Superficie de respuesta con bloques en supervivencia
Ilustraciones y tablas
- Autores:
-
Chávez Rojas, Ana Patricia
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80167
- Palabra clave:
- 510 - Matemáticas
Modelos estadísticos
Statistical models
Parameter estimation
Estimación de parámetros
Probabilities
Probabilidades
Diseño de experimentos
Modelo de Cox
Análisis de supervivencia
Metodología de superficies de respuestas
Design of experiments
Cox model
Response surfaces methodology
Survival analysis
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_a10bdfadeedcc3fb8064f67e48730284 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80167 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Superficie de respuesta con bloques en supervivencia |
dc.title.translated.eng.fl_str_mv |
Response surface methodology with blocks in survival |
title |
Superficie de respuesta con bloques en supervivencia |
spellingShingle |
Superficie de respuesta con bloques en supervivencia 510 - Matemáticas Modelos estadísticos Statistical models Parameter estimation Estimación de parámetros Probabilities Probabilidades Diseño de experimentos Modelo de Cox Análisis de supervivencia Metodología de superficies de respuestas Design of experiments Cox model Response surfaces methodology Survival analysis |
title_short |
Superficie de respuesta con bloques en supervivencia |
title_full |
Superficie de respuesta con bloques en supervivencia |
title_fullStr |
Superficie de respuesta con bloques en supervivencia |
title_full_unstemmed |
Superficie de respuesta con bloques en supervivencia |
title_sort |
Superficie de respuesta con bloques en supervivencia |
dc.creator.fl_str_mv |
Chávez Rojas, Ana Patricia |
dc.contributor.advisor.none.fl_str_mv |
Melo Martínez, Oscar Orlando |
dc.contributor.author.none.fl_str_mv |
Chávez Rojas, Ana Patricia |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas |
topic |
510 - Matemáticas Modelos estadísticos Statistical models Parameter estimation Estimación de parámetros Probabilities Probabilidades Diseño de experimentos Modelo de Cox Análisis de supervivencia Metodología de superficies de respuestas Design of experiments Cox model Response surfaces methodology Survival analysis |
dc.subject.other.none.fl_str_mv |
Modelos estadísticos Statistical models |
dc.subject.lemb.none.fl_str_mv |
Parameter estimation Estimación de parámetros Probabilities Probabilidades |
dc.subject.proposal.spa.fl_str_mv |
Diseño de experimentos Modelo de Cox Análisis de supervivencia Metodología de superficies de respuestas |
dc.subject.proposal.eng.fl_str_mv |
Design of experiments Cox model Response surfaces methodology Survival analysis |
description |
Ilustraciones y tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06 |
dc.date.accessioned.none.fl_str_mv |
2021-09-13T18:03:47Z |
dc.date.available.none.fl_str_mv |
2021-09-13T18:03:47Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80167 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80167 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aalen, O. O. (1989), ‘A linear regression model for the analysis of life times’, Statistics in medicine 8(8), 907–925. Aalen, O. O. (1993), ‘Further results on the non-parametric linear regression model in survival analysis’, Statistics in medicine 12(17), 1569–1588. Andersen, P. K. & Gill, R. D. (1982), ‘Cox’s regression model for counting processes: a large sample study’. Ata, N. & Tekin, M. (2007), ‘Cox regression models with nonproportional hazards applied to lung cancer survival data’, Hacettepe Journal of Mathematics and Statistics 36(2), 157–167. Bender, R., Augustin, T. & Blettner, M. (2005), ‘Generating survival times to simulate Cox proportional hazards models’, Statistics in medicine 24(11), 1713–1723. Bonferroni, C. (1936), ‘Teoria statistica delle classi e calcolo delle probabilita’, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3–62. Box, G. E. P. & Draper, N. R. (1982), ‘Measures of lack of fit for response surface designs and predictor variable transformations’, Technometrics 24, 1–8. Box, G. E. P. & Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge Analyses, Wiley Series in Probability and Statistics, New York. Box, G. E. P. & Wilson, K. B. (1951), ‘On the experimental attainment of optimum conditions’, Journal of the Royal Statistical Society 13, 1–45. Brenneman, W. A., Myers, W. R. & Myers, R. H. (2005), ‘A dual-response approach to robust parameter design for a generalizad linear model’, Journal of Quality Technology 37, 130–138. Breslow, N. E. (1972), ‘Discussion following “Regression models and life table” by D. R. Cox’, Journal of the Royal Statistical Society Series B 34, 187–220. Breslow, N. E. (1974), ‘Covariance analysis of censored survival data’, Biometrics 30(1), 89–99. Buchholz, A. & Sauerbrei, W. (2011), ‘Comparison of procedures to assess non-linear and time- varying effects in multivariable models for survival data’, Biometrical Journal 53(2), 308–331. Chen, M.-H., Ibrahim, J. G. & Sinha, D. (1999), ‘A new bayesian model for survival data with a surviving fraction’, Journal of the American Statistical Association 94(447), 909–919. Chiou, J., Müller, H. &Wang, J. (2004), ‘Functional response models’, Statistica Sinica 14, 675–693. Cochran, W, G. & Cox, G. M. (1992), Experimental Designs, Wiley, New York. Collett, D. (2003), Modelling survival data, in ‘Modelling Survival Data in Medical Research’, Springer. Cox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical Society. Series B 34(2), 187–220. Cox, D. R. (1975), ‘Partial likelihood’, Biometrika 62, 269–276. Cox, D. R. & Snell, E. J. (1968), ‘A general definition of residuals’, Journal of the Royal Statistical Society: Series B (Methodological) 30(2), 248–265. Das, M. K., Sahu, P. K., Rao, G. S., Mukkanti, K. & Silpavathi, L. (2014), ‘Application of response surface method to evaluate the cytotoxic potency of Ulva fasciata Delile, a marine macro alga’, Saudi Journal of Biological Sciences 21(6), 539 – 546. Das, R. N. (2009), ‘Response surface methodology in improving mean lifetime’, ProbStat Forum 2, 08–21. Debusho, L. K. & Chibayambuya, G. (2013), ‘Efficient response-surface designs with unknown block sizes’, South African Statistical Journal 47, 15–22. Derringer, G. C. & Suich, R. (1980), ‘Simultaneous optimization of several responses variables’, Journal of Quality Technology 12, 214–219. Draper, N. & Ying, L. H. (1994), ‘A note on slope rotatability over all directions’, Journal of Statistical Planning and Inference 41, 113–119. Efron, B. (1977), ‘The efficiency of Cox’s likelihood function for censored data’, Journal of the American Statistical Association 72(359), 557–565. Flores, C. J. (2011), Modelo de regresión de Cox con métodos flexibles en pacientes con linfoma no Hodgkin, Tesis de master, Universitat Politecnica de Catalunya, Barcelona. García, J. J. (2012), ‘Análisis de supervivencia aplicado al estudio de la mortalidad en injertos de Inchi (Caryodendron orinocense Karsten)’, Revista Científica UDO Agrícola 12(4), 759–769. García, J., Pérez, H. M. & Perdomo, D. (2009), ‘Evaluación de dos métodos de propagación asexual en Inchi (Caryodendron orinocense karsten)’, Revista Científica UDO Agrícola 9(4), 782–792. Giolo, S. R. & Colosimo, E. A. (2006), Análise de sobrevivencia aplicada, Edgard Blucher. Gómez, G. (2004), Análisis de supervivencia, Universidad Politécnica de Catalunya, Barcelona. Guanghui, W. & Douglas, E. S. (2008), ‘Estimating cumulative treatment effects in the presence of nonproportional hazards’, Biometrics 64(3), 724–732. Guanghui, W. & Douglas, E. S. (2014), ‘A measure for assessing functions of time-varying effects in survival analysis’, Open Journal of Statistics 4(11), 977–998. Harrell, J. & Frank, E. (2015), Cox proportional hazards regression model, in ‘Regression Modeling Strategies’, Springer, pp. 475–519. Harrington, J. E. C. (1965), ‘The desirability function’, Industrial Quality Control 21(10), 494–498. Hill, W. J. & Hunter, W. G. (1966), ‘A review of response surface methodology: A literature review’, Technometrics 8, 571–590. Huffer, F. W. & McKeague, I. W. (1991), ‘Weighted least squares estimation for Aalen’s additive risk model’, Journal of the American Statistical Association 86(413), 114–129. Johansen, S. (1983), ‘An extension of cox’s regression model’, International Statistical Review/Revue Internationale de Statistique pp. 165–174. Kalbfleisch, J. D. & Prentice, R. L. (1973), ‘Marginal likelihoods based on Cox’s regression and life model’, Biometrika 60(2), 267–278. Kalbfleisch, J. D. & Prentice, R. L. (1980), The statistical analysis of failure time data, John Wiley & Sons, New York. Kalbfleisch, J. D. & Prentice, R. L. (2011), The statistical analysis of failure time data, Vol. 360, John Wiley & Sons. Kaplan, E. & Meier, P. (1958), ‘Nonparametric estimation from incomplete observations’, Journal of the American Statistical Association 53, 457–481. Khuri, A. I. & Colon, M. (1981), ‘Simultaneous optimization of multiples responses represented by polynomial regression functions’, Technometrics 23(4), 363–375. Klein, J. P. & Moeschberger, M. L. (1997), Survival analysis: techniques for censored and truncated data, Springer Science, New York. Klein, J. P. & Moeschberger, M. L. (2003), Survival analysis Techniques for censored and truncated data, Springer, New York. Klein, J. P. & Moeschberger, M. L. (2006), Survival analysis: techniques for censored and truncated data, Springer Science & Business Media. Kudelka, W. (2007), ‘Use of response surface methodology to evaluate the survival rate of yogurt bacteria in natural bio-yoghurts of cow and goat milk’, Milchwissenschaft 63(3), 08–21. Lin, D. & Ying, Z. (1995), ‘Semiparametric analysis of general additivemultiplicative hazard models for counting processes’, Annals of Statistics 23, 1712–1734. Lucas, J. M. (1976), ‘Which response surfaces is best?’, Technometrics 18, 411-417. Mead, R. & Pike, D. J. (1975), ‘A review of responses surface methodology from a biometric viewpoint’, Biometrics 31, 830–851. Montgomery, D. (2005), Diseño y análisis de experimentos, Limusa Wiley, México. Montgomery, D. C. (2012), Design and Analyisis of Experiments, 5 edn, John Wiley & Sons. Myers, R. H. & Montgomery, D. C. (1995), Response Surface Methodology, John Wiley & Sons. Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. (2016), Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons. Myers, R. H., Montgomery, D. C. & Vinning, G. G. (2002), Generalized Linear Models. With Applications in Engineering and the Sciences, John Wiley & Sons. Oliveira, T., Leal, C. & Oliveira, A. (2014), Stochastic response surface methodology in medicine with censored/uncensored data analysis, in Biomed, ed., ‘Applied Numerical Mathematics and Scientific Computation’, Athens, Greece, pp. 92–98. Panagiotis, N. S. & George-John, E. N. (2000), ‘Development and evaluation of a model predicting the survival of Escherichia coli o157:h7 NCTC 12900 in Homemade Eggplant salad at various temperatures, pHs, and oregano essential oil concentrations’, Applied and Environmental Microbiology 66(4), 1646–1653. Peace, K. E. (2009), Design and Analysis of Clinical Trials with Time-to-Event Endpoints, CRC Press. R Development Core Team (2020), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/. Sauerbrei, W., Royston, P. & Look, M. (2007), ‘A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation’, Biometrical Journal 49(3), 453–73. Scheike, T. & Martinussen, T. (2002), ‘A flexible additive multiplicative hazard model’, Biometrika 89, 283–298. Scheike, T. H. & Zhang, M.-J. (2002), ‘An additive-multiplicative Cox-Aalen regression model’, Scandinavian Journal of Statistics 29(1), 75–88. Scheike, T. H. & Zhang, M.-J. (2005), Predicting cumulative incidence probability: Marginal and cause-specific modelling, Department of Biostatistics, University of Copenhagen. Schumacher, M. (1984), ‘Two-sample tests of cram´er-von mises-and kolmogorovsmirnov-type for randomly censored data’, International Statistical Review/Revue Internationale de Statistique pp. 263–281. Song, X. & Wang, C. Y. (2008), ‘Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients’, Biometrics 64(2), 557–566. Stephen, L. L., Randall, P. N. & Evens, T. J. (2010), ‘An artificial diet for diaprepes abbreviatus(coleoptera: Curculionidae) optimized for larval survival’, Florida Entomologist 93(1), 56–62. Tsiatis, A. A. (1981), ‘A large sample study of Cox’s regression model’, The Annals of Statistics pp. 93–108. Vining, G. (1998), ‘A compromise approach to multiresponse optimization’, Journal of Quality Technology 30(4), 309–313. Zeng, D. & Lin, D. Y. (2007), ‘Maximum likelihood estimation in semiparametric regression models with censored data’, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 507–564. Zeng, D., Cai, J. & Shen, Y. (2006), ‘Semiparametric additive risks model for interval-censored data’, Statistica Sinica 16(1), 287–302. Zeng, D., Yin, G. & Ibrahim, J. G. (2006), ‘Semiparametric transformation models for survival data with a cure fraction’, Journal of the American Statistical Association 101(474), 670–684. Zeng, D. et al. (2004), ‘Estimating marginal survival function by adjusting for dependent censoring using many covariates’, The Annals of Statistics 32(4), 1533–1555. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Estadística |
dc.publisher.department.spa.fl_str_mv |
Departamento de Estadística |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80167/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80167/2/39629109.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80167/3/39629109.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 2408e45f23e745cf81a48289bbaa2936 8e2933795d7bf0a0ea54385381782f51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090117540741120 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melo Martínez, Oscar Orlando653518c1f1441d004f4edeffc2a59886Chávez Rojas, Ana Patriciaf481b6cfd4a578ee3df50e1385aa192d2021-09-13T18:03:47Z2021-09-13T18:03:47Z2020-06https://repositorio.unal.edu.co/handle/unal/80167Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones y tablasIn this work, a methodology is proposed to fit a survival model to a response surface in the presence of blocks, in order that this methodology allows improving the estimation of parameters and prediction in models where the variable of interest is observed in of time. Also, was developed an adaptation of the classical correction methods for ties data to the proposed methodology. Theoretical development was carried out for the construction, estimation, and validation of assumptions, which was developed using the Cox proportional hazard model and the response surfaces methodology. To evaluate the performance of the methodology in comparison with other methodologies, real and simulated data were used. The results also show the fact that by combining the proportional hazards model with the response surfaces methodology, it is possible to identify the levels of the treatments that optimize the response variable. Finally, it is concluded that this methodology has the advantage of being able to include a local control (block) that allows reducing experimental error, improving efficiency by detecting minor differences between treatments, which allows making comparisons over the treatments more reliable.En este trabajo se propone una metodología para ajustar un modelo de supervivencia a una superficie de respuesta en presencia de bloques, con la finalidad de que dicha metodología permita mejorar la estimación de parámetros y predicción en modelos donde la variable de interés es observada en el tiempo hasta la ocurrencia de un evento. Se llevó a cabo el desarrollo teórico para la construcción, estimación y validación de supuestos, utilizando como base el modelo de riesgos proporcionales de Cox y la metodología de superficies de respuesta. Asimismo, se desarrolló una adaptación de los métodos clásicos de corrección de empates para la metodología propuesta. Para evaluar el desempeño de la metodología en comparación con otras metodologías se utilizaron datos reales y simulados. Los resultados ponen en evidencia el hecho de que al combinar el modelo de riesgos proporcionales con la metodología de superficies de respuesta se puede identificar los niveles de los tratamientos que optimizan la variable respuesta. Finalmente, se concluye que esta metodología tiene la ventaja de poder incluir un control local (bloque) que permite reducir el error experimental, mejorar la eficiencia al detectar menores diferencias entre los tratamientos, con lo cual se pueden hacer comparaciones de los tratamientos más confiables. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - Estadística113 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaDepartamento de EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasModelos estadísticosStatistical modelsParameter estimationEstimación de parámetrosProbabilitiesProbabilidadesDiseño de experimentosModelo de CoxAnálisis de supervivenciaMetodología de superficies de respuestasDesign of experimentsCox modelResponse surfaces methodologySurvival analysisSuperficie de respuesta con bloques en supervivenciaResponse surface methodology with blocks in survivalTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAalen, O. O. (1989), ‘A linear regression model for the analysis of life times’, Statistics in medicine 8(8), 907–925.Aalen, O. O. (1993), ‘Further results on the non-parametric linear regression model in survival analysis’, Statistics in medicine 12(17), 1569–1588.Andersen, P. K. & Gill, R. D. (1982), ‘Cox’s regression model for counting processes: a large sample study’.Ata, N. & Tekin, M. (2007), ‘Cox regression models with nonproportional hazards applied to lung cancer survival data’, Hacettepe Journal of Mathematics and Statistics 36(2), 157–167.Bender, R., Augustin, T. & Blettner, M. (2005), ‘Generating survival times to simulate Cox proportional hazards models’, Statistics in medicine 24(11), 1713–1723.Bonferroni, C. (1936), ‘Teoria statistica delle classi e calcolo delle probabilita’, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3–62.Box, G. E. P. & Draper, N. R. (1982), ‘Measures of lack of fit for response surface designs and predictor variable transformations’, Technometrics 24, 1–8.Box, G. E. P. & Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge Analyses, Wiley Series in Probability and Statistics, New York.Box, G. E. P. & Wilson, K. B. (1951), ‘On the experimental attainment of optimum conditions’, Journal of the Royal Statistical Society 13, 1–45.Brenneman, W. A., Myers, W. R. & Myers, R. H. (2005), ‘A dual-response approach to robust parameter design for a generalizad linear model’, Journal of Quality Technology 37, 130–138.Breslow, N. E. (1972), ‘Discussion following “Regression models and life table” by D. R. Cox’, Journal of the Royal Statistical Society Series B 34, 187–220.Breslow, N. E. (1974), ‘Covariance analysis of censored survival data’, Biometrics 30(1), 89–99.Buchholz, A. & Sauerbrei, W. (2011), ‘Comparison of procedures to assess non-linear and time- varying effects in multivariable models for survival data’, Biometrical Journal 53(2), 308–331.Chen, M.-H., Ibrahim, J. G. & Sinha, D. (1999), ‘A new bayesian model for survival data with a surviving fraction’, Journal of the American Statistical Association 94(447), 909–919.Chiou, J., Müller, H. &Wang, J. (2004), ‘Functional response models’, Statistica Sinica 14, 675–693.Cochran, W, G. & Cox, G. M. (1992), Experimental Designs, Wiley, New York.Collett, D. (2003), Modelling survival data, in ‘Modelling Survival Data in Medical Research’, Springer.Cox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical Society. Series B 34(2), 187–220.Cox, D. R. (1975), ‘Partial likelihood’, Biometrika 62, 269–276.Cox, D. R. & Snell, E. J. (1968), ‘A general definition of residuals’, Journal of the Royal Statistical Society: Series B (Methodological) 30(2), 248–265.Das, M. K., Sahu, P. K., Rao, G. S., Mukkanti, K. & Silpavathi, L. (2014), ‘Application of response surface method to evaluate the cytotoxic potency of Ulva fasciata Delile, a marine macro alga’, Saudi Journal of Biological Sciences 21(6), 539 – 546.Das, R. N. (2009), ‘Response surface methodology in improving mean lifetime’, ProbStat Forum 2, 08–21.Debusho, L. K. & Chibayambuya, G. (2013), ‘Efficient response-surface designs with unknown block sizes’, South African Statistical Journal 47, 15–22.Derringer, G. C. & Suich, R. (1980), ‘Simultaneous optimization of several responses variables’, Journal of Quality Technology 12, 214–219.Draper, N. & Ying, L. H. (1994), ‘A note on slope rotatability over all directions’, Journal of Statistical Planning and Inference 41, 113–119.Efron, B. (1977), ‘The efficiency of Cox’s likelihood function for censored data’, Journal of the American Statistical Association 72(359), 557–565.Flores, C. J. (2011), Modelo de regresión de Cox con métodos flexibles en pacientes con linfoma no Hodgkin, Tesis de master, Universitat Politecnica de Catalunya, Barcelona.García, J. J. (2012), ‘Análisis de supervivencia aplicado al estudio de la mortalidad en injertos de Inchi (Caryodendron orinocense Karsten)’, Revista Científica UDO Agrícola 12(4), 759–769.García, J., Pérez, H. M. & Perdomo, D. (2009), ‘Evaluación de dos métodos de propagación asexual en Inchi (Caryodendron orinocense karsten)’, Revista Científica UDO Agrícola 9(4), 782–792.Giolo, S. R. & Colosimo, E. A. (2006), Análise de sobrevivencia aplicada, Edgard Blucher.Gómez, G. (2004), Análisis de supervivencia, Universidad Politécnica de Catalunya, Barcelona.Guanghui, W. & Douglas, E. S. (2008), ‘Estimating cumulative treatment effects in the presence of nonproportional hazards’, Biometrics 64(3), 724–732.Guanghui, W. & Douglas, E. S. (2014), ‘A measure for assessing functions of time-varying effects in survival analysis’, Open Journal of Statistics 4(11), 977–998.Harrell, J. & Frank, E. (2015), Cox proportional hazards regression model, in ‘Regression Modeling Strategies’, Springer, pp. 475–519.Harrington, J. E. C. (1965), ‘The desirability function’, Industrial Quality Control 21(10), 494–498.Hill, W. J. & Hunter, W. G. (1966), ‘A review of response surface methodology: A literature review’, Technometrics 8, 571–590.Huffer, F. W. & McKeague, I. W. (1991), ‘Weighted least squares estimation for Aalen’s additive risk model’, Journal of the American Statistical Association 86(413), 114–129.Johansen, S. (1983), ‘An extension of cox’s regression model’, International Statistical Review/Revue Internationale de Statistique pp. 165–174.Kalbfleisch, J. D. & Prentice, R. L. (1973), ‘Marginal likelihoods based on Cox’s regression and life model’, Biometrika 60(2), 267–278.Kalbfleisch, J. D. & Prentice, R. L. (1980), The statistical analysis of failure time data, John Wiley & Sons, New York.Kalbfleisch, J. D. & Prentice, R. L. (2011), The statistical analysis of failure time data, Vol. 360, John Wiley & Sons.Kaplan, E. & Meier, P. (1958), ‘Nonparametric estimation from incomplete observations’, Journal of the American Statistical Association 53, 457–481.Khuri, A. I. & Colon, M. (1981), ‘Simultaneous optimization of multiples responses represented by polynomial regression functions’, Technometrics 23(4), 363–375.Klein, J. P. & Moeschberger, M. L. (1997), Survival analysis: techniques for censored and truncated data, Springer Science, New York.Klein, J. P. & Moeschberger, M. L. (2003), Survival analysis Techniques for censored and truncated data, Springer, New York.Klein, J. P. & Moeschberger, M. L. (2006), Survival analysis: techniques for censored and truncated data, Springer Science & Business Media.Kudelka, W. (2007), ‘Use of response surface methodology to evaluate the survival rate of yogurt bacteria in natural bio-yoghurts of cow and goat milk’, Milchwissenschaft 63(3), 08–21.Lin, D. & Ying, Z. (1995), ‘Semiparametric analysis of general additivemultiplicative hazard models for counting processes’, Annals of Statistics 23, 1712–1734.Lucas, J. M. (1976), ‘Which response surfaces is best?’, Technometrics 18, 411-417.Mead, R. & Pike, D. J. (1975), ‘A review of responses surface methodology from a biometric viewpoint’, Biometrics 31, 830–851.Montgomery, D. (2005), Diseño y análisis de experimentos, Limusa Wiley, México.Montgomery, D. C. (2012), Design and Analyisis of Experiments, 5 edn, John Wiley & Sons.Myers, R. H. & Montgomery, D. C. (1995), Response Surface Methodology, John Wiley & Sons.Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. (2016), Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons.Myers, R. H., Montgomery, D. C. & Vinning, G. G. (2002), Generalized Linear Models. With Applications in Engineering and the Sciences, John Wiley & Sons.Oliveira, T., Leal, C. & Oliveira, A. (2014), Stochastic response surface methodology in medicine with censored/uncensored data analysis, in Biomed, ed., ‘Applied Numerical Mathematics and Scientific Computation’, Athens, Greece, pp. 92–98.Panagiotis, N. S. & George-John, E. N. (2000), ‘Development and evaluation of a model predicting the survival of Escherichia coli o157:h7 NCTC 12900 in Homemade Eggplant salad at various temperatures, pHs, and oregano essential oil concentrations’, Applied and Environmental Microbiology 66(4), 1646–1653.Peace, K. E. (2009), Design and Analysis of Clinical Trials with Time-to-Event Endpoints, CRC Press.R Development Core Team (2020), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/.Sauerbrei, W., Royston, P. & Look, M. (2007), ‘A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation’, Biometrical Journal 49(3), 453–73.Scheike, T. & Martinussen, T. (2002), ‘A flexible additive multiplicative hazard model’, Biometrika 89, 283–298.Scheike, T. H. & Zhang, M.-J. (2002), ‘An additive-multiplicative Cox-Aalen regression model’, Scandinavian Journal of Statistics 29(1), 75–88.Scheike, T. H. & Zhang, M.-J. (2005), Predicting cumulative incidence probability: Marginal and cause-specific modelling, Department of Biostatistics, University of Copenhagen.Schumacher, M. (1984), ‘Two-sample tests of cram´er-von mises-and kolmogorovsmirnov-type for randomly censored data’, International Statistical Review/Revue Internationale de Statistique pp. 263–281.Song, X. & Wang, C. Y. (2008), ‘Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients’, Biometrics 64(2), 557–566.Stephen, L. L., Randall, P. N. & Evens, T. J. (2010), ‘An artificial diet for diaprepes abbreviatus(coleoptera: Curculionidae) optimized for larval survival’, Florida Entomologist 93(1), 56–62.Tsiatis, A. A. (1981), ‘A large sample study of Cox’s regression model’, The Annals of Statistics pp. 93–108.Vining, G. (1998), ‘A compromise approach to multiresponse optimization’, Journal of Quality Technology 30(4), 309–313.Zeng, D. & Lin, D. Y. (2007), ‘Maximum likelihood estimation in semiparametric regression models with censored data’, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 507–564.Zeng, D., Cai, J. & Shen, Y. (2006), ‘Semiparametric additive risks model for interval-censored data’, Statistica Sinica 16(1), 287–302.Zeng, D., Yin, G. & Ibrahim, J. G. (2006), ‘Semiparametric transformation models for survival data with a cure fraction’, Journal of the American Statistical Association 101(474), 670–684.Zeng, D. et al. (2004), ‘Estimating marginal survival function by adjusting for dependent censoring using many covariates’, The Annals of Statistics 32(4), 1533–1555.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80167/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL39629109.2021.pdf39629109.2021.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf16793689https://repositorio.unal.edu.co/bitstream/unal/80167/2/39629109.2021.pdf2408e45f23e745cf81a48289bbaa2936MD52THUMBNAIL39629109.2021.pdf.jpg39629109.2021.pdf.jpgGenerated Thumbnailimage/jpeg4029https://repositorio.unal.edu.co/bitstream/unal/80167/3/39629109.2021.pdf.jpg8e2933795d7bf0a0ea54385381782f51MD53unal/80167oai:repositorio.unal.edu.co:unal/801672023-07-27 23:04:07.333Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |