Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira.
ilustraciones, mapas
- Autores:
-
Velásquez Restrepo, Manuela
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79796
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Ecosistemas
Cuencas Hidrográficas - Rio Mira
Sistemas socioecológicos
Servicios ecosistémicos
Deforestación
Cambio de uso/cobertura del suelo
Balance de energía
Balance de agua
Marco de Budyko
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_9fd9a6a34b579e6f0226074765668444 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79796 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
dc.title.translated.eng.fl_str_mv |
Effects on hydrological variables and potential provision of ecosystem services as a result of land cover changes. Case study Socioecological system of the Mira River basin. |
title |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
spellingShingle |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Ecosistemas Cuencas Hidrográficas - Rio Mira Sistemas socioecológicos Servicios ecosistémicos Deforestación Cambio de uso/cobertura del suelo Balance de energía Balance de agua Marco de Budyko |
title_short |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
title_full |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
title_fullStr |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
title_full_unstemmed |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
title_sort |
Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira. |
dc.creator.fl_str_mv |
Velásquez Restrepo, Manuela |
dc.contributor.advisor.none.fl_str_mv |
Poveda, Germán Villegas Palacio, Clara Inés |
dc.contributor.author.none.fl_str_mv |
Velásquez Restrepo, Manuela |
dc.contributor.researchgroup.spa.fl_str_mv |
Posgrado en Aprovechamiento de Recursos hidráulicos (PARH) |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Ecosistemas Cuencas Hidrográficas - Rio Mira Sistemas socioecológicos Servicios ecosistémicos Deforestación Cambio de uso/cobertura del suelo Balance de energía Balance de agua Marco de Budyko |
dc.subject.lemb.none.fl_str_mv |
Ecosistemas Cuencas Hidrográficas - Rio Mira |
dc.subject.proposal.spa.fl_str_mv |
Sistemas socioecológicos Servicios ecosistémicos Deforestación Cambio de uso/cobertura del suelo Balance de energía Balance de agua Marco de Budyko |
description |
ilustraciones, mapas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-12T15:55:15Z |
dc.date.available.none.fl_str_mv |
2021-07-12T15:55:15Z |
dc.date.issued.none.fl_str_mv |
2021-07 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79796 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79796 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
I Petrosillo, R Aretano, and G Zurlini. Socioecological systems. Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. Xuechao Wang, Xiaobin Dong, Huiming Liu, Hejie Wei, Weiguo Fan, Nachuan Lu, Zihan Xu, Jiahui Ren, and Kaixiong Xing. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of xinjiang, china. Ecosystem services, 27:113–123, 2017. Millennium Ecosystem Assessment. Drivers of Ecosystem Change. In Ecosystems and Human Well-being: Multiscale Assessments, volume 4, chapter 7. 2005. Mattias Gaglio, Vassilis George Aschonitis, Marta Maria Mancuso, Juan Pablo Reyes Puig, Francisco Moscoso, Giuseppe Castaldelli, and Elisa Anna Fano. Changes in land use and ecosystem services in tropical forest areas: a case study in andes mountains of ecuador. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(1):264–279, 2017. Bojie Fu, Liwei Zhang, Zhihong Xu, Yan Zhao, Yongping Wei, and Dominic Skinner. Ecosystem services in changing land use. Journal of Soils and Sediments, 15(4):833– 843, 2015. Milkessa Dangia Negassa, Demissie Tsega Mallie, and Dessalegn Obsi Gemeda. Forest cover change detection using geographic information systems and remote sensing techniques: a spatio-temporal study on komto protected forest priority area, east wollega zone, ethiopia. Environmental Systems Research, 9(1):1, 2020. Eckehard G Brockerhoff, Luc Barbaro, Bastien Castagneyrol, David I Forrester, Barry Gardiner, José Ramón González-Olabarria, Phil O’B Lyver, Nicolas Meurisse, Anne Oxbrough, Hisatomo Taki, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services, 2017. Juan Fernando Salazar, Juan Camilo Villegas, Angela Marı́a Rendón, Estiven Rodrı́guez, Isabel Hoyos, Daniel Mercado-Bettı́n, and Germán Poveda. Scaling properties reveal regulation of river flows in the amazon through a “forest reservoir”. Hydrology and Earth System Sciences, 22(3):1735–1748, 2018. Los devastadores efectos del derrame de crudo en Tumaco, 2015. Gordon B Bonan. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444–1449, 2008. Xiangyu Xu, Dawen Yang, Hanbo Yang, and Huimin Lei. Attribution analysis based on the budyko hypothesis for detecting the dominant cause of runoff decline in haihe basin. Journal of Hydrology, 510:530–540, 2014. Michael L Roderick and Graham D Farquhar. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47(12), 2011. Gregory Duveiller, Josh Hooker, and Alessandro Cescatti. The mark of vegetation change on earth’s surface energy balance. Nature communications, 9(1):679, 2018. Shulei Zhang, Yuting Yang, Tim R McVicar, and Dawen Yang. An analytical solution for the impact of vegetation changes on hydrological partitioning within the budyko framework. Water Resources Research, 54(1):519–537, 2018. JCS Davie, PD Falloon, R Kahana, R Dankers, R Betts, FT Portmann, D Wisser,DB Clark, A Ito, Y Masaki, et al. Comparing projections of future changes in runoff from hydrological and biome models in isi-mip. Earth System Dynamics, 4(2):359–374, 2013. Alice E Brown, Lu Zhang, Thomas A McMahon, Andrew W Western, and Robert A Vertessy. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of hydrology, 310(1-4):28–61, 2005. Garrison Sposito. Understanding the budyko equation. Water, 9(4):236, 2017. AM Carmona, G Poveda, Murugesu Sivapalan, SM Vallejo-Bernal, and E Bustamante. A scaling approach to budyko’s framework and the complementary relationship of evapotranspiration in humid environments: case study of the amazon river basin. Hydrology and Earth System Sciences, 20(2):589, 2016. Gunnar Myhre, Drew Shindell, and Julia Pongratz. Anthropogenic and natural radiative forcing. 2014. Ryan M Bright, Edouard Davin, Thomas O’Halloran, Julia Pongratz, Kaiguang Zhao, and Alessandro Cescatti. Local temperature response to land cover and management change driven by non-radiative processes. Nature Climate Change, 7(4):296–302, 2017. Ryan M Bright, Kaiguang Zhao, Robert B Jackson, and Francesco Cherubini. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 21(9):3246–3266, 2015. LF Gómez, B Gallego, and LG Naranjo. Atlas socioambiental de las cuencas transfronterizas mira y mataje: aportes para su ordenamiento y gestión integral colombia-ecuador. Cali: WWF-Colombia, 2017. Germán Poveda. La hidroclimatologı́a de colombia: una sı́ntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28(107):201–222, 2004. Germán Poveda and O Mesa. La corriente de chorro superficial del oeste (“del chocó”) y otras dos corrientes de chorro en colombia: climatologı́a y variabilidad durante las fases del enso”. Revista Académica Colombiana de Ciencia, 23(89):517–528, 1999. Critical Ecosystem Partnership Fund (CEPF). CORREDOR DE CONSERVACIÓN CHOCÓ-MANABÍ ECORREGIÓN TERRESTRE PRIORITARIA DEL CHOCÓ-DARIÉN-ECUADOR OCCIDENTAL (HOTSPOT) Colombia y Ecuador. Technical report, 2005. J Freddy Mejı́a and G Poveda. Ambientes atmosféricos de sistemas convectivos de mesoescala sobre colombia durante 1998 según la misión trmm y el re-análisis ncep/ncar. REVISTA ACADEMIA, 29(113):495–514, 2005. Kayode Adepoju, Samuel Adelabu, and Olutoyin Fashae. Vegetation response to recent trends in climate and landuse dynamics in a typical humid and dry tropical region under global change. Advances in Meteorology, 2019, 2019. Jianhua Wang, Yaohuan Hang, Dong Jiang, and Xiaoyang Song. Energy-water balance and ecosystem response to climate change in southwest china. Topics in Climate Modeling, page 47, 2016. Sander Jacobs, Birgen Haest, Tom de Bie, Glenn Deliège, Anik Schneiders, and Francis Turkelboom. Chapter 3 - biodiversity and ecosystem services. In Sander Jacobs, Nicolas Dendoncker, and Hans Keune, editors, Ecosystem Services, pages 29–40. Elsevier, Boston, 2013. James Boyd and Spencer Banzhaf. What are ecosystem services? the need for standardized environmental accounting units. Ecological economics, 63(2-3):616–626, 2007. David C Le Maitre, David F Scott, and C Colvin. Review of information on interactions between vegetation and groundwater. 1999. David Ellison, Cindy E Morris, Bruno Locatelli, Douglas Sheil, Jane Cohen, Daniel Murdiyarso, Victoria Gutierrez, Meine Van Noordwijk, Irena F Creed, Jan Pokorny, et al. Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43:51–61, 2017. Paul C West, Gemma T Narisma, Carol C Barford, Christopher J Kucharik, and Jonathan A Foley. An alternative approach for quantifying climate regulation by ecosystems. Frontiers in Ecology and the Environment, 9(2):126–133, 2011. Cuong Nguyen, Yong Wang, and Ha Nam Nguyen. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. 2013. Arun D Kulkarni and Barrett Lowe. Random forest algorithm for land cover classification. 2016. Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R Sveinsson. Random forests for land cover classification. Pattern recognition letters, 27(4):294–300, 2006. Victor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-Olmo, and Juan Pedro Rigol-Sanchez. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67:93–104, 2012. Matthew M Hayes, Scott N Miller, and Melanie A Murphy. High-resolution landcover classification using random forest. Remote sensing letters, 5(2):112–121, 2014. Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. Kenichi Tatsumi, Yosuke Yamashiki, Miguel Angel Canales Torres, and Cayo Leonidas Ramos Taipe. Crop classification of upland fields using random forest of time-series landsat 7 etm+ data. Computers and Electronics in Agriculture, 115:171–179, 2015. Neil Flood. Seasonal composite landsat tm/etm+ images using the medoid (a multidimensional median). Remote Sensing, 5(12):6481–6500, 2013. Robert Susmaga. Confusion matrix visualization. In Intelligent Information Processing and Web Mining, pages 107–116. Springer, 2004. JW Rouse, Rüdiger H Haas, John A Schell, Donald W Deering, et al. Monitoring vegetation systems in the great plains with erts. NASA special publication, 351(1974):309, 1974. Glenn B. Stracher. Environmental Monitoring in the Jharia Coalfield, India. In Coal and Peat Fires: A Global Perspective, pages 359–385. Elsevier, jan 2019. Jayakumar Drisya, Thendiyath Roshni, et al. Spatiotemporal variability of soil moisture and drought estimation using a distributed hydrological model. In Integrating disaster science and management, pages 451–460. Elsevier, 2018. John Weier and David Herring. Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20, 2000. Carolien Toté. Copernicus Global Land Operations “Vegetation and Energy”. Technical report, 2019. Jose Luis Villaescusa-Nadal, Belen Franch, Eric F Vermote, and Jean-Claude Roger. Improving the avhrr long term data record brdf correction. Remote Sensing, 11(5):502, 2019. Meteorologı́a y Estudios Ambientales (IDEAM) Instituto de Hidrologı́a. Estudio Nacional del Agua. Bogotá D.C., 2014. INEC. Fascı́culo provincial Imbabura. Technical report, 2010. INEC. Fascı́culo Provincial Carchi. Technical report, 2010. DANE. Proyecciones de población. JESSICA ARIAS GAVIRIA, SANTIAGO ARANGO ARAMBURO, CLARA INES VILLEGAS PALACIO, VERONICA MARRERO TRUJILLO, and JUAN CAMILO OCHOA PABON. Análisis sistémico de fuerzas impulsoras de la deforestación en Colombia. Technical report, 2018. G Terán Rosero and R Cobo. Determining management factors in dairy farms in carchi, ecuador. Cuban Journal of Agricultural Science, 51(2), 2017. WWF. Reporte de Salud de las cuencas binacionales de los rı́os Mira y Mataje Ecuador Colombia 2019 — WWF. Technical report, 2019. Wilson Lechón and Jenny Chicaiza. De la agricultura familiar campesina a las microempresas de monocultivo. reestructura socioterritorial en la sierra norte del ecuador.Eutopia, pages 193–210, 2019. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Condiciones climáticas y la actividad humana impactan en la degradación de la tierra, comprometiendo la seguridad alimentaria., 2018. FAO and CAF. Ecuador - Nota de Análisis Sectorial: Agricultura y Desarrollo. Technical report, 2009. Pérez. Alejandro. Los ríos Mira y Mataje requieren de terapia para asegurar su conservación, 2020. UNODC. Monitoreo de territorios afectados por cultivos ilícitos 2019. Technical report, 2019. Tatiana Rojas Hernández. Deforestación en Colombia: A la vista de todos, no cesa tala de bosque protegido en Nariño., 2020. Angela Yesenia Olaya Requene. El río Mira está desplazando gente en Tumaco , 2017. Jaime Arocha. El del río Mira, ¿desastre natural?, feb 2009. Stefan N Grösser. Complexity management and system dynamics thinking. In Dynamics of Long-Life Assets, pages 69–92. Springer, Cham, 2017. La Oficina de las Naciones Unidas para la Coordinación de Asuntos Humanitarios (OCHA). Derrame de crudo en ríos Mira y Caunapi, Tumaco (Nariño). Technical report, Tumaco, 2015. Defensoría del pueblo. Informe de Riesgo N°027-12 A.I. Technical report, 2015. Revista Semana. Los devastadores efectos del derrame de crudo en Tumaco. 2009. Matthew C Hansen, Peter V Potapov, Rebecca Moore, Matt Hancher, Svetlana A Turubanova, Alexandra Tyukavina, David Thau, SV Stehman, Scott J Goetz, Thomas R Loveland, et al. High-resolution global maps of 21st-century forest cover change. Science, 342(6160):850–853, 2013. Johannes Reiche, Eliakim Hamunyela, Jan Verbesselt, Dirk Hoekman, and Martin Herold. Improving near-real time deforestation monitoring in tropical dry forests by combining dense sentinel-1 time series with landsat and alos-2 palsar-2. Remote Sensing of Environment, 204:147–161, 2018. C Domenikiotis, A Loukas, and NR Dalezios. The use of noaa/avhrr satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2):115–128, 2003. Secretaria Nacional de Planificación y Desarrollo (ECUADOR) and Ministerio de Ambiente y Desarrollo Sostenible (COLOMBIA). Plan Binacional de Gestión Integral del Recurso Hídrico de las cuencas transfronterizas Carchi-Guáitara, Mira y Mataje. Quito, Bogotá, 2017. Florence Pendrill and U Martin Persson. Combining global land cover datasets to quantify agricultural expansion into forests in latin america: Limitations and challenges. PloS one, 12(7):e0181202, 2017.122 Huong Nguyen Thi Thanh, Trung Minh Doan, Erkki Tomppo, and Ronald E McRoberts. Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—a case study from dak nong, vietnam. Remote Sensing, 12(9):1367, 2020. Adriana Aparecida Moreira, Anderson Luis Ruhoff, Débora Regina Roberti, Vanessa de Arruda Souza, Humberto Ribeiro da Rocha, and Rodrigo Cauduro Dias de Paiva. Assessment of terrestrial water balance using remote sensing data in south america. Journal of Hydrology, 575:131–147, 2019. José Miguel Reichert, Miriam Fernanda Rodrigues, Jhon Jairo Zuluaga Peláez, Régis Lanza, Jean Paolo Gomes Minella, Jeffrey G Arnold, and Rosane Barbosa Lopes Cavalcante. Water balance in paired watersheds with eucalyptus and degraded grassland in pampa biome. Agricultural and Forest Meteorology, 237:282–295, 2017. Alok K Sahoo, Ming Pan, Tara J Troy, Raghuveer K V inukollu, Justin Sheffield, and Eric F Wood. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment, 115(8):1850–1865, 2011. Justin Sheffield, Craig R Ferguson, Tara J Troy, Eric F Wood, and Matthew F McCabe. Closing the terrestrial water budget from satellite remote sensing. Geophysical Research Letters, 36(7), 2009. Huilin Gao, Qiuhong Tang, Craig R Ferguson, Eric F Wood, and Dennis P Lettenmaier. Estimating the water budget of major us river basins via remote sensing. International Journal of Remote Sensing, 31(14):3955–3978, 2010. Sara M. Vallejo-Bernal, Viviana Urrea, Juan M. Bedoya-Soto, Daniela Posada, Alejandro Olarte, Yadira Cárdenas-Posso, Franklyn Ruiz-Murcia, Marı́a T. Martı́nez, Walter A. Petersen, George J. Huffman, and Germán Poveda. Ground validation of TRMM 3B43 V7 precipitation estimates over Colombia. Part I: Monthly and seasonal timescales. International Journal of Climatology, page joc.6640, jul 2020. Michael Strauch, Rohini Kumar, Stephanie Eisner, Mark Mulligan, Julia Reinhardt, William Santini, Tobias Vetter, and Jan Friesen. Adjustment of global precipitation data for enhanced hydrologic modeling of tropical andean watersheds. Climatic Change, 141(3):547–560, 2017. Beatriz H Ramı́rez, Adriaan J Teuling, Laurens Ganzeveld, Zita Hegger, and Rik Leemans. Tropical montane cloud forests: Hydrometeorological variability in three neighbouring catchments with different forest cover. Journal of Hydrology, 552:151–167, 2017. Lucheng Zhan, Jiansheng Chen, Chenming Zhang, Tao Wang, Pei Xin, and Ling Li. Fog interception maintains a major waterfall landscape in southwest china revealed by isotopic signatures. Water Resources Research, 56(3), 2020. Lu Zhang, Nick Potter, Klaus Hickel, Yongqiang Zhang, and Quanxi Shao. Water balance modeling over variable time scales based on the budyko framework–model development and testing. Journal of Hydrology, 360(1-4):117–131, 2008. A Carmona. Impacts of climate change and climate variability on the spatio-temporal hydrological dynamics of amazonia. Universidad Nacional de Colombia, 2015. Chapter 4 The Energy Balance of the Surface. In Dennis L B T International Geophysics Hartmann, editor, Global Physical Climatology, volume 56, pages 81–114. Academic Press, 1994. Hatma Suryatmojo, Masamitsu Fujimoto, Yosuke Yamakawa, Ken’ichiro Kosugi, and Takahisa Mizuyama. Water balance changes in the tropical rainforest with intensive forest management system. International Journal of Sustainable Future for Human Security J-SustaiN, 1(2):56–62, 2013. Friedrich J Bohn, Karin Frank, and Andreas Huth. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278:9–17, 2014. Xihua Yang, Xiaojin Xie, De Li Liu, Fei Ji, and Lin Wang. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Advances in Meteorology, 2015, 2015. A Dewi Hartkamp, Kirsten De Beurs, Alfred Stein, and Jeffrey W White. Interpolation techniques for climate variables, 1999. Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524, 1968. Antonio Samuel Alves da Silva, Borko Stosic, Rômulo Simões Cezar Menezes, and Vijay P Singh. Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of pernambuco, brazil. Journal of Hydrologic Engineering, 24(3):04018068, 2019. Richard Franke and Greg Nielson. Smooth interpolation of large sets of scattered data. International journal for numerical methods in engineering, 15(11):1691–1704, 1980. Juan Camilo Villegas, Conrado Tobón, and David D. Breshears. Fog interception by non-vascular epiphytes in tropical montane cloud forests: Dependencies on gauge type and meteorological conditions. Hydrological Processes, 22(14):2484–2492, jul 2008. Jaime Ignacio Vélez Upegui, Germán Poveda, J Oscar, and S Mesa. Balances hidrológicos de Colombia. Universidad Nacional de Colombia, Sede Medellı́n, Facultad de Minas, Posgrado, 2000. B Chaves and A Jaramillo. Regionalización de la temperatura del aire en Colombia. 1998. Gordon Bonan. Surface Energy Fluxes. In Ecological Climatology, pages 193–208. Cambridge University Press, Cambridge, 2015. Ryan McGloin, Ladislav Šigut, Kateřina Havránková, Jiřı́ Dušek, Marian Pavelka, and Pavel Sedlák. Energy balance closure at a variety of ecosystems in central europe with contrasting topographies. Agricultural and Forest Meteorology, 248:418–431, 2018. RK Jaiswal, AK Lohani, and HL Tiwari. Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2(4):729–749, 2015. Anthony N Pettitt. A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2):126–135, 1979. Chris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell, et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1):1–21, 2015. Zheng Duan and WGM Bastiaanssen. First results from version 7 trmm 3b43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131:1–13, 2013. George J Huffman, David T Bolvin, Eric J Nelkin, et al. Integrated multi-satellite retrievals for gpm (imerg) technical documentation. NASA/GSFC Code, 612(2015):47, 2015. John T Abatzoglou, Solomon Z Dobrowski, Sean A Parks, and Katherine C Hegewisch. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5:170191, 2018. Brecht Martens, Diego Gonzalez Miralles, Hans Lievens, Robin Van Der Schalie, Richard AM De Jeu, Diego Fernández-Prieto, Hylke E Beck, Wouter Dorigo, and Niko Verhoest. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5):1903–1925, 2017. Hualan Rui and Amy McNally. Document for Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) Products. Technical report, Goddard Space Flight Center, Maryland, 2017. Filippo Giorgi, Csaba Torma, Erika Coppola, Nikolina Ban, Christoph Schär, and Samuel Somot. Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nature Geoscience, 9(8):584–589, 2016. Viviana Urrea, Andrés Ochoa, and Oscar Mesa. CHIRPS para Colombia a escala diaria, mensual y anual en el perı́odo ... (November), 2016. Abigail LS Swann, Marcos Longo, Ryan G Knox, Eunjee Lee, and Paul R Moorcroft. Future deforestation in the amazon and consequences for south american climate. Agricultural and Forest Meteorology, 214:12–24, 2015. Xiaoming Sun. Role of Surface Evapotranspiration on Moist Convection along the Eastern Flanks of the. PhD thesis, Duke University, 2014. Xiaoming Sun and Ana P Barros. Isolating the role of surface evapotranspiration on moist convection along the eastern flanks of the tropical andes using a quasi-idealized approach. Journal of Atmospheric Sciences, 72(1):243–261, 2015. Robert E Dickinson. Land-atmosphere interaction. Reviews of Geophysics, 33(S2):917–922, 1995. Roger A Pielke Sr, Gregg Marland, Richard A Betts, Thomas N Chase, Joseph L Eastman, John O Niles, Dev Dutta S Niyogi, and Steven W Running. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1797):1705–1719, 2002. Praveena Krishnan, Tilden P Meyers, Russell L Scott, Linda Kennedy, and Mark Heuer. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in north america. Agricultural and Forest Meteorology, 153:31–44, 2012. Carlos AC dos Santos, Denis A Mariano, A Francisco das Chagas, Fabiane Regina da C Dantas, Gabriel de Oliveira, Madson T Silva, Lindenberg L da Silva, Bernardo B da Silva, Bergson G Bezerra, Babak Safa, et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in brazil. International Journal of Applied Earth Observation and Geoinformation, 85:101982, 2020.126 Qi Hu, Gary D Willson, Xi Chen, and Adnan Akyuz. Effects of climate and landcover change on stream discharge in the ozark highlands, usa. Environmental Modeling & Assessment, 10(1):9–19, 2005. BhaskarJ Choudhury. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2):99–110, 1999. Hanbo Yang, Dawen Yang, Zhidong Lei, and Fubao Sun. New analytical derivation of the mean annual water-energy balance equation. Water resources research, 44(3), 2008. BP Fu. On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1):23–31, 1981. Omid Rahmati, Mahmood Samadi, Himan Shahabi, Ali Azareh, Elham Rafiei-Sardooi, Hossein Alilou, Assefa M. Melesse, Biswajeet Pradhan, Kamran Chapi, and Ataollah Shirzadi. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6):2167– 2175, nov 2019. PD Aher, J Adinarayana, and SD Gorantiwar. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of india: a remote sensing and gis approach. Journal of Hydrology, 511:850–860, 2014. Kumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011. Kumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011. Edouard L Davin and Nathalie de Noblet-Ducoudré. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1):97–112, 2010. Govindasamy Bala, K Caldeira, M Wickett, TJ Phillips, DB Lobell, C Delire, and A Mirin. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16):6550–6555, 2007. Mikhail Ivanovich Budyko, David H Miller, and David Hewitt Miller. Climate and life, volume 508. Academic press New York, 1974. P Schreiber. Über die beziehungen zwischen dem niederschlag und der wasserführung der flüsse in mitteleuropa. Z. Meteorol, 21(10):441–452, 1904. EM Ol’Dekop. On evaporation from the surface of river basins. Transactions on meteorological observations, 4:200, 1911. Lu Zhang, WR Dawes, and GR Walker. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3):701–708, 2001. Amilcare Porporato, Edoardo Daly, and Ignacio Rodriguez-Iturbe. Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5):625–632, 2004. Qining Shen, Zhentao Cong, and Huimin Lei. Evaluating the impact of climate and underlying surface change on runoff within the budyko framework: A study across 224 catchments in china. Journal of Hydrology, 554:251–262, 2017. Tingting Ning, Zhi Li, Qi Feng, Wenzhao Liu, and Zongxing Li. Comparison of the effectiveness of four budyko-based methods in attributing long-term changes in actual evapotranspiration. Scientific reports, 8(1):1–10, 2018. Dawen Yang, Fubao Sun, Zhiyu Liu, Zhentao Cong, Guangheng Ni, and Zhidong Lei. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of china using the budyko hypothesis. Water Resources Research, 43(4), 2007. Maurice George Kendall. Rank correlation methods. 1948. Ministerio de Ambiente y Desarrollo Sostenible–MADS. Criterios para la priorización de cuencas hidrográficas objeto de ordenación y manejo. Technical report, Bogotá, 2014. OECD. Water Security for Better Lives. 2013. Germán Poveda, Liliana Jaramillo, and Luisa F Vallejo. Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118, 2014. Anastassia M Makarieva and Victor G Gorshkov. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. 2007. Javier Houspanossian, Raúl Giménez, Esteban Jobbágy, and Marcelo Nosetto. Surface albedo raise in the south american chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 232:118–127, 2017. Richard H. Waring and Steven W. Running. Water Cycle. In Forest Ecosystems, pages 19–57. Elsevier, jan 2007. Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis. Technical report, Washington, DC., 2005.128 Jonathan A Foley, Ruth DeFries, Gregory P Asner, Carol Barford, Gordon Bonan, Stephen R Carpenter, F Stuart Chapin, Michael T Coe, Gretchen C Daily, Holly K Gibbs, et al. Global consequences of land use. Science, 309(5734):570–574, 2005. Laura E Dee, Stefano Allesina, Aletta Bonn, Anna Eklöf, Steven D Gaines, Jes Hines, Ute Jacob, Eve McDonald-Madden, Hugh Possingham, Matthias Schröter, et al. Operationalizing network theory for ecosystem service assessments. Trends in ecology & evolution, 32(2):118–130, 2017. Julio C. Postigo and Kenneth R. Young. Naturaleza y Sociedad: perspectivas socio-ecológicas sobre cambios globales en América. Lima, 2016. Nicholas M Gotts, George AK van Voorn, J Gareth Polhill, Eline de Jong, Bruce Edmonds, Gert Jan Hofstede, and Ruth Meyer. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity, 40:100728, 2019. Linda Berrio-Giraldo, Clara Villegas-Palacio, and Santiago Arango-Aramburo. Dinámica de sistemas socio-ecológicos en cuencas hidrográficas de media montaña. PhD thesis, Universidad Nacional de Colombia, 2020. Laura Schmitt Olabisi, Saweda Liverpool-Tasie, Louie Rivers, Arika Ligmann-Zielinska, Jing Du, Riva Denny, Sandra Marquart-Pyatt, and Amadou Sidibé. Using participatory modeling processes to identify sources of climate risk in west africa. Environment Systems and Decisions. John Sterman. System dynamics: systems thinking and modeling for a complex world. 2002. Julia Martin-Ortega, Robert C Ferrier, Iain J Gordon, Shahbaz Khan, et al. Water ecosystem services: a global perspective. UNESCO Publishing, 2015. Maja Schlueter, Ryan RJ Mcallister, Robert Arlinghaus, Nils Bunnefeld, Klaus Eisenack, Frank Hoelker, Eleanor J MILNER-GULLAND, Birgit Müller, Emily Nicholson, Martin Quaas, et al. New horizons for managing the environment: A review of coupled social-ecological systems modeling. Natural Resource Modeling, 25(1):219–272, 2012. Sondoss Elsawah, Suzanne A Pierce, Serena H Hamilton, Hedwig Van Delden, Dagmar Haase, Amgad Elmahdi, and Anthony J Jakeman. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling & Software, 93:127–145, 2017. V Aceros, A Dı́az, J Escobar, A Garcı́a, J Gomez, C Olaya, and V Otero. ¿ cualitativo o cuantitativo? esa no es la cuestión: un método para el desarrollo de hipótesis dinámicas. IX Congreso Latinoamericano de Dinámica de Sistemas y II Congreso Brasileño, 2011. A Mejı́a, F Dı́az, G Dı́az, and C Olaya. Ser directo puede traerte problemas, pero ser indirecto también: Las realimentaciones en dinámica de sistemas cualitativa y cuantitativa. In Artı́culo aceptado para el Congreso Latinoamericano de Dinámica de Sistemas, 2007. Eric F Wolstenholme. Qualitative vs quantitative modelling: the evolving balance. Journal of the Operational Research Society, 50(4):422–428, 1999. Thomas Binder, Andreas Vox, Salim Belyazid, Hordur Haraldsson, and Mats Svensson. Developing system dynamics models from causal loop diagrams. In Proceedings of the 22nd International Conference of the System Dynamic Society, pages 1–21, 2004. NiNa Dhirasasna and Oz Sahin. A multi-methodology approach to creating a causal loop diagram. Systems, 7(3):42, 2019. Nicola Clerici, Maria Luisa Paracchini, and Joachim Maes. Land-cover change dynamics and insights into ecosystem services in european stream riparian zones. Ecohydrology & Hydrobiology, 14(2):107–120, 2014. IPBES. IPBES Global assessment – Chapter 2.3 Supplementary materia. Technical report, 2019. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment. Washington, DC, island press edition, 2003. Scott L Collins, Stephen R Carpenter, Scott M Swinton, Daniel E Orenstein, Daniel L Childers, Ted L Gragson, Nancy B Grimm, J Morgan Grove, Sharon L Harlan, Jason P Kaye, et al. An integrated conceptual framework for long-term social–ecological research. Frontiers in Ecology and the Environment, 9(6):351–357, 2011. Michael Nassl and Jörg Löffler. Ecosystem services in coupled social–ecological systems: Closing the cycle of service provision and societal feedback. Ambio, 44(8):737–749, 2015. Sandra Dı́az, Sebsebe Demissew, Julia Carabias, Carlos Joly, Mark Lonsdale, Neville Ash, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico, András Báldi, et al. The ipbes conceptual framework—connecting nature and people. Current opinion in environmental sustainability, 14:1–16, 2015. Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP). EL CULTIVO DE LA PAPA EN ECUADOR. Technical report, Quito, 2002. Vanessa Garcı́a-Leoz, Juan Camilo Villegas, Diego Suescún, Claudia P Flórez, Luis Merino-Martı́n, Teresita Betancur, and Juan Diego León. Land cover effects on water balance partitioning in the colombian andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4):1117–1129, 2018. Nuzhat Q Qazi, L Adrian Bruijnzeel, Shive Prakash Rai, and Chandra P Ghimire. Impact of forest degradation on streamflow regime and runoff response to rainfall in the garhwal himalaya, northwest india. Hydrological sciences journal, 62(7):1114–1130, 2017. Melanie Feurer, Andreas Heinimann, Flurina Schneider, Christine Jurt, Win Myint, and Julie Gwendolin Zaehringer. Local perspectives on ecosystem service trade-offs in a forest frontier landscape in myanmar. Land, 8(3):45, 2019. PK Snyder, C Delire, and JA Foley. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3-4):279–302, 2004. H Zhang, Ann Henderson-Sellers, and Kendal McGuffie. Impacts of tropical deforestation. part i: Process analysis of local climatic change. Journal of Climate, 9(7):1497– 1517, 1996. Jagadish Shukla, Carlos Nobre, and Piers Sellers. Amazon deforestation and climate change. Science, 247(4948):1322–1325, 1990. Charlotte Hess and Elinor Ostrom. Understanding Knowledge as a Commons. The MIT Press, jan 2007. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL (CONPES). LINEAMIENTOS DE POLÍTICA Y PROGRAMA NACIONAL DE PAGO POR SERVICIOS AMBIENTALES PARA LA CONSTRUCCIÓN DE PAZ . Technical report, Bogotá, 2017. Sven Wunder et al. Payments for environmental services: some nuts and bolts. 2005. Cristina Vargas. Dinámica de los agroecosistemas bajo el enfoque de sistemas socioecológicos. Caso de estudio: cuenca hidrográfica del rı́o Grande y del rı́o Chico. PhD thesis, Universidad Nacional de Colombia, 2020. Maja Schlüter, Jochen Hinkel, Pieter WG Bots, and Robert Arlinghaus. Application of the ses framework for model-based analysis of the dynamics of social-ecological systems. Ecology and Society, 19(1), 2014. Ministerio de Ambiente y Desarrollo Sostenible – MADS. Bosques Territorios de Vida: Estrategia Integral de Control a la Deforestación y Gestión de los Bosques. Technical report, Ministerio de Ambiente y Desarrollo Sostenible, 2018. Sibel Eker and Nici Zimmermann. Using textual data in system dynamics model conceptualization. Systems, 4(3):28, 2016. Sherman Farhad. Los sistemas socio-ecológicos. una aproximación conceptual y metodológica. XII Jornadas de economía crítica, pages 265–280, 2012. Ministerio de Ambiente y Desarrollo Sostenible. 3,8 millones de dólares es el aporte de Colombia y Ecuador para cuidar el agua de dos cuencas compartidas , 2020. G. Poveda. Garantizar la integridad de los ecosistemas de Colombia: condición básica para preservar la biodiversidad y desarrollar la bioeconomía. In CIENCIA Y TECNOLOGÍA: FUNDAMENTO DE LA BIOECONOMÍA, volume 3, chapter 3. 2021. Rudi J Van der Ent, Hubert HG Savenije, Bettina Schaefli, and Susan C Steele-Dunne. Origin and fate of atmospheric moisture over continents. Water Resources Research, 46(9), 2010. Chi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui. Tracing changes in atmospheric moisture supply to the drying southwest china. Atmospheric Chemistry and Physics, 17(17):10383–10393, 2017. DC Zemp, C-F Schleussner, HMJ Barbosa, RJ Van der Ent, Jonathan Friedemann Donges, J Heinke, G Sampaio, and A Rammig. On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337– 13359, 2014. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
153 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias y Medo Ambiente |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79796/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79796/4/1037624657_2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79796/5/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79796/6/1037624657_2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 03ff7e15319b0abc1c2e23066c2afa7b f7d494f61e544413a13e6ba1da2089cd c81effb1305f76c15e2f6431b2270ea4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090028900417536 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Poveda, Germán995644861a48f7a0cd6c7a3fe6b75d83600Villegas Palacio, Clara Inés9bab9890d6e63f22b4b9ead6f09a5085600Velásquez Restrepo, Manuela84d16b64edb5b71d09532955d1c7fe04Posgrado en Aprovechamiento de Recursos hidráulicos (PARH)2021-07-12T15:55:15Z2021-07-12T15:55:15Z2021-07https://repositorio.unal.edu.co/handle/unal/79796Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasEn esta investigación se exploró principalmente los efectos sobre las variables del balance de agua y energía y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal en la cuenca del río Mira, desde la perspectiva del marco conceptual de los sistemas socio-ecológicos. Para ello, en el primer capítulo se realizó la clasificación y mapeo de coberturas del suelo para la identificación de las características, extensión y patrón de cambio de la cobertura del suelo en el tiempo. Los resultados revelaron que las áreas de pastos, cultivos, suelo desnudo y zonas urbanas aumentaron durante el periodo 1987-2019, lo que resultó en una reducción sustancial de la superficie forestal y los páramos. En el capítulo 3 se analizó la precisión del balance de agua y energía de largo plazo en la cuenca del Río Mira a través de diferentes conjuntos de datos de teledetección e información in situ. La evaluación de la precisión hasta la estación hidrológica más cercana a la desembocadura de la cuenca indicó que el