 3320-3321. https://doi.org/10.1109/TPWRS.2015.2480005Liu, X., Nong, H., Xi, K. & Yao, X. (2013). Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System. Mathematical Problems in Engineering.Machowski, J., Bialek, J. W. & Bumby, J. R. (2008). Power System Dynamics, Stability and Control (and ed.). John Wiley & Sons.Maestre, J. M. & Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Springer. https://doi. org/https://doi.org/10.1007/978-94-007-7006-5Mejía Reyes, E. O. (2014). Regulación Primaria de Frecuencia de Sistemas Eléctricos con Alta Penetración de Energía Eólica. Instituto de Energía Eléctrica - Universidad Nacional de San Juan.Milano, F. & Ortega Manjavacas, A. (2020). Frequency Variations in Power Systems: Modeling, State Estimation and Control. Wiley.Mohamed, T. H., Bevrani, H., Hassan, A. A. & Hiyama, T. (2011). Decentralized model predictive based load frequency control in an interconnected power system. Energy Conversion and Management, 52(2), 1208-1214. https://doi.org/10.1016/j.enconman.2010.09.016Morris, C. & Jungjohann, A. (2016). Energy Democracy - Germany's Energiewende to Renewables. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-31891-2Nanou, S. I., Papakonstantinou, A. G. & Papathanassiou, S. A. (2015). A generic model of two-stage grid- connected PV systems with primary frequency response and inertia emulation. Electric Power Systems Research, 127, 186-196. https://doi.org/10.1016/j.epsr.2015.06.011Pandey, S. K., Mohanty, S. R. & Kishor, N. (2013). A literature survey on load-frequency control for conven- tional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. https://doi.org/10.1016/j.rser.2013.04.029Pradeepthi Pavani, A. & Abhilash, T. (2017). Multi Area Load Frequency Control of Power System Involving Renewable And Non-Renewable Energy Sources. International Conference on Innovations in Power and Advanced Computing Technologies, 1-5.Rawat, S., Bhola, J., Panda, M. K. & Rath, B. (2016). Load Frequency control of a Renewable Hybrid Power System with Simple Fuzzy Logic controller, 918-923.REN. (2019). Renewable Now (REN.net). ren21.net/reports/global-status-report/Rinke, T. B. (2011). MPC-based Frequency Regulation and Inertia Mimicking for Improved Grid Integration of Renewable Energy Sources (Doctoral dissertation). Swiss Federal Institute of Technology (ETH) Zurich and Ruhr-Universität Bochum.Rodríguez-Amenedo, J. L., Arnalte, S. & Burgos, J. C. (2002). Automatic generation control of a wind farm with variable speed. Energy Conversion, IEEE Transactions on, 17(2), 279-284. https://doi.org/10.1109/ TEC.2002.1009481Saadat, H. (1999). Power Systems Analysis (1st). McGraw-Hill.Shankar, R., Pradhan, S., Chatterjee, K. & Mandal, R. (2017). A comprehensive state of the art literature survey on LFC mechanism for power system. Renewable and Sustainable Energy Reviews, 76( April), 1185- 1207. https://doi.org/10.1016/j.rser.2017.02.064Shayeghi, H., Shayanfar, H. A. & Jalili, A. (2009). Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Conversion and Management, 50(2), 344-353. https://doi. org / 10.1016/j. enconman.2008.09.014Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. & Zurita-Bustamante, E. W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness-based Approach. Butterworth-Heinemann.Sumathi, S., Ashok Kumar, L. & Surekha, P. (2015). Solar PV and Wind Energy Conversion Systems. Springer. https://doi.org/10.1007/978-3-319-14941-7Tang, Y., Bai, Y., Huang, C. & Du, B. (2015). Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy. Energy Conversion and Management, 95, 259-271. https://doi.org/10.1016/j.enconman.2015.02.005Toulabi, M., Bahrami, S. & Ranjbar, A. M. (2017). Application of Edge theorem for robust stability analysis of a power system with participating wind power plants in automatic generation control task. IET Renewable Power Generation, 12(7), 1049-1057. https://doi.org/10.1049/iet-rpg.2016.0931Unidad de Planeación Minero Energética. (2014). Integración de energías renovables no convencionales en Colombia.Venkat, A. N., Hiskens, I. A., Rawlings, J. B. & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Transactions on Control Systems Technology, 16(6), 1192-1206. https://doi.org/10.1109/TCST.2008.919414Wang, C. & McCalley, J. D. (2013). Impact of wind power on control performance standards. International Journal of Electrical Power and Energy Systems, 47(1), 225-234. https://doi.org/10.1016/j.ijepes.2012.11.010Wang, Z., Liu, F., Low, S. H., Zhao, C. & Mei, S. (2018). Distributed Frequency Control with Operational Constraints, Part II : Network Power Balance. IEEE Transactions on Smart Grid. https://doi.org/10.1109/ TSG.2017.2731811Weitenberg, E., Jiang, Y., Zhao, C., Mallada, E., De Persis, C. & Dörfler, F. (2017). Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs. http://arxiv.org/abs/1711. 07332Yazdani, A., Di Fazio, A. R., Ghoddami, H., Russo, M., Kazerani, M., Jatskevich, J., Strunz, K., Leva, S. & Martinez, J. A. (2011). Modeling Guidelines and a Benchmark for Power System Simulation Studies of Three-Phase Single-Stage Photovoltaic Systems Task Force on Modeling and Analysis of Electronically-Coupled Distributed Resources. IEEE Transactions on Power Delivery, 26(2), 1247-1264.Zheng, Y., Zhou, J., Xu, Y., Zhang, Y. & Qian, Z. (2017). A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Transactions, 68, 127-140. https://doi.org/10.1016/j.isatra.2017.03.009Zheng, Y., Li, S. & Li, N. (2011). Distributed model predictive control over network information exchange for large-scale systems. Control Engineering Practice, 19(7), 757-769. https://doi.org/10.1016/j.conengprac. 2011.04.003LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79578/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1020775885.2021.pdf1020775885.2021.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf7465905https://repositorio.unal.edu.co/bitstream/unal/79578/2/1020775885.2021.pdf0cd33e96e98ec9fa664e629bbcee3d8bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79578/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1020775885.2021.pdf.jpg1020775885.2021.pdf.jpgGenerated Thumbnailimage/jpeg4493https://repositorio.unal.edu.co/bitstream/unal/79578/4/1020775885.2021.pdf.jpg8c6c781430b3df6521d46b9dcbd7b014MD54unal/79578oai:repositorio.unal.edu.co:unal/795782023-07-20 23:03:57.622Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==