error porcentual entre el caudal de la estación y el caudal obtenido del balance de agua es del orden de 50\%, evidenciándose una subestimación generalizada en los resultados. Además se detectó una tendencia decreciente estadísticamente significativa en el residuo del balance de energía a escala mensual y en el caudal medio mensual de la estación hidrológica, este último con una pendiente de aproximadamente 0.38 m^3/s por mes y un cambio en la homogeneidad de la serie en agosto del año 2000. Además, en el capítulo 4 se exploró la respuesta hidrológica de la cuenca estudiando 27 subcuencas a partir de dos ecuaciones derivadas del marco teórico de Budyko, la ecuación propuesta por Choudhury-Yang y la ecuación de Carmona et al., y usando el método de contribución del cambio de escorrentía basado en la ecuación de Choudhury-Yang se cuantificaron las contribuciones de la fluctuación climática y de uso/cobertura del suelo en el cambio de escorrentía, lo cual evidenció que la contribución del uso/cobertura del suelo es significativo, demostrando la relevancia de la cobertura vegetal en el mantenimiento y regulación de los procesos hidrológicos en la cuenca; también se cuantificó el efecto del cambio de cobertura vegetal en los componentes individuales del balance de energía y en el cambio resultante en la temperatura de la superficie terrestre, obteniéndose variaciones importantes en los componentes del balance energético entre los subperiodos 1981 - 1999 y 2000 – 2018 que se traducen en un aumento generalizado de la temperatura en la zona de estudio. Y finalmente en el capítulo 5, se desarrolló un esquema conceptual de las interrelaciones existentes entre los servicios ecosistémicos, el sistema social y el sistema natural, a través de diagramas causales como una representación conceptual de la complejidad dinámica del sistema. (Tomado de la fuente)This research mainly explores the effects on the variables of the water and energy balance and the potential provision of ecosystem services as a result of the change in vegetation cover in the Mira river basin, from the perspective of the conceptual framework of socio-ecological systems. For this, the basin was characterized and the vegetation covers were classified to understand the characteristics, the extension, and the pattern of the change of the land cover over time. Through the analysis of the water balance and the energy balance, it was contributed to the knowledge of the hydro-climatological processes in the Mira River basin using satellite information and in situ information available the basin, this was performed from the perspective of the characterization of the variables, the closing of the balances and the consideration of other variables that may intervene in the processes. Besides, the hydrological response was explored by studying 27 sub-basins of the Mira river basin from two equations derived from the Budyko theoretical framework, the equation proposed by Choudhury-Yang and the empirical equation proposed by Carmona et al.; The resulting change in surface temperature in the basin was also explored, using the surface energy balance decomposition approach. And finally, a conceptual model of interrelationships between ecosystem services, the social system, and the natural system was developed, through causal loop diagrams as a conceptual representation of the dynamic complexity of the system. (Tomado de la fuente)MaestríaMagíster en Ingeniería - Recursos HidráulicosHidrología y servicios ecosistémicos153 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaEcosistemasCuencas Hidrográficas - Rio MiraSistemas socioecológicosServicios ecosistémicosDeforestaciónCambio de uso/cobertura del sueloBalance de energíaBalance de aguaMarco de BudykoEfectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira.Effects on hydrological variables and potential provision of ecosystem services as a result of land cover changes. Case study Socioecological system of the Mira River basin.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMI Petrosillo, R Aretano, and G Zurlini. Socioecological systems. Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015.Xuechao Wang, Xiaobin Dong, Huiming Liu, Hejie Wei, Weiguo Fan, Nachuan Lu, Zihan Xu, Jiahui Ren, and Kaixiong Xing. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of xinjiang, china. Ecosystem services, 27:113–123, 2017.Millennium Ecosystem Assessment. Drivers of Ecosystem Change. In Ecosystems and Human Well-being: Multiscale Assessments, volume 4, chapter 7. 2005.Mattias Gaglio, Vassilis George Aschonitis, Marta Maria Mancuso, Juan Pablo Reyes Puig, Francisco Moscoso, Giuseppe Castaldelli, and Elisa Anna Fano. Changes in land use and ecosystem services in tropical forest areas: a case study in andes mountains of ecuador. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(1):264–279, 2017.Bojie Fu, Liwei Zhang, Zhihong Xu, Yan Zhao, Yongping Wei, and Dominic Skinner. Ecosystem services in changing land use. Journal of Soils and Sediments, 15(4):833– 843, 2015.Milkessa Dangia Negassa, Demissie Tsega Mallie, and Dessalegn Obsi Gemeda. Forest cover change detection using geographic information systems and remote sensing techniques: a spatio-temporal study on komto protected forest priority area, east wollega zone, ethiopia. Environmental Systems Research, 9(1):1, 2020.Eckehard G Brockerhoff, Luc Barbaro, Bastien Castagneyrol, David I Forrester, Barry Gardiner, José Ramón González-Olabarria, Phil O’B Lyver, Nicolas Meurisse, Anne Oxbrough, Hisatomo Taki, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services, 2017.Juan Fernando Salazar, Juan Camilo Villegas, Angela Marı́a Rendón, Estiven Rodrı́guez, Isabel Hoyos, Daniel Mercado-Bettı́n, and Germán Poveda. Scaling properties reveal regulation of river flows in the amazon through a “forest reservoir”. Hydrology and Earth System Sciences, 22(3):1735–1748, 2018.Los devastadores efectos del derrame de crudo en Tumaco, 2015.Gordon B Bonan. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444–1449, 2008.Xiangyu Xu, Dawen Yang, Hanbo Yang, and Huimin Lei. Attribution analysis based on the budyko hypothesis for detecting the dominant cause of runoff decline in haihe basin. Journal of Hydrology, 510:530–540, 2014.Michael L Roderick and Graham D Farquhar. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47(12), 2011.Gregory Duveiller, Josh Hooker, and Alessandro Cescatti. The mark of vegetation change on earth’s surface energy balance. Nature communications, 9(1):679, 2018.Shulei Zhang, Yuting Yang, Tim R McVicar, and Dawen Yang. An analytical solution for the impact of vegetation changes on hydrological partitioning within the budyko framework. Water Resources Research, 54(1):519–537, 2018.JCS Davie, PD Falloon, R Kahana, R Dankers, R Betts, FT Portmann, D Wisser,DB Clark, A Ito, Y Masaki, et al. Comparing projections of future changes in runoff from hydrological and biome models in isi-mip. Earth System Dynamics, 4(2):359–374, 2013.Alice E Brown, Lu Zhang, Thomas A McMahon, Andrew W Western, and Robert A Vertessy. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of hydrology, 310(1-4):28–61, 2005.Garrison Sposito. Understanding the budyko equation. Water, 9(4):236, 2017.AM Carmona, G Poveda, Murugesu Sivapalan, SM Vallejo-Bernal, and E Bustamante. A scaling approach to budyko’s framework and the complementary relationship of evapotranspiration in humid environments: case study of the amazon river basin. Hydrology and Earth System Sciences, 20(2):589, 2016.Gunnar Myhre, Drew Shindell, and Julia Pongratz. Anthropogenic and natural radiative forcing. 2014.Ryan M Bright, Edouard Davin, Thomas O’Halloran, Julia Pongratz, Kaiguang Zhao, and Alessandro Cescatti. Local temperature response to land cover and management change driven by non-radiative processes. Nature Climate Change, 7(4):296–302, 2017.Ryan M Bright, Kaiguang Zhao, Robert B Jackson, and Francesco Cherubini. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 21(9):3246–3266, 2015.LF Gómez, B Gallego, and LG Naranjo. Atlas socioambiental de las cuencas transfronterizas mira y mataje: aportes para su ordenamiento y gestión integral colombia-ecuador. Cali: WWF-Colombia, 2017.Germán Poveda. La hidroclimatologı́a de colombia: una sı́ntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28(107):201–222, 2004.Germán Poveda and O Mesa. La corriente de chorro superficial del oeste (“del chocó”) y otras dos corrientes de chorro en colombia: climatologı́a y variabilidad durante las fases del enso”. Revista Académica Colombiana de Ciencia, 23(89):517–528, 1999.Critical Ecosystem Partnership Fund (CEPF). CORREDOR DE CONSERVACIÓN CHOCÓ-MANABÍ ECORREGIÓN TERRESTRE PRIORITARIA DEL CHOCÓ-DARIÉN-ECUADOR OCCIDENTAL (HOTSPOT) Colombia y Ecuador. Technical report, 2005.J Freddy Mejı́a and G Poveda. Ambientes atmosféricos de sistemas convectivos de mesoescala sobre colombia durante 1998 según la misión trmm y el re-análisis ncep/ncar. REVISTA ACADEMIA, 29(113):495–514, 2005.Kayode Adepoju, Samuel Adelabu, and Olutoyin Fashae. Vegetation response to recent trends in climate and landuse dynamics in a typical humid and dry tropical region under global change. Advances in Meteorology, 2019, 2019.Jianhua Wang, Yaohuan Hang, Dong Jiang, and Xiaoyang Song. Energy-water balance and ecosystem response to climate change in southwest china. Topics in Climate Modeling, page 47, 2016.Sander Jacobs, Birgen Haest, Tom de Bie, Glenn Deliège, Anik Schneiders, and Francis Turkelboom. Chapter 3 - biodiversity and ecosystem services. In Sander Jacobs, Nicolas Dendoncker, and Hans Keune, editors, Ecosystem Services, pages 29–40. Elsevier, Boston, 2013.James Boyd and Spencer Banzhaf. What are ecosystem services? the need for standardized environmental accounting units. Ecological economics, 63(2-3):616–626, 2007.David C Le Maitre, David F Scott, and C Colvin. Review of information on interactions between vegetation and groundwater. 1999.David Ellison, Cindy E Morris, Bruno Locatelli, Douglas Sheil, Jane Cohen, Daniel Murdiyarso, Victoria Gutierrez, Meine Van Noordwijk, Irena F Creed, Jan Pokorny, et al. Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43:51–61, 2017.Paul C West, Gemma T Narisma, Carol C Barford, Christopher J Kucharik, and Jonathan A Foley. An alternative approach for quantifying climate regulation by ecosystems. Frontiers in Ecology and the Environment, 9(2):126–133, 2011.Cuong Nguyen, Yong Wang, and Ha Nam Nguyen. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. 2013.Arun D Kulkarni and Barrett Lowe. Random forest algorithm for land cover classification. 2016.Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R Sveinsson. Random forests for land cover classification. Pattern recognition letters, 27(4):294–300, 2006.Victor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-Olmo, and Juan Pedro Rigol-Sanchez. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67:93–104, 2012.Matthew M Hayes, Scott N Miller, and Melanie A Murphy. High-resolution landcover classification using random forest. Remote sensing letters, 5(2):112–121, 2014.Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.Kenichi Tatsumi, Yosuke Yamashiki, Miguel Angel Canales Torres, and Cayo Leonidas Ramos Taipe. Crop classification of upland fields using random forest of time-series landsat 7 etm+ data. Computers and Electronics in Agriculture, 115:171–179, 2015.Neil Flood. Seasonal composite landsat tm/etm+ images using the medoid (a multidimensional median). Remote Sensing, 5(12):6481–6500, 2013.Robert Susmaga. Confusion matrix visualization. In Intelligent Information Processing and Web Mining, pages 107–116. Springer, 2004.JW Rouse, Rüdiger H Haas, John A Schell, Donald W Deering, et al. Monitoring vegetation systems in the great plains with erts. NASA special publication, 351(1974):309, 1974.Glenn B. Stracher. Environmental Monitoring in the Jharia Coalfield, India. In Coal and Peat Fires: A Global Perspective, pages 359–385. Elsevier, jan 2019.Jayakumar Drisya, Thendiyath Roshni, et al. Spatiotemporal variability of soil moisture and drought estimation using a distributed hydrological model. In Integrating disaster science and management, pages 451–460. Elsevier, 2018.John Weier and David Herring. Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20, 2000.Carolien Toté. Copernicus Global Land Operations “Vegetation and Energy”. Technical report, 2019.Jose Luis Villaescusa-Nadal, Belen Franch, Eric F Vermote, and Jean-Claude Roger. Improving the avhrr long term data record brdf correction. Remote Sensing, 11(5):502, 2019.Meteorologı́a y Estudios Ambientales (IDEAM) Instituto de Hidrologı́a. Estudio Nacional del Agua. Bogotá D.C., 2014.INEC. Fascı́culo provincial Imbabura. Technical report, 2010.INEC. Fascı́culo Provincial Carchi. Technical report, 2010.DANE. Proyecciones de población.JESSICA ARIAS GAVIRIA, SANTIAGO ARANGO ARAMBURO, CLARA INES VILLEGAS PALACIO, VERONICA MARRERO TRUJILLO, and JUAN CAMILO OCHOA PABON. Análisis sistémico de fuerzas impulsoras de la deforestación en Colombia. Technical report, 2018.G Terán Rosero and R Cobo. Determining management factors in dairy farms in carchi, ecuador. Cuban Journal of Agricultural Science, 51(2), 2017.WWF. Reporte de Salud de las cuencas binacionales de los rı́os Mira y Mataje Ecuador Colombia 2019 — WWF. Technical report, 2019.Wilson Lechón and Jenny Chicaiza. De la agricultura familiar campesina a las microempresas de monocultivo. reestructura socioterritorial en la sierra norte del ecuador.Eutopia, pages 193–210, 2019.Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Condiciones climáticas y la actividad humana impactan en la degradación de la tierra, comprometiendo la seguridad alimentaria., 2018.FAO and CAF. Ecuador - Nota de Análisis Sectorial: Agricultura y Desarrollo. Technical report, 2009.Pérez. Alejandro. Los ríos Mira y Mataje requieren de terapia para asegurar su conservación, 2020.UNODC. Monitoreo de territorios afectados por cultivos ilícitos 2019. Technical report, 2019.Tatiana Rojas Hernández. Deforestación en Colombia: A la vista de todos, no cesa tala de bosque protegido en Nariño., 2020.Angela Yesenia Olaya Requene. El río Mira está desplazando gente en Tumaco , 2017.Jaime Arocha. El del río Mira, ¿desastre natural?, feb 2009.Stefan N Grösser. Complexity management and system dynamics thinking. In Dynamics of Long-Life Assets, pages 69–92. Springer, Cham, 2017.La Oficina de las Naciones Unidas para la Coordinación de Asuntos Humanitarios (OCHA). Derrame de crudo en ríos Mira y Caunapi, Tumaco (Nariño). Technical report, Tumaco, 2015.Defensoría del pueblo. Informe de Riesgo N°027-12 A.I. Technical report, 2015.Revista Semana. Los devastadores efectos del derrame de crudo en Tumaco. 2009.Matthew C Hansen, Peter V Potapov, Rebecca Moore, Matt Hancher, Svetlana A Turubanova, Alexandra Tyukavina, David Thau, SV Stehman, Scott J Goetz, Thomas R Loveland, et al. High-resolution global maps of 21st-century forest cover change. Science, 342(6160):850–853, 2013.Johannes Reiche, Eliakim Hamunyela, Jan Verbesselt, Dirk Hoekman, and Martin Herold. Improving near-real time deforestation monitoring in tropical dry forests by combining dense sentinel-1 time series with landsat and alos-2 palsar-2. Remote Sensing of Environment, 204:147–161, 2018.C Domenikiotis, A Loukas, and NR Dalezios. The use of noaa/avhrr satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2):115–128, 2003.Secretaria Nacional de Planificación y Desarrollo (ECUADOR) and Ministerio de Ambiente y Desarrollo Sostenible (COLOMBIA). Plan Binacional de Gestión Integral del Recurso Hídrico de las cuencas transfronterizas Carchi-Guáitara, Mira y Mataje. Quito, Bogotá, 2017.Florence Pendrill and U Martin Persson. Combining global land cover datasets to quantify agricultural expansion into forests in latin america: Limitations and challenges. PloS one, 12(7):e0181202, 2017.122Huong Nguyen Thi Thanh, Trung Minh Doan, Erkki Tomppo, and Ronald E McRoberts. Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—a case study from dak nong, vietnam. Remote Sensing, 12(9):1367, 2020.Adriana Aparecida Moreira, Anderson Luis Ruhoff, Débora Regina Roberti, Vanessa de Arruda Souza, Humberto Ribeiro da Rocha, and Rodrigo Cauduro Dias de Paiva. Assessment of terrestrial water balance using remote sensing data in south america. Journal of Hydrology, 575:131–147, 2019.José Miguel Reichert, Miriam Fernanda Rodrigues, Jhon Jairo Zuluaga Peláez, Régis Lanza, Jean Paolo Gomes Minella, Jeffrey G Arnold, and Rosane Barbosa Lopes Cavalcante. Water balance in paired watersheds with eucalyptus and degraded grassland in pampa biome. Agricultural and Forest Meteorology, 237:282–295, 2017.Alok K Sahoo, Ming Pan, Tara J Troy, Raghuveer K V inukollu, Justin Sheffield, and Eric F Wood. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment, 115(8):1850–1865, 2011.Justin Sheffield, Craig R Ferguson, Tara J Troy, Eric F Wood, and Matthew F McCabe. Closing the terrestrial water budget from satellite remote sensing. Geophysical Research Letters, 36(7), 2009.Huilin Gao, Qiuhong Tang, Craig R Ferguson, Eric F Wood, and Dennis P Lettenmaier. Estimating the water budget of major us river basins via remote sensing. International Journal of Remote Sensing, 31(14):3955–3978, 2010.Sara M. Vallejo-Bernal, Viviana Urrea, Juan M. Bedoya-Soto, Daniela Posada, Alejandro Olarte, Yadira Cárdenas-Posso, Franklyn Ruiz-Murcia, Marı́a T. Martı́nez, Walter A. Petersen, George J. Huffman, and Germán Poveda. Ground validation of TRMM 3B43 V7 precipitation estimates over Colombia. Part I: Monthly and seasonal timescales. International Journal of Climatology, page joc.6640, jul 2020.Michael Strauch, Rohini Kumar, Stephanie Eisner, Mark Mulligan, Julia Reinhardt, William Santini, Tobias Vetter, and Jan Friesen. Adjustment of global precipitation data for enhanced hydrologic modeling of tropical andean watersheds. Climatic Change, 141(3):547–560, 2017.Beatriz H Ramı́rez, Adriaan J Teuling, Laurens Ganzeveld, Zita Hegger, and Rik Leemans. Tropical montane cloud forests: Hydrometeorological variability in three neighbouring catchments with different forest cover. Journal of Hydrology, 552:151–167, 2017.Lucheng Zhan, Jiansheng Chen, Chenming Zhang, Tao Wang, Pei Xin, and Ling Li. Fog interception maintains a major waterfall landscape in southwest china revealed by isotopic signatures. Water Resources Research, 56(3), 2020.Lu Zhang, Nick Potter, Klaus Hickel, Yongqiang Zhang, and Quanxi Shao. Water balance modeling over variable time scales based on the budyko framework–model development and testing. Journal of Hydrology, 360(1-4):117–131, 2008.A Carmona. Impacts of climate change and climate variability on the spatio-temporal hydrological dynamics of amazonia. Universidad Nacional de Colombia, 2015.Chapter 4 The Energy Balance of the Surface. In Dennis L B T International Geophysics Hartmann, editor, Global Physical Climatology, volume 56, pages 81–114. Academic Press, 1994.Hatma Suryatmojo, Masamitsu Fujimoto, Yosuke Yamakawa, Ken’ichiro Kosugi, and Takahisa Mizuyama. Water balance changes in the tropical rainforest with intensive forest management system. International Journal of Sustainable Future for Human Security J-SustaiN, 1(2):56–62, 2013.Friedrich J Bohn, Karin Frank, and Andreas Huth. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278:9–17, 2014.Xihua Yang, Xiaojin Xie, De Li Liu, Fei Ji, and Lin Wang. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Advances in Meteorology, 2015, 2015.A Dewi Hartkamp, Kirsten De Beurs, Alfred Stein, and Jeffrey W White. Interpolation techniques for climate variables, 1999.Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524, 1968.Antonio Samuel Alves da Silva, Borko Stosic, Rômulo Simões Cezar Menezes, and Vijay P Singh. Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of pernambuco, brazil. Journal of Hydrologic Engineering, 24(3):04018068, 2019.Richard Franke and Greg Nielson. Smooth interpolation of large sets of scattered data. International journal for numerical methods in engineering, 15(11):1691–1704, 1980.Juan Camilo Villegas, Conrado Tobón, and David D. Breshears. Fog interception by non-vascular epiphytes in tropical montane cloud forests: Dependencies on gauge type and meteorological conditions. Hydrological Processes, 22(14):2484–2492, jul 2008.Jaime Ignacio Vélez Upegui, Germán Poveda, J Oscar, and S Mesa. Balances hidrológicos de Colombia. Universidad Nacional de Colombia, Sede Medellı́n, Facultad de Minas, Posgrado, 2000.B Chaves and A Jaramillo. Regionalización de la temperatura del aire en Colombia. 1998.Gordon Bonan. Surface Energy Fluxes. In Ecological Climatology, pages 193–208. Cambridge University Press, Cambridge, 2015.Ryan McGloin, Ladislav Šigut, Kateřina Havránková, Jiřı́ Dušek, Marian Pavelka, and Pavel Sedlák. Energy balance closure at a variety of ecosystems in central europe with contrasting topographies. Agricultural and Forest Meteorology, 248:418–431, 2018.RK Jaiswal, AK Lohani, and HL Tiwari. Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2(4):729–749, 2015.Anthony N Pettitt. A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2):126–135, 1979.Chris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell, et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1):1–21, 2015.Zheng Duan and WGM Bastiaanssen. First results from version 7 trmm 3b43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131:1–13, 2013.George J Huffman, David T Bolvin, Eric J Nelkin, et al. Integrated multi-satellite retrievals for gpm (imerg) technical documentation. NASA/GSFC Code, 612(2015):47, 2015.John T Abatzoglou, Solomon Z Dobrowski, Sean A Parks, and Katherine C Hegewisch. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5:170191, 2018.Brecht Martens, Diego Gonzalez Miralles, Hans Lievens, Robin Van Der Schalie, Richard AM De Jeu, Diego Fernández-Prieto, Hylke E Beck, Wouter Dorigo, and Niko Verhoest. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5):1903–1925, 2017.Hualan Rui and Amy McNally. Document for Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) Products. Technical report, Goddard Space Flight Center, Maryland, 2017.Filippo Giorgi, Csaba Torma, Erika Coppola, Nikolina Ban, Christoph Schär, and Samuel Somot. Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nature Geoscience, 9(8):584–589, 2016.Viviana Urrea, Andrés Ochoa, and Oscar Mesa. CHIRPS para Colombia a escala diaria, mensual y anual en el perı́odo ... (November), 2016.Abigail LS Swann, Marcos Longo, Ryan G Knox, Eunjee Lee, and Paul R Moorcroft. Future deforestation in the amazon and consequences for south american climate. Agricultural and Forest Meteorology, 214:12–24, 2015.Xiaoming Sun. Role of Surface Evapotranspiration on Moist Convection along the Eastern Flanks of the. PhD thesis, Duke University, 2014.Xiaoming Sun and Ana P Barros. Isolating the role of surface evapotranspiration on moist convection along the eastern flanks of the tropical andes using a quasi-idealized approach. Journal of Atmospheric Sciences, 72(1):243–261, 2015.Robert E Dickinson. Land-atmosphere interaction. Reviews of Geophysics, 33(S2):917–922, 1995.Roger A Pielke Sr, Gregg Marland, Richard A Betts, Thomas N Chase, Joseph L Eastman, John O Niles, Dev Dutta S Niyogi, and Steven W Running. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1797):1705–1719, 2002.Praveena Krishnan, Tilden P Meyers, Russell L Scott, Linda Kennedy, and Mark Heuer. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in north america. Agricultural and Forest Meteorology, 153:31–44, 2012.Carlos AC dos Santos, Denis A Mariano, A Francisco das Chagas, Fabiane Regina da C Dantas, Gabriel de Oliveira, Madson T Silva, Lindenberg L da Silva, Bernardo B da Silva, Bergson G Bezerra, Babak Safa, et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in brazil. International Journal of Applied Earth Observation and Geoinformation, 85:101982, 2020.126Qi Hu, Gary D Willson, Xi Chen, and Adnan Akyuz. Effects of climate and landcover change on stream discharge in the ozark highlands, usa. Environmental Modeling & Assessment, 10(1):9–19, 2005.BhaskarJ Choudhury. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2):99–110, 1999.Hanbo Yang, Dawen Yang, Zhidong Lei, and Fubao Sun. New analytical derivation of the mean annual water-energy balance equation. Water resources research, 44(3), 2008.BP Fu. On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1):23–31, 1981.Omid Rahmati, Mahmood Samadi, Himan Shahabi, Ali Azareh, Elham Rafiei-Sardooi, Hossein Alilou, Assefa M. Melesse, Biswajeet Pradhan, Kamran Chapi, and Ataollah Shirzadi. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6):2167– 2175, nov 2019.PD Aher, J Adinarayana, and SD Gorantiwar. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of india: a remote sensing and gis approach. Journal of Hydrology, 511:850–860, 2014.Kumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011.Kumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011.Edouard L Davin and Nathalie de Noblet-Ducoudré. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1):97–112, 2010.Govindasamy Bala, K Caldeira, M Wickett, TJ Phillips, DB Lobell, C Delire, and A Mirin. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16):6550–6555, 2007.Mikhail Ivanovich Budyko, David H Miller, and David Hewitt Miller. Climate and life, volume 508. Academic press New York, 1974.P Schreiber. Über die beziehungen zwischen dem niederschlag und der wasserführung der flüsse in mitteleuropa. Z. Meteorol, 21(10):441–452, 1904.EM Ol’Dekop. On evaporation from the surface of river basins. Transactions on meteorological observations, 4:200, 1911.Lu Zhang, WR Dawes, and GR Walker. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3):701–708, 2001.Amilcare Porporato, Edoardo Daly, and Ignacio Rodriguez-Iturbe. Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5):625–632, 2004.Qining Shen, Zhentao Cong, and Huimin Lei. Evaluating the impact of climate and underlying surface change on runoff within the budyko framework: A study across 224 catchments in china. Journal of Hydrology, 554:251–262, 2017.Tingting Ning, Zhi Li, Qi Feng, Wenzhao Liu, and Zongxing Li. Comparison of the effectiveness of four budyko-based methods in attributing long-term changes in actual evapotranspiration. Scientific reports, 8(1):1–10, 2018.Dawen Yang, Fubao Sun, Zhiyu Liu, Zhentao Cong, Guangheng Ni, and Zhidong Lei. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of china using the budyko hypothesis. Water Resources Research, 43(4), 2007.Maurice George Kendall. Rank correlation methods. 1948.Ministerio de Ambiente y Desarrollo Sostenible–MADS. Criterios para la priorización de cuencas hidrográficas objeto de ordenación y manejo. Technical report, Bogotá, 2014.OECD. Water Security for Better Lives. 2013.Germán Poveda, Liliana Jaramillo, and Luisa F Vallejo. Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118, 2014.Anastassia M Makarieva and Victor G Gorshkov. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. 2007.Javier Houspanossian, Raúl Giménez, Esteban Jobbágy, and Marcelo Nosetto. Surface albedo raise in the south american chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 232:118–127, 2017.Richard H. Waring and Steven W. Running. Water Cycle. In Forest Ecosystems, pages 19–57. Elsevier, jan 2007.Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis. Technical report, Washington, DC., 2005.128Jonathan A Foley, Ruth DeFries, Gregory P Asner, Carol Barford, Gordon Bonan, Stephen R Carpenter, F Stuart Chapin, Michael T Coe, Gretchen C Daily, Holly K Gibbs, et al. Global consequences of land use. Science, 309(5734):570–574, 2005.Laura E Dee, Stefano Allesina, Aletta Bonn, Anna Eklöf, Steven D Gaines, Jes Hines, Ute Jacob, Eve McDonald-Madden, Hugh Possingham, Matthias Schröter, et al. Operationalizing network theory for ecosystem service assessments. Trends in ecology & evolution, 32(2):118–130, 2017.Julio C. Postigo and Kenneth R. Young. Naturaleza y Sociedad: perspectivas socio-ecológicas sobre cambios globales en América. Lima, 2016.Nicholas M Gotts, George AK van Voorn, J Gareth Polhill, Eline de Jong, Bruce Edmonds, Gert Jan Hofstede, and Ruth Meyer. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity, 40:100728, 2019.Linda Berrio-Giraldo, Clara Villegas-Palacio, and Santiago Arango-Aramburo. Dinámica de sistemas socio-ecológicos en cuencas hidrográficas de media montaña. PhD thesis, Universidad Nacional de Colombia, 2020.Laura Schmitt Olabisi, Saweda Liverpool-Tasie, Louie Rivers, Arika Ligmann-Zielinska, Jing Du, Riva Denny, Sandra Marquart-Pyatt, and Amadou Sidibé. Using participatory modeling processes to identify sources of climate risk in west africa. Environment Systems and Decisions.John Sterman. System dynamics: systems thinking and modeling for a complex world. 2002.Julia Martin-Ortega, Robert C Ferrier, Iain J Gordon, Shahbaz Khan, et al. Water ecosystem services: a global perspective. UNESCO Publishing, 2015.Maja Schlueter, Ryan RJ Mcallister, Robert Arlinghaus, Nils Bunnefeld, Klaus Eisenack, Frank Hoelker, Eleanor J MILNER-GULLAND, Birgit Müller, Emily Nicholson, Martin Quaas, et al. New horizons for managing the environment: A review of coupled social-ecological systems modeling. Natural Resource Modeling, 25(1):219–272, 2012.Sondoss Elsawah, Suzanne A Pierce, Serena H Hamilton, Hedwig Van Delden, Dagmar Haase, Amgad Elmahdi, and Anthony J Jakeman. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling & Software, 93:127–145, 2017.V Aceros, A Dı́az, J Escobar, A Garcı́a, J Gomez, C Olaya, and V Otero. ¿ cualitativo o cuantitativo? esa no es la cuestión: un método para el desarrollo de hipótesis dinámicas. IX Congreso Latinoamericano de Dinámica de Sistemas y II Congreso Brasileño, 2011.A Mejı́a, F Dı́az, G Dı́az, and C Olaya. Ser directo puede traerte problemas, pero ser indirecto también: Las realimentaciones en dinámica de sistemas cualitativa y cuantitativa. In Artı́culo aceptado para el Congreso Latinoamericano de Dinámica de Sistemas, 2007.Eric F Wolstenholme. Qualitative vs quantitative modelling: the evolving balance. Journal of the Operational Research Society, 50(4):422–428, 1999.Thomas Binder, Andreas Vox, Salim Belyazid, Hordur Haraldsson, and Mats Svensson. Developing system dynamics models from causal loop diagrams. In Proceedings of the 22nd International Conference of the System Dynamic Society, pages 1–21, 2004.NiNa Dhirasasna and Oz Sahin. A multi-methodology approach to creating a causal loop diagram. Systems, 7(3):42, 2019.Nicola Clerici, Maria Luisa Paracchini, and Joachim Maes. Land-cover change dynamics and insights into ecosystem services in european stream riparian zones. Ecohydrology & Hydrobiology, 14(2):107–120, 2014.IPBES. IPBES Global assessment – Chapter 2.3 Supplementary materia. Technical report, 2019.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment. Washington, DC, island press edition, 2003.Scott L Collins, Stephen R Carpenter, Scott M Swinton, Daniel E Orenstein, Daniel L Childers, Ted L Gragson, Nancy B Grimm, J Morgan Grove, Sharon L Harlan, Jason P Kaye, et al. An integrated conceptual framework for long-term social–ecological research. Frontiers in Ecology and the Environment, 9(6):351–357, 2011.Michael Nassl and Jörg Löffler. Ecosystem services in coupled social–ecological systems: Closing the cycle of service provision and societal feedback. Ambio, 44(8):737–749, 2015.Sandra Dı́az, Sebsebe Demissew, Julia Carabias, Carlos Joly, Mark Lonsdale, Neville Ash, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico, András Báldi, et al. The ipbes conceptual framework—connecting nature and people. Current opinion in environmental sustainability, 14:1–16, 2015.Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP). EL CULTIVO DE LA PAPA EN ECUADOR. Technical report, Quito, 2002.Vanessa Garcı́a-Leoz, Juan Camilo Villegas, Diego Suescún, Claudia P Flórez, Luis Merino-Martı́n, Teresita Betancur, and Juan Diego León. Land cover effects on water balance partitioning in the colombian andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4):1117–1129, 2018.Nuzhat Q Qazi, L Adrian Bruijnzeel, Shive Prakash Rai, and Chandra P Ghimire. Impact of forest degradation on streamflow regime and runoff response to rainfall in the garhwal himalaya, northwest india. Hydrological sciences journal, 62(7):1114–1130, 2017.Melanie Feurer, Andreas Heinimann, Flurina Schneider, Christine Jurt, Win Myint, and Julie Gwendolin Zaehringer. Local perspectives on ecosystem service trade-offs in a forest frontier landscape in myanmar. Land, 8(3):45, 2019.PK Snyder, C Delire, and JA Foley. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3-4):279–302, 2004.H Zhang, Ann Henderson-Sellers, and Kendal McGuffie. Impacts of tropical deforestation. part i: Process analysis of local climatic change. Journal of Climate, 9(7):1497– 1517, 1996.Jagadish Shukla, Carlos Nobre, and Piers Sellers. Amazon deforestation and climate change. Science, 247(4948):1322–1325, 1990.Charlotte Hess and Elinor Ostrom. Understanding Knowledge as a Commons. The MIT Press, jan 2007.CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL (CONPES). LINEAMIENTOS DE POLÍTICA Y PROGRAMA NACIONAL DE PAGO POR SERVICIOS AMBIENTALES PARA LA CONSTRUCCIÓN DE PAZ . Technical report, Bogotá, 2017.Sven Wunder et al. Payments for environmental services: some nuts and bolts. 2005.Cristina Vargas. Dinámica de los agroecosistemas bajo el enfoque de sistemas socioecológicos. Caso de estudio: cuenca hidrográfica del rı́o Grande y del rı́o Chico. PhD thesis, Universidad Nacional de Colombia, 2020.Maja Schlüter, Jochen Hinkel, Pieter WG Bots, and Robert Arlinghaus. Application of the ses framework for model-based analysis of the dynamics of social-ecological systems. Ecology and Society, 19(1), 2014.Ministerio de Ambiente y Desarrollo Sostenible – MADS. Bosques Territorios de Vida: Estrategia Integral de Control a la Deforestación y Gestión de los Bosques. Technical report, Ministerio de Ambiente y Desarrollo Sostenible, 2018.Sibel Eker and Nici Zimmermann. Using textual data in system dynamics model conceptualization. Systems, 4(3):28, 2016.Sherman Farhad. Los sistemas socio-ecológicos. una aproximación conceptual y metodológica. XII Jornadas de economía crítica, pages 265–280, 2012.Ministerio de Ambiente y Desarrollo Sostenible. 3,8 millones de dólares es el aporte de Colombia y Ecuador para cuidar el agua de dos cuencas compartidas , 2020.G. Poveda. Garantizar la integridad de los ecosistemas de Colombia: condición básica para preservar la biodiversidad y desarrollar la bioeconomía. In CIENCIA Y TECNOLOGÍA: FUNDAMENTO DE LA BIOECONOMÍA, volume 3, chapter 3. 2021.Rudi J Van der Ent, Hubert HG Savenije, Bettina Schaefli, and Susan C Steele-Dunne. Origin and fate of atmospheric moisture over continents. Water Resources Research, 46(9), 2010.Chi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui. Tracing changes in atmospheric moisture supply to the drying southwest china. Atmospheric Chemistry and Physics, 17(17):10383–10393, 2017.DC Zemp, C-F Schleussner, HMJ Barbosa, RJ Van der Ent, Jonathan Friedemann Donges, J Heinke, G Sampaio, and A Rammig. On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337– 13359, 2014.EspecializadaFundación para la Promoción de la Investigación y la Tecnología - Banco de la República - Convenio 202006 - Proyecto 4.389LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79796/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1037624657_2021.pdf1037624657_2021.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf154936291https://repositorio.unal.edu.co/bitstream/unal/79796/4/1037624657_2021.pdf03ff7e15319b0abc1c2e23066c2afa7bMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79796/5/license_rdff7d494f61e544413a13e6ba1da2089cdMD55THUMBNAIL1037624657_2021.pdf.jpg1037624657_2021.pdf.jpgGenerated Thumbnailimage/jpeg5633https://repositorio.unal.edu.co/bitstream/unal/79796/6/1037624657_2021.pdf.jpgc81effb1305f76c15e2f6431b2270ea4MD56unal/79796oai:repositorio.unal.edu.co:unal/797962023-07-24 23:03:36.363Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |