Forecasting the global solar radiation in Nariño – Colombia
figuras, símbolos, tablas
- Autores:
-
Hoyos Gómez, Laura Sofía
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79679
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines
Electrificación rural
Energía solar
Radiación solar
Rural electrification
Solar energy
Solar radiation
Community participation
Rural electrification
Analytic Hierarchy Process
Multicriteria Approach
Energy projects
Human Development Index
Sustainable Development Goal Index
Temperature based models
Data imputation
Hargreaves and Samani
Spatial interpolation techniques
solar radiation mapping
Proyectos energéticos
Participación comunitaria
Electrificación rural
Proceso Analítico Jerárquico
Índice de Desarrollo Humano
Índice de Metas de Desarrollo Sostenible
Modelos basados en temperatura
Imputación de datos
Hargreaves y Samani
Técnicas de interpolación espacial
Mapeo de radiación solar
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_9f9fe39e6a6514f7044db48dd548472d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79679 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Forecasting the global solar radiation in Nariño – Colombia |
dc.title.translated.spa.fl_str_mv |
Pronóstico de la radiación solar global en Nariño - Colombia |
title |
Forecasting the global solar radiation in Nariño – Colombia |
spellingShingle |
Forecasting the global solar radiation in Nariño – Colombia 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines Electrificación rural Energía solar Radiación solar Rural electrification Solar energy Solar radiation Community participation Rural electrification Analytic Hierarchy Process Multicriteria Approach Energy projects Human Development Index Sustainable Development Goal Index Temperature based models Data imputation Hargreaves and Samani Spatial interpolation techniques solar radiation mapping Proyectos energéticos Participación comunitaria Electrificación rural Proceso Analítico Jerárquico Índice de Desarrollo Humano Índice de Metas de Desarrollo Sostenible Modelos basados en temperatura Imputación de datos Hargreaves y Samani Técnicas de interpolación espacial Mapeo de radiación solar |
title_short |
Forecasting the global solar radiation in Nariño – Colombia |
title_full |
Forecasting the global solar radiation in Nariño – Colombia |
title_fullStr |
Forecasting the global solar radiation in Nariño – Colombia |
title_full_unstemmed |
Forecasting the global solar radiation in Nariño – Colombia |
title_sort |
Forecasting the global solar radiation in Nariño – Colombia |
dc.creator.fl_str_mv |
Hoyos Gómez, Laura Sofía |
dc.contributor.advisor.none.fl_str_mv |
Ruiz Mendoza, Belizza Janet |
dc.contributor.author.none.fl_str_mv |
Hoyos Gómez, Laura Sofía |
dc.contributor.researcher.none.fl_str_mv |
Patricio Mendoza Araya José Francisco Ruiz Muñoz |
dc.contributor.researchgroup.spa.fl_str_mv |
GIPEM - Grupo de Investigación en Potencia, Energía y Mercados |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines |
topic |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines Electrificación rural Energía solar Radiación solar Rural electrification Solar energy Solar radiation Community participation Rural electrification Analytic Hierarchy Process Multicriteria Approach Energy projects Human Development Index Sustainable Development Goal Index Temperature based models Data imputation Hargreaves and Samani Spatial interpolation techniques solar radiation mapping Proyectos energéticos Participación comunitaria Electrificación rural Proceso Analítico Jerárquico Índice de Desarrollo Humano Índice de Metas de Desarrollo Sostenible Modelos basados en temperatura Imputación de datos Hargreaves y Samani Técnicas de interpolación espacial Mapeo de radiación solar |
dc.subject.ocde.none.fl_str_mv |
Electrificación rural Energía solar Radiación solar Rural electrification Solar energy Solar radiation |
dc.subject.proposal.eng.fl_str_mv |
Community participation Rural electrification Analytic Hierarchy Process Multicriteria Approach Energy projects Human Development Index Sustainable Development Goal Index Temperature based models Data imputation Hargreaves and Samani Spatial interpolation techniques solar radiation mapping Proyectos energéticos |
dc.subject.proposal.spa.fl_str_mv |
Participación comunitaria Electrificación rural Proceso Analítico Jerárquico Índice de Desarrollo Humano Índice de Metas de Desarrollo Sostenible Modelos basados en temperatura Imputación de datos Hargreaves y Samani Técnicas de interpolación espacial Mapeo de radiación solar |
description |
figuras, símbolos, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-22T20:17:41Z |
dc.date.available.none.fl_str_mv |
2021-06-22T20:17:41Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79679 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79679 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abdullah, L., & Najib, L. (2016). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360–377. Retrieved from https://doi.org/10.1080/14786451.2014.907292 doi: 10.1080/14786451.2014.907292 Abreu, E. F., Canhoto, P., Prior, V., & Melicio, R. (2018). Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements. Renewable Energy, 127, 398–411. Retrieved from https://doi.org/10.1016/j.renene .2018.04.068 doi: 10.1016/j.renene.2018.04.068 AENOR. (2004). Redes de estaciones meteorológicas automáticas: directrices para la validación de registros meteorológicos procedentes de redes de estaciones automáticas. Validación en tiempo real. Agami Reddy, T. (2011). Applied Data Analysis and Modelling for Energy Engineers and Scientists. Springer London. doi: 10.1007/978-1-4419-9613-8 Akinoglu, B. (2008a). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5 Akinoglu, B. (2008b). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5 Allen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation From Air Temperature. Journal of Hydrologic Engineering, 2(250), 56–67. Almorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy. doi: 10.1016/j.apenergy.2010.11 .003 Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. Retrieved from http://dx.doi.org/10.1016/j.solener.2016.06.069 doi: 10.1016/j.solener.2016.06 .069References 103 Arbeláez-Arias, F.-A. (2006). Desarrollo sostenible y sus indicadores (Tech. Rep.). Cali: Centro de Investigaciones y Documentación Socioeconómica. Retrieved from http://bibliotecavirtual.clacso .org.ar/Colombia/cidse-univalle/20121116025351/Doc93. Arbeláez Pérez, O. A. (2019). Informe mensual de localidades sin telemetría de las ZNI (Tech. Rep.). Centro Nacional de Monitoreo. Aslani, A. (2014). Private sector investment in renewable energy utilisation: Strategic analysis of stakeholder perspectives in developing countries. International Journal of Sustainable Energy, 33(1), 112–124. doi: 10.1080/14786451.2012.751916 Ávila, A. F., Escobar, E., & Torres Tobar, C. (2014). DEPARTAMENTO DE NARIÑO (Tech. Rep.). Fundación Paz y Reconciliación; Redprodepaz. Aznar, J., & Guijarro, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdf Badosa, J., Gobert, E., Grangereau, M., & Kim, D. (2017). Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach. In P. Drobinski, M. Mougeot, D. Picard, R. Plougonven, & P. Tankov (Eds.), Mathematics & statistics (p. 22). Paris: Springer. Retrieved from http://www.springer.com/series/10533 Bakirci, K. (2009). Models of solar radiation with hours of bright sunshine: A review. doi: 10.1016/j.rser.2009 .07.011 Balbás Egea, J. ff., & Eguren Egiguren, J. A. (2019). Bases for a sustainable energy model. Case study: Basque autonomous community. International Journal of Sustainable Energy, 38(9), 884–903. doi: 10 .1080/14786451.2019.1609474 Benali, L., Notton, G., Fouilloy, A., Voyant, C., & Dizene, R. (2019). Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy, 132, 871–884. doi: 10.1016/j.renene.2018.08.044 Benson, R. B., Paris, M. V., Sherry, J. E., & Justus, C. G. (1984). Estimation of daily and montly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy, 32(4), 523– 535. doi: doi.org/10.1016/0038-092X(84)90267-6 Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1-3, 542–545. doi: 10.1016/B978-0-12-809633-8.20349-X Bertelsmann Stiftung, & Sustainable Development Solutions Network (SDSN). (2016). Índice y paneles de los ODS. Informe global (Tech. Rep.). Retrieved from http://sdgindex.org/assets/files/ SDG-Index-ES-02.pdf Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. doi: 10.1016/j.rser.2012.12.043104 References Bhattacharjee, S., Ghosh, S. K., & Chen, J. (2019). Semantic Kriging for Spatio-temporal Prediction (Vol. 839). Springer. doi: doi.org/10.1007/978-981-13-8664-0 Blaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M., & Badescu, V. (2019). A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 70, 119–144. Retrieved from https://doi.org/10.1016/j.pecs.2018.10.003 doi: 10.1016/ j.pecs.2018.10.003 Blumthaler, M. (2012). Solar Radiation of the High Alps. In C. Lütz (Ed.), Plants in alpine regions cell physiology of adaptation and survival strategies (pp. 11–20). Springer Wien New York. doi: 10.1007/ 978-3-7091-0136-0 Boland, J. (2008). Time Series Modelling of Solar Radiation. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 283–311). Retrieved from http://link.springer.com/10.1007/978-1 -4471-4649-0_5 doi: 10.1007/978-1-4471-4649-0{\_}5 Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis : forecasting and control. Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimim temperature. Agricultural and Forest Meteorology, 31(2), 159–166. Camblong, H., Sarr, J., Niang, A. T., Curea, O., Alzola, J. A., Sylla, E. H., & Santos, M. (2009). Microgrids project, Part 1: Analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, 34(10), 2141–2150. Retrieved from http://dx.doi.org/10.1016/ j.renene.2009.01.015 doi: 10.1016/j.renene.2009.01.015 Casella, G., & Berger, R. L. (2002). Statistical Inference (Second ed.). Thomson. Chandola, D., Gupta, H., Tikkiwal, V. A., & Bohra, M. K. (2020). Multi-step ahead forecasting of global solar radiation for arid zones using deep learning. Procedia Computer Science, 167(Iccids 2019), 626– 635. Retrieved from https://doi.org/10.1016/j.procs.2020.03.329 doi: 10.1016/j.procs .2020.03.329 Chen, J.-l., Liu, H.-b., Wu, W., & Xie, D.-t. (2011). Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study. Renewable Energy, 36(1), 413– 420. Retrieved from http://dx.doi.org/10.1016/j.renene.2010.06.024 doi: 10.1016/ j.renene.2010.06.024 Coimbra, C. F., Kleissl, J., & Marquez, R. (2013). Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In J. Kleissl (Ed.), Solar energy forecasting and resource assessment (First ed., chap. Chapter 8). Elsevier. Retrieved from https://books.google.com.co/ books?hl=en&lr=&id=94KI0_SPwW8C&oi=fnd&pg=PP1&dq=Solar+energy+forecasting+ and+resource+assessment&ots=HcVnQHR7Mt&sig=XuSTldnWP5MKAP8J3YUHlBbfFCMReferences 105 CORPONARIÑO. (2001). Plan De Gestion Ambiental Regional 2002 - 2012 (Tech. Rep.). San Juan de Pasto: Corponariño. Retrieved from http://corponarino.gov.co/expedientes/pgar20022012/ pgar2002-2012.pdf Dai, K. Y., Liu, G. R., Lim, K. M., & Gu, Y. T. (2003). Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. , 32, 60–70. doi: 10.1007/s00466-003-0462-z DANE, & Banco de la República de Colombia. (2016). Coyuntura económica regional. Dannecker, L. (2015). Energy Time Series Forecasting. Springer Vieweg. doi: 10.1007/978-3-658-11039-0 Dawoud, F., Jbour, A., Al-salaymeh, A., Qoaider, L., & Fink, T. (2019). Innovative solutions for Renewable Energy and Energy Efficiency in Jordan. , 20(4), 201–216. Demirhan, H., & Renwick, Z. (2018). Missing value imputation for short to mid-term horizontal solar irradiance data. Applied Energy, 225(March), 998–1012. Retrieved from https://doi.org/ 10.1016/j.apenergy.2018.05.054 doi: 10.1016/j.apenergy.2018.05.054 Departamento Administrativo Nacional de Estadísitica - DANE. (2005). Déficit de vivienda. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/deficit-de-vivienda Departamento Administrativo Nacional de Estadísitica - DANE. (2009). Metodología Déficit de Vivienda (Tech. Rep.). Bogotá: Departamento Adminstrativo Nacional de Estadística. Departamento Administrativo Nacional de Estadísitica - DANE. (2016). Valor Agregado según ramas de actividad económica y PIB (Clasificación Cuentas Nacionales) Serie 2000 - 2014p, Base 2005*. Retrieved from http://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas -nacionales/cuentas-nacionales-trimestrales#pib-por-rama-de-actividad Departamento Administrativo Nacional de Estadísitica - DANE. (2017). Indicador de importancia económica municipal. Retrieved from https://www.dane.gov.co/index.php/estadisticas -por-tema/cuentas-nacionales/cuentas-nacionales-departamentales/indicador -de-importancia-economica-municipal Departamento Administrativo Nacional de Estadísitica - DANE. (2018a). Encuesta de la calidad de vida (ECV). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/calidad-de-vida-ecv Departamento Administrativo Nacional de Estadísitica - DANE. (2018b). Estadísticas vitales nacimientos y defunciones. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por -tema/salud/nacimientos-y-defunciones Departamento Administrativo Nacional de Estadísitica - DANE. (2018c). Fuerza laboral y educación. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ educacion/fuerza-laboral-y-educacion106 References Departamento Administrativo Nacional de Estadísitica-DANE. (2018d). Necesidades Básicas Insatisfechas. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi Departamento Administrativo Nacional de Estadísitica - DANE. (2018e). Pobreza y desigualdad. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/pobreza-y-desigualdad Departamento Administrativo Nacional de Estadísitica - DANE. (2019). Necesidades básicas insatisfechas (NBI). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi Diagne, M., Mathieu, D., Lauret, P., Boland, J., & Schmutz, N. (2013). Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27, 65–76. Retrieved from http://dx.doi.org/10.1016/j.rser.2013.06.042 doi: 10.1016/j.rser.2013.06.042 Dirección de Inversiones y Finanzas Públicas. (2006). Manual de valoración y cuantificación de beneficios (Tech. Rep.). Departamento Nacional de Planeación. Dos Santos, C. M., De Souza, J. L., Ferreira Junior, R. A., Tiba, C., de Melo, R. O., Lyra, G. B., … Lemes, M. A. M. (2014). On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy. doi: 10.1016/j.energy.2014.04.116 Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., Oliveira, C. H. d., & Carvalho, H. D. (2019). The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. Journal of Cleaner Production, 212, 119–138. Retrieved from https://doi.org/ 10.1016/j.jclepro.2018.11.270 doi: 10.1016/j.jclepro.2018.11.270 El Congreso de Colombia. (2014). POR MEDIO DE LA CUAL SE REGULA LA INTEGRACIÓN DE LAS ENERGÍAS RENOVABLES NO CONVENCIONALES AL SISTEMA ENERGÉTICO (No. May). Retrieved from http:// www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf Estévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automaticweather stations. Journal of Hydrology, 402(1-2), 144–154. doi: 10.1016/j.jhydrol .2011.02.031 Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperaturebased empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914. Retrieved from https://doi.org/10.1016/j.energy.2017.12.091 doi: 10.1016/ j.energy.2017.12.091 Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43(July), 563–577. Retrieved from https://doi.org/10.1016/j.scs.2018.08.025 doi: 10 .1016/j.scs.2018.08.025References 107 Figueirêdo Neto, G. S., & Rossi, L. A. (2019). Photovoltaic energy in the enhancement of indigenous education in the Brazilian Amazon. Energy Policy, 132(May), 216–222. Retrieved from https:// doi.org/10.1016/j.enpol.2019.05.037 doi: 10.1016/j.enpol.2019.05.037 Gaspars-Wieloch, H. (2019). Project Net Present Value estimation under uncertainty. Central European Journal of Operations Research, 27(1), 179–197. doi: 10.1007/s10100-017-0500-0 Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2019). Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. Retrieved from https://doi.org/10.1016/ j.jclepro.2019.01.158 doi: 10.1016/j.jclepro.2019.01.158 Ghimire, S., Deo, R. C., Raj, N., & Mi, J. (2019). Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 253(April), 113541. Retrieved from https://doi.org/10.1016/j.apenergy.2019.113541 doi: 10.1016/j.apenergy .2019.113541 Gobernación de Nariño. (2016a). Plan participativo de Desarrollo Departamental. Plan de Desarrollo Departamental de Nariño, 255. doi: 10.1017/CBO9781107415324.004 Gobernación de Nariño. (2016b). Plan participativo de Desarrollo Departamental (Tech. Rep.). Gobernación de Nariño. Goodin, D. G., Hutchinson, J.M. S., Vanderlip, R. L., Knapp, M. C., & Goodin, D. G. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. AGROCLIMATOLOGY, 91, 845–851. Gueymard, C. A. (2014). A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39, 1024–1034. Retrieved from http://dx.doi.org/10.1016/j.rser.2014.07 .117 doi: 10.1016/j.rser.2014.07.117 Hargreaves, G.H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(IR3), 225–230. Harrenll, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis (Vol. 13) (No. 5). Springer. doi: 10.1007/978-3-319-1925-7 Herrera-Grimaldi, P., García-Marín, A. P., & Estévez, J. (2019). Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 29(6). doi: 10.1063/1.5089810 Husein, M., & Chung, I. Y. (2019). Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: A deep learning approach. Energies, 12(10). doi: 10 .3390/en12101856 Inman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535–576. Retrieved from http://dx .doi.org/10.1016/j.pecs.2013.06.002 doi: 10.1016/j.pecs.2013.06.002108 References Instituto Departamental de Salud de Nariño. (2018). Informe de gestión programa de vigilancia de calidad del agua año 2017 (Tech. Rep.). Pasto. Instituto Geográfico Agustín Codazzi - IGAC. (2014). Nariño características geográficas. Bogotà: Imprenta Nacional de Colombia. International Energy Agency. (2017). International Energy Agency - Energy Access Outlook 2017: From poverty to prosperity. Energy Procedia, 94(March), 144. Retrieved from http:// www.iea.org/publications/freepublications/publication/WEO2017SpecialReport _EnergyAccessOutlook.pdf%0Ahttp://dx.doi.org/10.1016/j.enpol.2016. doi: 10.1787/9789264285569-en Introduction to Spatial Analysis. (2009). Introduction to Spatial Analysis. J. Pacheco, & Contreras, E. (2008). Manual metodológico de evaluación multicriterio para programas y proyectos. Santiago de Chile: Instituto Latioamericano y del Caribe de Planificación Económica y Social - ILPES. Retrieved from http://www.fundacionpobreza.cl/biblioteca-temas.php ?id_tema=14 Jamaly, M., & Kleissl, J. (2017). Spatiotemporal interpolation and forecast of irradiance data using Kriging. Solar Energy, 158(February), 407–423. Retrieved from http://dx.doi.org/10.1016/ j.solener.2017.09.057 doi: 10.1016/j.solener.2017.09.057 Jamil, B., & Akhtar, N. (2017). Comparison of empirical models to estimate monthly mean di ff use solar radiation from measured data : Case study for humid-subtropical climatic region of India. Renewable and Sustainable Energy Reviews, 77(February), 1326–1342. Retrieved from http://dx.doi.org/ 10.1016/j.rser.2017.02.057 doi: 10.1016/j.rser.2017.02.057 Janjai, S., Laksanaboonsong, J., Nunez, M., & Thongsathitya, A. (2005). Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy, 78, 739–751. doi: 10.1016/j.solener.2004.09.009 Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309– 330. doi: 10.1016/S1364-8152(01)00008-1 Kipp & Zonen. (2000). Instruction Manual Pyranometer/ Albedometer CM11 e CM14. Kiš, I. M. (2016). Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. The Mining-Geology-Petroleum Engineering Bulletin, 31(2), 41–58. doi: 10.17794/rgn.2016.2.4 Kleinbaum, D. G., & Klein, M. (2010). Logistic Regression: a self-learning text (No. 3). Springer. doi: 10.1007/978-1-4419-1742-3 Konstantin, P., & Konstantin, M. (2018). Power and Energy Systems Engineering Economics. Gewerbestrasse: Springer. doi: https://doi.org/10.1007/978-3-319-72383-9References 109 Kwon, B. S., Park, R. J., & Song, K. B. (2020). Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer. Journal of Electrical Engineering and Technology, 15(4), 1501–1509. Retrieved from https://doi.org/10.1007/s42835-020-00424-7 doi: 10.1007/s42835-020-00424-7 Layanun, V., Suksamosorn, S., & Songsiri, J. (2017). Missing-data Imputation for Solar Irradiance Forecasting in Thailand. In Sice annual conference (pp. 1234–1239). Kanazawa. Li, H., Cao, F., Wang, X., & Ma, W. (2014). A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China. The Scientific World Journal, 2014. doi: doi.org/10.1155/2014/ 128754 Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Australian Geological Survey Organisation, 68(2008/23), 154. doi: http://www.ga.gov.au/image{\_}cache/ GA12526.pdf Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4), 228–241. Retrieved from http://dx.doi.org/10.1016/j.ecoinf.2010.12.003 doi: 10.1016/j.ecoinf.2010.12 .003 Li, J., & Heap, A. D. (2014). Environmental Modelling & Software Spatial interpolation methods applied in the environmental sciences : A review. Environmental Modelling and Software, 53, 173–189. Retrieved from http://dx.doi.org/10.1016/j.envsoft.2013.12.008 doi: 10.1016/j.envsoft.2013 .12.008 Løken, E. (2007). Use ofmulticriteria decision analysismethods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584–1595. doi: 10.1016/j.rser.2005.11.005 Manning, R. L. (1996). Logit regressions with continuous dependent variables measured with error. Applied Economics Letters, 3(3), 183–184. doi: 10.1080/135048596356636 Mardani, A., Jusoh, A., Halicka, K., Ejdys, J., Magruk, A., & Ungku, U. N. (2018). Determining the utility in management by using multi-criteria decision support tools: a review. Economic ResearchEkonomska Istrazivanja, 31(1), 1666–1716. Retrieved from https://doi.org/10.1080/1331677X .2018.1488600 doi: 10.1080/1331677X.2018.1488600 Marinakis, V., Papadopoulou, A. G., & Psarras, J. (2017). Local communities towards a sustainable energy future: needs and priorities. International Journal of Sustainable Energy, 36(3), 296–312. Retrieved from https://doi.org/10.1080/14786451.2015.1018264 doi: 10.1080/14786451.2015 .1018264 Martín, A. M., & Dominguez, J. (2019). Solar Radiation Interpolation. In J. Polo, L. Martín-Pomares, & A. Sanfilipo (Eds.), Solar resources mapping (pp. 301–311). Springer. doi: 10.1007/978-3-319-97484 -2{\_}12110 References Martínez, A. G. (2018). Nariño: Departamento de Nariño Colombia - Informacion detallada Nariño Colombia. Retrieved from https://www.todacolombia.com/departamentos-de-colombia/ narino.html Mary, S. A. S. A., & Suganya, G. (2016). Multi-Criteria Decision Making Using ELECTRE. Circuits and Systems, 07(06), 1008–1020. doi: 10.4236/cs.2016.76085 Mayer, D. G., & Butler, D. G. (1993). Statistical validation. Ecological Modelling, 68(1-2), 21–32. doi: 10.1016/0304-3800(93)90105-2 Mazorra-Aguiar, L., & Díaz, F. (2018). Solar Radiation Forecasting with Statistical Models. In R. Perez (Ed.), Wind field and solar radiation characterization and forecasting. (pp. 171–198). Springer. doi: 10 .1007/978-3-319-76876-2{\_}6 Meza F., & Varas E. (2000). Estimation of mean monthly solar global radiation as a function of temperature. Agricultural and Forest Meteorology 100 (2000) 231–241. , 100, 231–241. Ministerio de Cultura. (2020). Sistema Nacional de Información Cultural. Retrieved from http://www.sinic.gov.co/SINIC/ColombiaCultural/ColCulturalBusca.aspx ?AREID=3&COLTEM=216&IdDep=52&SECID=8 Ministerio de Minas y Energía. (2018). Hidrocarburos - Ministerio de Minas y Energía. Retrieved from https://www.minminas.gov.co/cobertura-nacional1 Montedonico, M., Herrera-Neira, F., Marconi, A., Urquiza, A., & Palma-Behnke, R. (2018). Coconstruction of energy solutions: Lessons learned from experiences in Chile. Energy Research and Social Science, 45(July), 173–183. Retrieved from https://doi.org/10.1016/j.erss.2018.08.004 doi: 10.1016/j.erss.2018.08.004 Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley. Moon, S. H., & Kim, Y. H. (2020). An improved forecast of precipitation type using correlation-based feature selection and multinomial logistic regression. Atmospheric Research, 240(February), 104928. Retrieved from https://doi.org/10.1016/j.atmosres.2020.104928 doi: 10.1016/j.atmosres .2020.104928 Moreno, A., Gilabert, M. A., & Martínez, B. (2011). Mapping daily global solar irradiation over Spain: A comparative study of selected approaches. Solar Energy, 85(9), 2072–2084. doi: 10.1016/j.solener .2011.05.017 Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. Retrieved from https://cran.r-project.org/web/packages/ imputeTS/vignettes/imputeTS-Time-Series-Missing-Value-Imputation-in-R.pdf Mossos, ff. A. (2019). Informe mensual de telemetría (Tech. Rep.). Centro Nacional de Monitoreo.References 111 Munawar, U., & Wang, Z. (2020). A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting. Journal of Electrical Engineering and Technology, 15(2), 561–569. Retrieved from https://doi.org/10.1007/s42835-020-00346-4 doi: 10.1007/s42835-020-00346-4 National Oceanic and Atmospheric Administration. (2020). Climate Prediction Center. Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ ONI_v5.php Nwokolo, S. C., & Ogbulezie, J. C. (2017, 5). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/ S2314853517300458 doi: 10.1016/j.bjbas.2017.05.001 Oficina de planeación educativa. (2018). Secretaría Departamental De Nariño. , 169. Retrieved from http://www.sednarino.gov.co/SEDNARINO12/phocadownload/2018/Descargas/2 .BOLETINESTADISTICO2017.pdf Ogunsola, O. T., & Song, L. (2014). Restoration of long-term missing gaps in solar radiation. Energy and Buildings, 82, 580–591. Retrieved from http://dx.doi.org/10.1016/j.enbuild.2014.07 .088 doi: 10.1016/j.enbuild.2014.07.088 Okundamiya, M. S., & Nzeako, A. N. (2011, 5). Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Journal of Control Science and Engineering, 2011, 1–7. Retrieved from http://www.hindawi.com/journals/jcse/ 2011/356405/ doi: 10.1155/2011/356405 Olea, R. A. (1999). Simple Kriging. In Geostatistics for engineers and earth scientists (pp. 7–30). Boston, MA: Springer US. Retrieved from http://link.springer.com/10.1007/978-1-4615-5001-3_2 doi: 10.1007/978-1-4615-5001-3{\_}2 Oliver, A. M., & Webster, R. (2015). Basic Steps in Geostatistics:The Variogram and Kriging. Springer. doi: 10.1007/978-3-319-15865-5ISSN Oliver, M. A., & Webster, R. (1990). Kriging : a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313–332. Opoku, R., Adjei, E. A., Ahadzie, D. K., & Agyarko, K. A. (2020). Energy efficiency, solar energy and cost saving opportunities in public tertiary institutions in developing countries: The case of KNUST, Ghana. Alexandria Engineering Journal, 59(1), 417–428. Retrieved from https://doi.org/10.1016/ j.aej.2020.01.011 doi: 10.1016/j.aej.2020.01.011 Palma-Behnke, R., Jiménez-Estévez, G., Sáez, D., Montedonico, M., Mendoza-Araya, P., Hernández, R., & Muñoz, C. (2019). Lowering electricity access barriers by means of participative processes applied to microgrid solutions : The Chilean case. Proceedings of the IEEE, 1–15. doi: 10.1109/JPROC.2019 .2922342112 References Paulescu, M. (2008). Solar Irradiation via Air Temperature Data. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 175–193). Springer. Paulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. London: Springer London. Retrieved from http://link.springer.com/10.1007/ 978-1-4471-4649-0 doi: 10.1007/978-1-4471-4649-0 Pebesma, E. (2016). Fitting variogram models in gstat. Retrieved from https://www.r-spatial.org/ r/2016/02/14/gstat-variogram-fitting.html Pebesma, E., & Graeler, B. (2020). Package ’gstat’ Title Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation (Tech. Rep.). Retrieved from https://github.com/r-spatial/gstat/ issues/ Premalatha, N., & Valan Arasu, A. (2016). Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 14(3), 206–214. Retrieved from http://dx.doi.org/10.1016/j.jart.2016.05.001 doi: 10.1016/j.jart.2016.05.001 Quansah, E., Amekudzi, L. K., Preko, K., Aryee, J., Boakye, O. R., Boli, D., & Salifu, M. R. (2014, 1). Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana. Journal of Solar Energy, 2014, 1–6. Retrieved from http://www.hindawi.com/journals/jse/2014/897970/ doi: 10.1155/2014/897970 R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/ Ramírez J., J. C., de Aguas P., J. M., & De Aguas, M. (2017). Escalafón de la competitividad de los departamentos de Colombia 2017 (Tech. Rep.). Bogotá. Retrieved from https://repositorio.cepal.org/ bitstream/handle/11362/43156/1/S1800010_es.pdf Reikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83(3), 342–349. Retrieved from http://dx.doi.org/10.1016/j.solener.2008 .08.007 doi: 10.1016/j.solener.2008.08.007 Rivero, M., Orozco, S., Sellschopp, F. S., & Loera-Palomo, R. (2017). A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico. Renewable Energy. doi: 10.1016/j.renene.2017.08.003 Rodriguez, H. (2011). Observatorio de energías renovables en América Latina y el Caribe: Colombia. OLADE; ONUDI. Rodríguez-Rivero, C., Pucheta, J., Laboret, S., Sauchelli, V., & Patiño, D. (2017). Short-Term Series Forecasting By Complete and Incomplete Datasets. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 5–16.References 113 Saaty, T. L. (1990). How tomake a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi: 10.1016/0377-2217(90)90057-I Saaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Servces Sciences, 1(1), 83. Retrieved from http://www.rafikulislam.com/uploads/resourses/ 197245512559a37aadea6d.pdf doi: 10.1504/IJSSCI.2008.017590 Samani, Z. (2000). Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 126, 265–267. doi: 10.1061/(ASCE)0733 -9437(2000)126:4(265) Sandia National Laboratories. (2021). Irradiance & Insolation. Retrieved from https://pvpmc.sandia .gov/modeling-steps/1-weather-design-inputs/irradiance-and-insolation-2/ Sankar, G., Kumar, P., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon ( SOC ). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. Retrieved from https://doi.org/10.1016/j.jssas.2016.02.001 doi: 10.1016/ j.jssas.2016.02.001 Şen, Z. (2008). Solar Energy Fundamentals and Modeling Techniques. Springer. doi: 10.1007/978-1-84800 -134-3 Serrano, A., Sanchez, G., & Cancillo, M. L. (2015). Correcting daytime thermal offset in unventilated pyranometers. Journal of Atmospheric and Oceanic Technology, 32(11), 2088–2099. doi: 10.1175/JTECH -D-15-0058.1 Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples (Vol. 102; G. Casella, S. Fienberg, & I. Olkin, Eds.). Springer. Retrieved from http://books.google.com/ books?id=9tv0taI8l6YC doi: 10.1007*978-1-4419-7865-3 Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018, 1). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459–497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890417310622 doi: 10 .1016/J.ENCONMAN.2017.11.019 Suehrcke, H. (2000). On the relationship between duration of sunshine and solar radiation on the Earth’s surface: Angström’s equation revisited. Solar Energy, 68(5), 417–425. Superintendencia de Servicios Públicos Domiciliarios SSPD. (2019). Zonas No Interconectadas – ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2019. Retrieved from https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/ Publicaciones/2019/Nov/diagnostico_de_la_prestacion_del_servicio_zni_-_07 -11-2019-lo_1.pdf Ubilla, K., Jiménez-Estévez, G. A., Hernádez, R., Reyes-Chamorro, L., Irigoyen, C. H., Severino, B., & PalmaBehnke, R. (2014). Smart microgrids as a solution for rural electrification: Ensuring long-term114 References sustainability through cadastre and business models. IEEE Transactions on Sustainable Energy, 5(4), 1310–1318. doi: 10.1109/TSTE.2014.2315651 Unidad de Planeación Minero Energética. (2019). Índice de Cobertura de Energía Eléctrica - ICEE 2018 (Tech. Rep.). Bogotá: Unidad de Planeación Minero Energético. Retrieved from http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ ConsultasEstadisticas/tabid/81/Default.aspx United Nations. (2018). Calculating the human development indices-graphical presentation Inequality-adjusted Human Development Index (IHDI) Knowledge Human Development Index (HDI) Long and healthy life A decent standard of living Human Development Index (HDI) Knowledge Long and (Tech. Rep.). Retrieved from http://hdr.undp.org/sites/default/files/hdr2018_technical_notes.pdf Universidad de Nariño, Unidad de Planeación Minero Energética-UPME, Usaid, U. S. A. f. I. D., & Ipse, I. D. P. Y. P. D. S. E. P. L. Z. N. I. (2014). Diagnóstico energético y social del departamento de Nariño. , 127. Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014a). Bombeo De Agua Para Riego Utilizando Energía Solar (Tech. Rep.). San Juan de Pasto. Retrieved from http:// www1.upme.gov.co/sgic/sites/default/files/BombeoSolarTaminango.pdf Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014b). Diseño De Red Inalámbrica Rural Para Acceso a Internet En Las Instituciones Educativas Pertenecientes a Las Comunidades Negras De Las Subregiones De Sanquianga , (Tech. Rep.). Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014c). Energía Solar Fotovoltaico Como Estrategia Alternativa y Sostenible de Energización en el Municipio de Santacruz (Tech. Rep.). San Juan de Pasto. Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014d). Estudio Para La Implementación De Un Sistema De Alumbrado Fotovoltaico En El Municipio (Tech. Rep.). San Juan de Pasto. Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. doi: 10.1016/j.ejor.2004.04.028 Viera Díaz, M. A. (2002). Geoestadìsitica Aplicada. Instituto de Geofìsica UNAM; Instituto de Geofìsica y Astronomía CITMA. Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi: 10.1016/j.rser.2009.06.021 Webster, R., & Oliver, A. M. (2007). Geoestatistics for Environmental Scientists (Second ed., Vol. 14; S. Senn, M. Scott, & V. Barnett, Eds.). John Wiley. doi: 10.1097/00005344-198900149-00008References 115 Yang, S., Zhu, X., & Guo, W. (2018). Cost-Benefit Analysis for the Concentrated Solar Power in China. Journal of Electrical and Computer Engineering, 2018. doi: 10.1155/2018/4063691 Žižlavský, O. (2014). Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia - Social and Behavioral Sciences, 156(November 2014), 506–512. doi: 10.1016/ j.sbspro.2014.11.230 Zore, ff., Čuček, L., Širovnik, D., Novak Pintarič, Z., & Kravanja, Z. (2018). Maximizing the sustainability net present value of renewable energy supply networks. Chemical Engineering Research and Design, 131, 245–265. doi: 10.1016/j.cherd.2018.01.035 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
131 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.coverage.region.none.fl_str_mv |
Nariño |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79679/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79679/4/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79679/5/1081594025.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79679/6/1081594025.2021%20V.ESPA%c3%91OL.pdf https://repositorio.unal.edu.co/bitstream/unal/79679/7/1081594025.2021.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/79679/8/1081594025.2021%20V.ESPA%c3%91OL.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 24013099e9e6abb1575dc6ce0855efd5 61fd08a7d898cc68919b12b2a6309793 8bfcfffaf8e780c12f02ce9312dfe148 a3f43a1f4773d31119f168a0d925b3d7 19440266d71820bac3b1746633de8b41 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090185776824320 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Mendoza, Belizza Janet1af6ff1f67c365888bbcb9f0f9e01182Hoyos Gómez, Laura Sofía631cc61e8b774a6ea6bff7f86ed8d6a2Patricio Mendoza ArayaJosé Francisco Ruiz MuñozGIPEM - Grupo de Investigación en Potencia, Energía y Mercados2021-06-22T20:17:41Z2021-06-22T20:17:41Z2021https://repositorio.unal.edu.co/handle/unal/79679Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/figuras, símbolos, tablasIntroducing the community to technical projects requires a deal with the social, energy and environmental policies as well as the cultural field. To address an energy project from a socio-technical view requires the joint analysis of both the project and the community. This work focuses on the formulation of a methodology to ease the prioritization of projects and community participation. To evaluate the community, the Human Development Index and Sustainable Development Goal Index are adjusted to the context and available information of Nariño. The Net Present Value is used for the project evaluation. The Analytic Hierarchy Process allows for the evaluation of the community and project jointly and establishing prioritization objectives. Moreover, the co-construction methodology is the basis to formulate guidelines to work with the community. This research found that there is a relationship between the projects that seek to improve the quality of the life and education in Nariño. Solar irradiance is a worldwide available resource that could drive electrification processes in regions with low socio-economic indexes. Therefore, to know solar irradiance behavior and data is increasingly a mandatory activity. However, some interesting sites, generally socio-economic outcast places, do not rely on solar irradiance data, and if information exists, it is not complete. Therefore, researchers use some techniques to estimate this energy resource with information from other meteorological variables as temperature. Nevertheless, there is not a broad analysis of these techniques in tropical and mountainous environments. Therefore, this research analyzes the performance of three well-known empirical temperature-based models in tropical and mountainous environments. Moreover, this work proposes a new empirical technique that models solar irradiance in some areas better than the three techniques mentioned. Statistical error comparison allows us to choose the best model for each location and the data imputation model. Hargreaves and Samani's model presented better results in the Pacific zone, and the proposed model showed better results in the Andean and Amazon zones. Another significant result is the linear relationship between the new empirical model constants and the altitude 2.500 MASL. The solar energy potential maps are an enabler for solar energy use. However, the lack of solar irradiance information is a barrier to elaborating on this type of decision tool. This research proposed the estimation of solar irradiance using air temperature data to increase the sampled points with the Hargreaves and Samani and a proposed empirical model. Also, the leave-one-out cross-validation is the technique used to assess the performance of four spatial interpolation techniques in a tropical and mountainous environment. The information came from Nariño state in Colombian that covers an area of \(33.268 km^{2}\) . The proposed empirical model shows better performance in sites with an altitude above 2.500 MASL, located in the Andean and Amazon zone. Further, Ordinary Kriging was the interpolation technique with the best behavior. Accurate mechanisms for forecasting solar irradiance boost solar energy applications. There are several techniques to forecast global solar irradiance, such as numerical weather prediction and statistical techniques. In this context, this research compare four forecasting approaches Autoregressive Integrated Moving Average, Single Layer Feed Forward Network, Multiple Layer Feed Forward Network, and Long Short-Term Memory in a one-day ahead horizon using incomplete datasets measured in a tropical and mountainous environment. The results show that the neural network-based models outperform the ARIMA model. Furthermore, LSTM has better performance with a low number of input data and in cloudiness environments.Incluir a las comunidades en proyectos socio-técnicos require abordar aspectos sociales, energéticos, ambientales, políticos y culturales. Dirigir un proyecto energético con un enfoque socio-técnico require el análisis en conjunto del proyecto y la comunidad impactada. En este sentido, este trabajo se enfoca en formular una metodología que facilite la priorización de proyectos y la participación de la comunidad. Para evaluar a la comunidad se adpatan los índices de desarrollo humano y los índices de los objetivos de desarrollo sustentable a la información disponible para Nariño. El valor presente neto es la herramienta usada para la evaluación del proyecto.El proceso de análisis jerárquico permite evaluar la comunidad y el proyecto conjuntamente y establecer objetivos de priorización. Por otra parte, la metodología de co-costrucción es la base de la directriz propuesta para trabajo con la comunidad. Esta investigación encontró que existe una relación entre los proyectos que buscan mejorar la calidad de vida y la educación en Nariño. La irradiancia solar es un recurso ampliamente disponible en el planeta, que podría contribuir al proceso de electrificación en lugares con bajos índices socio económicos. No obstante, en algunos lugares, la información de este recurso no está disponible o tiene baja calidad. Para superar este problema algunos investigadores han desarrollado técnicas para estimar la irradiancia solar. Una de esas técnicas son los modelos empíricos basados en temperatura para estimar el recurso. Sin embargo, no hay un amplio análisis del comportamiento de esas técnicas en ambientes tropicales y montañosos. Por lo tanto, esta investigación analiza el comportamiento de tres modelos empíricos basados en temperatura y un modelo propuesto bajo estas condiciones ambientales. Los errores estadísticos calculados permiten elegir el mejor modelo para cada punto evaluado. Con este modelo se hace la imputación de datos con el fin de incrementar la calidad de las bases de datos analizadas. El modelo propuesto se ajusta mejor a la zona Andina y amazónica, mientras el modelo de Hargreaves y Samani tiene mejores resultados en la zona Pacífica. Además, el modelo propuesto presenta una relación lineal entre las constantes empíricas y la altitud de las estaciones meteorológicas localizadas por encima de los 2.500 msnm. Los mapas que muestran el potencial de la energía solar facilitan el uso del recurso solar. Sin embargo, la falta de información de irradiancia solar son una barrera para elaborar este tipo de herramientas. Este investigación propone estimar la irradiancia global solar con datos de temperatura usando el modelo empírico de Hargreaves y Samaani y uno propuesto, para incrementar el número de puntos muestreados. Además, se implementa la técnica de validación cruzada conocida como dejar uno por fuera para evaluar el rendimiento de cuatro técnicas de interpolacióne espacial en un ambiente tropical y montañoso. La información usada es del departamento de Nariño-Colombia que tiene un área de 33.268 $km^{2}$. El modelo propuesto muestra un mejor comportamiento en sitios localizado a más de 2.500 msmnl, ubicados en la zona Andina y Amazonica. Además, Kriging ordinario es la mejor técnica de interpolación espacial. Los modelos de pronóstico de irradiancia solar impulsan las aplicaciones que usan energía solar. Existen varias técnicas para pronosticar la irradiancia solar global, como las númericas y las estadísticas. En este contexto, esta investigación compara cuatro enfoques de pronóstico estadístico: Promedio móvil integrado autorregresivo, red neuronal de una capa, red neuronal de multiples capas y memoria a corto y plazo, en un horizonte de un día por delante, utilizando conjuntos de datos incompletos medidos en un entorno tropical y montañoso. Los resultados muestran que los modelos basados en redes neuronales superan al modelo ARIMA. Además, LSTM tiene un mejor rendimiento con un número reducido de datos de entrada y en entornos de nubosidad.Alianza del PacíficoCentro de Energía - Universidad de ChileLa autora incluye versión en español de la tesis.DoctoradoDoctora en IngenieríaLa Alianza del Pacífico financió la estancia de investigación de 6 meses en la Universidad de Chile. -- El Centro de Energía de la Universidad de Chile financió el viaje para realizar el trabajo de campo en la localidad de Huatacondo.Meteorología Energética, Energía Solar131 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afinesElectrificación ruralEnergía solarRadiación solarRural electrificationSolar energySolar radiationCommunity participationRural electrificationAnalytic Hierarchy ProcessMulticriteria ApproachEnergy projectsHuman Development IndexSustainable Development Goal IndexTemperature based modelsData imputationHargreaves and SamaniSpatial interpolation techniquessolar radiation mappingProyectos energéticosParticipación comunitariaElectrificación ruralProceso Analítico JerárquicoÍndice de Desarrollo HumanoÍndice de Metas de Desarrollo SostenibleModelos basados en temperaturaImputación de datosHargreaves y SamaniTécnicas de interpolación espacialMapeo de radiación solarForecasting the global solar radiation in Nariño – ColombiaPronóstico de la radiación solar global en Nariño - ColombiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextColombiaNariñoAbdullah, L., & Najib, L. (2016). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360–377. Retrieved from https://doi.org/10.1080/14786451.2014.907292 doi: 10.1080/14786451.2014.907292Abreu, E. F., Canhoto, P., Prior, V., & Melicio, R. (2018). Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements. Renewable Energy, 127, 398–411. Retrieved from https://doi.org/10.1016/j.renene .2018.04.068 doi: 10.1016/j.renene.2018.04.068AENOR. (2004). Redes de estaciones meteorológicas automáticas: directrices para la validación de registros meteorológicos procedentes de redes de estaciones automáticas. Validación en tiempo real.Agami Reddy, T. (2011). Applied Data Analysis and Modelling for Energy Engineers and Scientists. Springer London. doi: 10.1007/978-1-4419-9613-8Akinoglu, B. (2008a). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5Akinoglu, B. (2008b). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5Allen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation From Air Temperature. Journal of Hydrologic Engineering, 2(250), 56–67.Almorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy. doi: 10.1016/j.apenergy.2010.11 .003Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. Retrieved from http://dx.doi.org/10.1016/j.solener.2016.06.069 doi: 10.1016/j.solener.2016.06 .069References 103Arbeláez-Arias, F.-A. (2006). Desarrollo sostenible y sus indicadores (Tech. Rep.). Cali: Centro de Investigaciones y Documentación Socioeconómica. Retrieved from http://bibliotecavirtual.clacso .org.ar/Colombia/cidse-univalle/20121116025351/Doc93.Arbeláez Pérez, O. A. (2019). Informe mensual de localidades sin telemetría de las ZNI (Tech. Rep.). Centro Nacional de Monitoreo.Aslani, A. (2014). Private sector investment in renewable energy utilisation: Strategic analysis of stakeholder perspectives in developing countries. International Journal of Sustainable Energy, 33(1), 112–124. doi: 10.1080/14786451.2012.751916Ávila, A. F., Escobar, E., & Torres Tobar, C. (2014). DEPARTAMENTO DE NARIÑO (Tech. Rep.). Fundación Paz y Reconciliación; Redprodepaz.Aznar, J., & Guijarro, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdfBadosa, J., Gobert, E., Grangereau, M., & Kim, D. (2017). Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach. In P. Drobinski, M. Mougeot, D. Picard,R. Plougonven, & P. Tankov (Eds.), Mathematics & statistics (p. 22). Paris: Springer. Retrieved from http://www.springer.com/series/10533Bakirci, K. (2009). Models of solar radiation with hours of bright sunshine: A review. doi: 10.1016/j.rser.2009 .07.011Balbás Egea, J. ff., & Eguren Egiguren, J. A. (2019). Bases for a sustainable energy model. Case study: Basque autonomous community. International Journal of Sustainable Energy, 38(9), 884–903. doi: 10 .1080/14786451.2019.1609474Benali, L., Notton, G., Fouilloy, A., Voyant, C., & Dizene, R. (2019). Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy, 132, 871–884. doi: 10.1016/j.renene.2018.08.044Benson, R. B., Paris, M. V., Sherry, J. E., & Justus, C. G. (1984). Estimation of daily and montly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy, 32(4), 523– 535. doi: doi.org/10.1016/0038-092X(84)90267-6Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1-3, 542–545. doi: 10.1016/B978-0-12-809633-8.20349-XBertelsmann Stiftung, & Sustainable Development Solutions Network (SDSN). (2016). Índice y paneles de los ODS. Informe global (Tech. Rep.). Retrieved from http://sdgindex.org/assets/files/ SDG-Index-ES-02.pdfBesharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. doi: 10.1016/j.rser.2012.12.043104 ReferencesBhattacharjee, S., Ghosh, S. K., & Chen, J. (2019). Semantic Kriging for Spatio-temporal Prediction (Vol. 839). Springer. doi: doi.org/10.1007/978-981-13-8664-0Blaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M., & Badescu, V. (2019). A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 70, 119–144. Retrieved from https://doi.org/10.1016/j.pecs.2018.10.003 doi: 10.1016/ j.pecs.2018.10.003Blumthaler, M. (2012). Solar Radiation of the High Alps. In C. Lütz (Ed.), Plants in alpine regions cell physiology of adaptation and survival strategies (pp. 11–20). Springer Wien New York. doi: 10.1007/ 978-3-7091-0136-0Boland, J. (2008). Time Series Modelling of Solar Radiation. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 283–311). Retrieved from http://link.springer.com/10.1007/978-1 -4471-4649-0_5 doi: 10.1007/978-1-4471-4649-0{\_}5Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis : forecasting and control.Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimim temperature. Agricultural and Forest Meteorology, 31(2), 159–166.Camblong, H., Sarr, J., Niang, A. T., Curea, O., Alzola, J. A., Sylla, E. H., & Santos, M. (2009). Microgrids project, Part 1: Analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, 34(10), 2141–2150. Retrieved from http://dx.doi.org/10.1016/ j.renene.2009.01.015 doi: 10.1016/j.renene.2009.01.015Casella, G., & Berger, R. L. (2002). Statistical Inference (Second ed.). Thomson.Chandola, D., Gupta, H., Tikkiwal, V. A., & Bohra, M. K. (2020). Multi-step ahead forecasting of global solar radiation for arid zones using deep learning. Procedia Computer Science, 167(Iccids 2019), 626– 635. Retrieved from https://doi.org/10.1016/j.procs.2020.03.329 doi: 10.1016/j.procs .2020.03.329Chen, J.-l., Liu, H.-b., Wu, W., & Xie, D.-t. (2011). Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study. Renewable Energy, 36(1), 413– 420. Retrieved from http://dx.doi.org/10.1016/j.renene.2010.06.024 doi: 10.1016/ j.renene.2010.06.024Coimbra, C. F., Kleissl, J., & Marquez, R. (2013). Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In J. Kleissl (Ed.), Solar energy forecasting and resource assessment (First ed., chap. Chapter 8). Elsevier. Retrieved from https://books.google.com.co/ books?hl=en&lr=&id=94KI0_SPwW8C&oi=fnd&pg=PP1&dq=Solar+energy+forecasting+ and+resource+assessment&ots=HcVnQHR7Mt&sig=XuSTldnWP5MKAP8J3YUHlBbfFCMReferences 105CORPONARIÑO. (2001). Plan De Gestion Ambiental Regional 2002 - 2012 (Tech. Rep.). San Juan de Pasto: Corponariño. Retrieved from http://corponarino.gov.co/expedientes/pgar20022012/ pgar2002-2012.pdfDai, K. Y., Liu, G. R., Lim, K. M., & Gu, Y. T. (2003). Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. , 32, 60–70. doi: 10.1007/s00466-003-0462-zDANE, & Banco de la República de Colombia. (2016). Coyuntura económica regional.Dannecker, L. (2015). Energy Time Series Forecasting. Springer Vieweg. doi: 10.1007/978-3-658-11039-0Dawoud, F., Jbour, A., Al-salaymeh, A., Qoaider, L., & Fink, T. (2019). Innovative solutions for Renewable Energy and Energy Efficiency in Jordan. , 20(4), 201–216.Demirhan, H., & Renwick, Z. (2018). Missing value imputation for short to mid-term horizontal solar irradiance data. Applied Energy, 225(March), 998–1012. Retrieved from https://doi.org/ 10.1016/j.apenergy.2018.05.054 doi: 10.1016/j.apenergy.2018.05.054Departamento Administrativo Nacional de Estadísitica - DANE. (2005). Déficit de vivienda. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/deficit-de-viviendaDepartamento Administrativo Nacional de Estadísitica - DANE. (2009). Metodología Déficit de Vivienda (Tech. Rep.). Bogotá: Departamento Adminstrativo Nacional de Estadística.Departamento Administrativo Nacional de Estadísitica - DANE. (2016). Valor Agregado según ramas de actividad económica y PIB (Clasificación Cuentas Nacionales) Serie 2000 - 2014p, Base 2005*. Retrieved from http://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas -nacionales/cuentas-nacionales-trimestrales#pib-por-rama-de-actividadDepartamento Administrativo Nacional de Estadísitica - DANE. (2017). Indicador de importancia económica municipal. Retrieved from https://www.dane.gov.co/index.php/estadisticas -por-tema/cuentas-nacionales/cuentas-nacionales-departamentales/indicador -de-importancia-economica-municipalDepartamento Administrativo Nacional de Estadísitica - DANE. (2018a). Encuesta de la calidad de vida (ECV). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/calidad-de-vida-ecvDepartamento Administrativo Nacional de Estadísitica - DANE. (2018b). Estadísticas vitales nacimientos y defunciones. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por -tema/salud/nacimientos-y-defuncionesDepartamento Administrativo Nacional de Estadísitica - DANE. (2018c). Fuerza laboral y educación. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ educacion/fuerza-laboral-y-educacion106 ReferencesDepartamento Administrativo Nacional de Estadísitica-DANE. (2018d). Necesidades Básicas Insatisfechas. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbiDepartamento Administrativo Nacional de Estadísitica - DANE. (2018e). Pobreza y desigualdad. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/pobreza-y-desigualdadDepartamento Administrativo Nacional de Estadísitica - DANE. (2019). Necesidades básicas insatisfechas (NBI). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbiDiagne, M., Mathieu, D., Lauret, P., Boland, J., & Schmutz, N. (2013). Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27, 65–76. Retrieved from http://dx.doi.org/10.1016/j.rser.2013.06.042 doi: 10.1016/j.rser.2013.06.042Dirección de Inversiones y Finanzas Públicas. (2006). Manual de valoración y cuantificación de beneficios (Tech. Rep.). Departamento Nacional de Planeación.Dos Santos, C. M., De Souza, J. L., Ferreira Junior, R. A., Tiba, C., de Melo, R. O., Lyra, G. B., … Lemes, M. A. M. (2014). On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy. doi: 10.1016/j.energy.2014.04.116Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., Oliveira, C. H. d., & Carvalho, H. D. (2019). The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. Journal of Cleaner Production, 212, 119–138. Retrieved from https://doi.org/ 10.1016/j.jclepro.2018.11.270 doi: 10.1016/j.jclepro.2018.11.270El Congreso de Colombia. (2014). POR MEDIO DE LA CUAL SE REGULA LA INTEGRACIÓN DE LAS ENERGÍAS RENOVABLES NO CONVENCIONALES AL SISTEMA ENERGÉTICO (No. May). Retrieved from http:// www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdfEstévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automaticweather stations. Journal of Hydrology, 402(1-2), 144–154. doi: 10.1016/j.jhydrol .2011.02.031Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperaturebased empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914. Retrieved from https://doi.org/10.1016/j.energy.2017.12.091 doi: 10.1016/ j.energy.2017.12.091Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43(July), 563–577. Retrieved from https://doi.org/10.1016/j.scs.2018.08.025 doi: 10 .1016/j.scs.2018.08.025References 107Figueirêdo Neto, G. S., & Rossi, L. A. (2019). Photovoltaic energy in the enhancement of indigenous education in the Brazilian Amazon. Energy Policy, 132(May), 216–222. Retrieved from https:// doi.org/10.1016/j.enpol.2019.05.037 doi: 10.1016/j.enpol.2019.05.037Gaspars-Wieloch, H. (2019). Project Net Present Value estimation under uncertainty. Central European Journal of Operations Research, 27(1), 179–197. doi: 10.1007/s10100-017-0500-0Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2019). Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. Retrieved from https://doi.org/10.1016/ j.jclepro.2019.01.158 doi: 10.1016/j.jclepro.2019.01.158Ghimire, S., Deo, R. C., Raj, N., & Mi, J. (2019). Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 253(April), 113541. Retrieved from https://doi.org/10.1016/j.apenergy.2019.113541 doi: 10.1016/j.apenergy .2019.113541Gobernación de Nariño. (2016a). Plan participativo de Desarrollo Departamental. Plan de Desarrollo Departamental de Nariño, 255. doi: 10.1017/CBO9781107415324.004Gobernación de Nariño. (2016b). Plan participativo de Desarrollo Departamental (Tech. Rep.). Gobernación de Nariño.Goodin, D. G., Hutchinson, J.M. S., Vanderlip, R. L., Knapp, M. C., & Goodin, D. G. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. AGROCLIMATOLOGY, 91, 845–851.Gueymard, C. A. (2014). A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39, 1024–1034. Retrieved from http://dx.doi.org/10.1016/j.rser.2014.07 .117 doi: 10.1016/j.rser.2014.07.117Hargreaves, G.H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(IR3), 225–230.Harrenll, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis (Vol. 13) (No. 5). Springer. doi: 10.1007/978-3-319-1925-7Herrera-Grimaldi, P., García-Marín, A. P., & Estévez, J. (2019). Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 29(6). doi: 10.1063/1.5089810Husein, M., & Chung, I. Y. (2019). Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: A deep learning approach. Energies, 12(10). doi: 10 .3390/en12101856Inman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535–576. Retrieved from http://dx .doi.org/10.1016/j.pecs.2013.06.002 doi: 10.1016/j.pecs.2013.06.002108 ReferencesInstituto Departamental de Salud de Nariño. (2018). Informe de gestión programa de vigilancia de calidad del agua año 2017 (Tech. Rep.). Pasto.Instituto Geográfico Agustín Codazzi - IGAC. (2014). Nariño características geográficas. Bogotà: Imprenta Nacional de Colombia.International Energy Agency. (2017). International Energy Agency - Energy Access Outlook 2017: From poverty to prosperity. Energy Procedia, 94(March), 144. Retrieved from http:// www.iea.org/publications/freepublications/publication/WEO2017SpecialReport _EnergyAccessOutlook.pdf%0Ahttp://dx.doi.org/10.1016/j.enpol.2016. doi: 10.1787/9789264285569-enIntroduction to Spatial Analysis. (2009). Introduction to Spatial Analysis.J. Pacheco, & Contreras, E. (2008). Manual metodológico de evaluación multicriterio para programas y proyectos. Santiago de Chile: Instituto Latioamericano y del Caribe de Planificación Económica y Social - ILPES. Retrieved from http://www.fundacionpobreza.cl/biblioteca-temas.php ?id_tema=14Jamaly, M., & Kleissl, J. (2017). Spatiotemporal interpolation and forecast of irradiance data using Kriging. Solar Energy, 158(February), 407–423. Retrieved from http://dx.doi.org/10.1016/ j.solener.2017.09.057 doi: 10.1016/j.solener.2017.09.057Jamil, B., & Akhtar, N. (2017). Comparison of empirical models to estimate monthly mean di ff use solar radiation from measured data : Case study for humid-subtropical climatic region of India. Renewable and Sustainable Energy Reviews, 77(February), 1326–1342. Retrieved from http://dx.doi.org/ 10.1016/j.rser.2017.02.057 doi: 10.1016/j.rser.2017.02.057Janjai, S., Laksanaboonsong, J., Nunez, M., & Thongsathitya, A. (2005). Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy, 78, 739–751. doi: 10.1016/j.solener.2004.09.009Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309– 330. doi: 10.1016/S1364-8152(01)00008-1Kipp & Zonen. (2000). Instruction Manual Pyranometer/ Albedometer CM11 e CM14.Kiš, I. M. (2016). Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. The Mining-Geology-Petroleum Engineering Bulletin, 31(2), 41–58. doi: 10.17794/rgn.2016.2.4Kleinbaum, D. G., & Klein, M. (2010). Logistic Regression: a self-learning text (No. 3). Springer. doi: 10.1007/978-1-4419-1742-3Konstantin, P., & Konstantin, M. (2018). Power and Energy Systems Engineering Economics. Gewerbestrasse: Springer. doi: https://doi.org/10.1007/978-3-319-72383-9References 109Kwon, B. S., Park, R. J., & Song, K. B. (2020). Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer. Journal of Electrical Engineering and Technology, 15(4), 1501–1509. Retrieved from https://doi.org/10.1007/s42835-020-00424-7 doi: 10.1007/s42835-020-00424-7Layanun, V., Suksamosorn, S., & Songsiri, J. (2017). Missing-data Imputation for Solar Irradiance Forecasting in Thailand. In Sice annual conference (pp. 1234–1239). Kanazawa.Li, H., Cao, F., Wang, X., & Ma, W. (2014). A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China. The Scientific World Journal, 2014. doi: doi.org/10.1155/2014/ 128754Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Australian Geological Survey Organisation, 68(2008/23), 154. doi: http://www.ga.gov.au/image{\_}cache/ GA12526.pdfLi, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4), 228–241. Retrieved from http://dx.doi.org/10.1016/j.ecoinf.2010.12.003 doi: 10.1016/j.ecoinf.2010.12 .003Li, J., & Heap, A. D. (2014). Environmental Modelling & Software Spatial interpolation methods applied in the environmental sciences : A review. Environmental Modelling and Software, 53, 173–189. Retrieved from http://dx.doi.org/10.1016/j.envsoft.2013.12.008 doi: 10.1016/j.envsoft.2013 .12.008Løken, E. (2007). Use ofmulticriteria decision analysismethods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584–1595. doi: 10.1016/j.rser.2005.11.005Manning, R. L. (1996). Logit regressions with continuous dependent variables measured with error. Applied Economics Letters, 3(3), 183–184. doi: 10.1080/135048596356636Mardani, A., Jusoh, A., Halicka, K., Ejdys, J., Magruk, A., & Ungku, U. N. (2018). Determining the utility in management by using multi-criteria decision support tools: a review. Economic ResearchEkonomska Istrazivanja, 31(1), 1666–1716. Retrieved from https://doi.org/10.1080/1331677X .2018.1488600 doi: 10.1080/1331677X.2018.1488600Marinakis, V., Papadopoulou, A. G., & Psarras, J. (2017). Local communities towards a sustainable energy future: needs and priorities. International Journal of Sustainable Energy, 36(3), 296–312. Retrieved from https://doi.org/10.1080/14786451.2015.1018264 doi: 10.1080/14786451.2015 .1018264Martín, A. M., & Dominguez, J. (2019). Solar Radiation Interpolation. In J. Polo, L. Martín-Pomares, & A. Sanfilipo (Eds.), Solar resources mapping (pp. 301–311). Springer. doi: 10.1007/978-3-319-97484 -2{\_}12110 ReferencesMartínez, A. G. (2018). Nariño: Departamento de Nariño Colombia - Informacion detallada Nariño Colombia. Retrieved from https://www.todacolombia.com/departamentos-de-colombia/ narino.htmlMary, S. A. S. A., & Suganya, G. (2016). Multi-Criteria Decision Making Using ELECTRE. Circuits and Systems, 07(06), 1008–1020. doi: 10.4236/cs.2016.76085Mayer, D. G., & Butler, D. G. (1993). Statistical validation. Ecological Modelling, 68(1-2), 21–32. doi: 10.1016/0304-3800(93)90105-2Mazorra-Aguiar, L., & Díaz, F. (2018). Solar Radiation Forecasting with Statistical Models. In R. Perez (Ed.), Wind field and solar radiation characterization and forecasting. (pp. 171–198). Springer. doi: 10 .1007/978-3-319-76876-2{\_}6Meza F., & Varas E. (2000). Estimation of mean monthly solar global radiation as a function of temperature. Agricultural and Forest Meteorology 100 (2000) 231–241. , 100, 231–241.Ministerio de Cultura. (2020). Sistema Nacional de Información Cultural. Retrieved from http://www.sinic.gov.co/SINIC/ColombiaCultural/ColCulturalBusca.aspx ?AREID=3&COLTEM=216&IdDep=52&SECID=8Ministerio de Minas y Energía. (2018). Hidrocarburos - Ministerio de Minas y Energía. Retrieved from https://www.minminas.gov.co/cobertura-nacional1Montedonico, M., Herrera-Neira, F., Marconi, A., Urquiza, A., & Palma-Behnke, R. (2018). Coconstruction of energy solutions: Lessons learned from experiences in Chile. Energy Research and Social Science, 45(July), 173–183. Retrieved from https://doi.org/10.1016/j.erss.2018.08.004 doi: 10.1016/j.erss.2018.08.004Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley.Moon, S. H., & Kim, Y. H. (2020). An improved forecast of precipitation type using correlation-based feature selection and multinomial logistic regression. Atmospheric Research, 240(February), 104928. Retrieved from https://doi.org/10.1016/j.atmosres.2020.104928 doi: 10.1016/j.atmosres .2020.104928Moreno, A., Gilabert, M. A., & Martínez, B. (2011). Mapping daily global solar irradiation over Spain: A comparative study of selected approaches. Solar Energy, 85(9), 2072–2084. doi: 10.1016/j.solener .2011.05.017Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. Retrieved from https://cran.r-project.org/web/packages/ imputeTS/vignettes/imputeTS-Time-Series-Missing-Value-Imputation-in-R.pdfMossos, ff. A. (2019). Informe mensual de telemetría (Tech. Rep.). Centro Nacional de Monitoreo.References 111Munawar, U., & Wang, Z. (2020). A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting. Journal of Electrical Engineering and Technology, 15(2), 561–569. Retrieved from https://doi.org/10.1007/s42835-020-00346-4 doi: 10.1007/s42835-020-00346-4National Oceanic and Atmospheric Administration. (2020). Climate Prediction Center. Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ ONI_v5.phpNwokolo, S. C., & Ogbulezie, J. C. (2017, 5). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/ S2314853517300458 doi: 10.1016/j.bjbas.2017.05.001Oficina de planeación educativa. (2018). Secretaría Departamental De Nariño. , 169. Retrieved from http://www.sednarino.gov.co/SEDNARINO12/phocadownload/2018/Descargas/2 .BOLETINESTADISTICO2017.pdfOgunsola, O. T., & Song, L. (2014). Restoration of long-term missing gaps in solar radiation. Energy and Buildings, 82, 580–591. Retrieved from http://dx.doi.org/10.1016/j.enbuild.2014.07 .088 doi: 10.1016/j.enbuild.2014.07.088Okundamiya, M. S., & Nzeako, A. N. (2011, 5). Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Journal of Control Science and Engineering, 2011, 1–7. Retrieved from http://www.hindawi.com/journals/jcse/ 2011/356405/ doi: 10.1155/2011/356405Olea, R. A. (1999). Simple Kriging. In Geostatistics for engineers and earth scientists (pp. 7–30). Boston, MA: Springer US. Retrieved from http://link.springer.com/10.1007/978-1-4615-5001-3_2 doi: 10.1007/978-1-4615-5001-3{\_}2Oliver, A. M., & Webster, R. (2015). Basic Steps in Geostatistics:The Variogram and Kriging. Springer. doi: 10.1007/978-3-319-15865-5ISSNOliver, M. A., & Webster, R. (1990). Kriging : a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313–332.Opoku, R., Adjei, E. A., Ahadzie, D. K., & Agyarko, K. A. (2020). Energy efficiency, solar energy and cost saving opportunities in public tertiary institutions in developing countries: The case of KNUST, Ghana. Alexandria Engineering Journal, 59(1), 417–428. Retrieved from https://doi.org/10.1016/ j.aej.2020.01.011 doi: 10.1016/j.aej.2020.01.011Palma-Behnke, R., Jiménez-Estévez, G., Sáez, D., Montedonico, M., Mendoza-Araya, P., Hernández, R., & Muñoz, C. (2019). Lowering electricity access barriers by means of participative processes applied to microgrid solutions : The Chilean case. Proceedings of the IEEE, 1–15. doi: 10.1109/JPROC.2019 .2922342112 ReferencesPaulescu, M. (2008). Solar Irradiation via Air Temperature Data. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 175–193). Springer.Paulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. London: Springer London. Retrieved from http://link.springer.com/10.1007/ 978-1-4471-4649-0 doi: 10.1007/978-1-4471-4649-0Pebesma, E. (2016). Fitting variogram models in gstat. Retrieved from https://www.r-spatial.org/ r/2016/02/14/gstat-variogram-fitting.htmlPebesma, E., & Graeler, B. (2020). Package ’gstat’ Title Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation (Tech. Rep.). Retrieved from https://github.com/r-spatial/gstat/ issues/Premalatha, N., & Valan Arasu, A. (2016). Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 14(3), 206–214. Retrieved from http://dx.doi.org/10.1016/j.jart.2016.05.001 doi: 10.1016/j.jart.2016.05.001Quansah, E., Amekudzi, L. K., Preko, K., Aryee, J., Boakye, O. R., Boli, D., & Salifu, M. R. (2014, 1). Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana. Journal of Solar Energy, 2014, 1–6. Retrieved from http://www.hindawi.com/journals/jse/2014/897970/ doi: 10.1155/2014/897970R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/ Ramírez J., J. C., de Aguas P., J. M., & De Aguas, M. (2017). Escalafón de la competitividad de los departamentos de Colombia 2017 (Tech. Rep.). Bogotá. Retrieved from https://repositorio.cepal.org/ bitstream/handle/11362/43156/1/S1800010_es.pdfReikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83(3), 342–349. Retrieved from http://dx.doi.org/10.1016/j.solener.2008 .08.007 doi: 10.1016/j.solener.2008.08.007Rivero, M., Orozco, S., Sellschopp, F. S., & Loera-Palomo, R. (2017). A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico. Renewable Energy. doi: 10.1016/j.renene.2017.08.003Rodriguez, H. (2011). Observatorio de energías renovables en América Latina y el Caribe: Colombia. OLADE; ONUDI.Rodríguez-Rivero, C., Pucheta, J., Laboret, S., Sauchelli, V., & Patiño, D. (2017). Short-Term Series Forecasting By Complete and Incomplete Datasets. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 5–16.References 113Saaty, T. L. (1990). How tomake a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi: 10.1016/0377-2217(90)90057-ISaaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Servces Sciences, 1(1), 83. Retrieved from http://www.rafikulislam.com/uploads/resourses/ 197245512559a37aadea6d.pdf doi: 10.1504/IJSSCI.2008.017590Samani, Z. (2000). Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 126, 265–267. doi: 10.1061/(ASCE)0733 -9437(2000)126:4(265)Sandia National Laboratories. (2021). Irradiance & Insolation. Retrieved from https://pvpmc.sandia .gov/modeling-steps/1-weather-design-inputs/irradiance-and-insolation-2/Sankar, G., Kumar, P., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon ( SOC ). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. Retrieved from https://doi.org/10.1016/j.jssas.2016.02.001 doi: 10.1016/ j.jssas.2016.02.001Şen, Z. (2008). Solar Energy Fundamentals and Modeling Techniques. Springer. doi: 10.1007/978-1-84800 -134-3Serrano, A., Sanchez, G., & Cancillo, M. L. (2015). Correcting daytime thermal offset in unventilated pyranometers. Journal of Atmospheric and Oceanic Technology, 32(11), 2088–2099. doi: 10.1175/JTECH -D-15-0058.1Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples (Vol. 102; G. Casella, S. Fienberg, & I. Olkin, Eds.). Springer. Retrieved from http://books.google.com/ books?id=9tv0taI8l6YC doi: 10.1007*978-1-4419-7865-3Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018, 1). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459–497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890417310622 doi: 10 .1016/J.ENCONMAN.2017.11.019Suehrcke, H. (2000). On the relationship between duration of sunshine and solar radiation on the Earth’s surface: Angström’s equation revisited. Solar Energy, 68(5), 417–425.Superintendencia de Servicios Públicos Domiciliarios SSPD. (2019). Zonas No Interconectadas – ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2019. Retrieved from https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/ Publicaciones/2019/Nov/diagnostico_de_la_prestacion_del_servicio_zni_-_07 -11-2019-lo_1.pdfUbilla, K., Jiménez-Estévez, G. A., Hernádez, R., Reyes-Chamorro, L., Irigoyen, C. H., Severino, B., & PalmaBehnke, R. (2014). Smart microgrids as a solution for rural electrification: Ensuring long-term114 References sustainability through cadastre and business models. IEEE Transactions on Sustainable Energy, 5(4), 1310–1318. doi: 10.1109/TSTE.2014.2315651Unidad de Planeación Minero Energética. (2019). Índice de Cobertura de Energía Eléctrica - ICEE 2018 (Tech. Rep.). Bogotá: Unidad de Planeación Minero Energético. Retrieved from http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ ConsultasEstadisticas/tabid/81/Default.aspxUnited Nations. (2018). Calculating the human development indices-graphical presentation Inequality-adjusted Human Development Index (IHDI) Knowledge Human Development Index (HDI) Long and healthy life A decent standard of living Human Development Index (HDI) Knowledge Long and (Tech. Rep.). Retrieved from http://hdr.undp.org/sites/default/files/hdr2018_technical_notes.pdfUniversidad de Nariño, Unidad de Planeación Minero Energética-UPME, Usaid, U. S. A. f. I. D., & Ipse, I. D. P. Y. P. D. S. E. P. L. Z. N. I. (2014). Diagnóstico energético y social del departamento de Nariño. , 127.Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014a). Bombeo De Agua Para Riego Utilizando Energía Solar (Tech. Rep.). San Juan de Pasto. Retrieved from http:// www1.upme.gov.co/sgic/sites/default/files/BombeoSolarTaminango.pdfUniversidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014b). Diseño De Red Inalámbrica Rural Para Acceso a Internet En Las Instituciones Educativas Pertenecientes a Las Comunidades Negras De Las Subregiones De Sanquianga , (Tech. Rep.).Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014c). Energía Solar Fotovoltaico Como Estrategia Alternativa y Sostenible de Energización en el Municipio de Santacruz (Tech. Rep.). San Juan de Pasto.Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014d). Estudio Para La Implementación De Un Sistema De Alumbrado Fotovoltaico En El Municipio (Tech. Rep.). San Juan de Pasto.Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. doi: 10.1016/j.ejor.2004.04.028Viera Díaz, M. A. (2002). Geoestadìsitica Aplicada. Instituto de Geofìsica UNAM; Instituto de Geofìsica y Astronomía CITMA.Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi: 10.1016/j.rser.2009.06.021Webster, R., & Oliver, A. M. (2007). Geoestatistics for Environmental Scientists (Second ed., Vol. 14; S. Senn, M. Scott, & V. Barnett, Eds.). John Wiley. doi: 10.1097/00005344-198900149-00008References 115Yang, S., Zhu, X., & Guo, W. (2018). Cost-Benefit Analysis for the Concentrated Solar Power in China. Journal of Electrical and Computer Engineering, 2018. doi: 10.1155/2018/4063691Žižlavský, O. (2014). Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia - Social and Behavioral Sciences, 156(November 2014), 506–512. doi: 10.1016/ j.sbspro.2014.11.230Zore, ff., Čuček, L., Širovnik, D., Novak Pintarič, Z., & Kravanja, Z. (2018). Maximizing the sustainability net present value of renewable energy supply networks. Chemical Engineering Research and Design, 131, 245–265. doi: 10.1016/j.cherd.2018.01.035Fundación CEIBALICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79679/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unal.edu.co/bitstream/unal/79679/4/license_rdf24013099e9e6abb1575dc6ce0855efd5MD54ORIGINAL1081594025.2021.pdf1081594025.2021.pdfTesis de Doctorado en Ingeniería - Línea de Investigación en Automáticaapplication/pdf4699621https://repositorio.unal.edu.co/bitstream/unal/79679/5/1081594025.2021.pdf61fd08a7d898cc68919b12b2a6309793MD551081594025.2021 V.ESPAÑOL.pdf1081594025.2021 V.ESPAÑOL.pdfVersión en españolapplication/pdf5999585https://repositorio.unal.edu.co/bitstream/unal/79679/6/1081594025.2021%20V.ESPA%c3%91OL.pdf8bfcfffaf8e780c12f02ce9312dfe148MD56THUMBNAIL1081594025.2021.pdf.jpg1081594025.2021.pdf.jpgGenerated Thumbnailimage/jpeg3801https://repositorio.unal.edu.co/bitstream/unal/79679/7/1081594025.2021.pdf.jpga3f43a1f4773d31119f168a0d925b3d7MD571081594025.2021 V.ESPAÑOL.pdf.jpg1081594025.2021 V.ESPAÑOL.pdf.jpgGenerated Thumbnailimage/jpeg4184https://repositorio.unal.edu.co/bitstream/unal/79679/8/1081594025.2021%20V.ESPA%c3%91OL.pdf.jpg19440266d71820bac3b1746633de8b41MD58unal/79679oai:repositorio.unal.edu.co:unal/796792024-07-23 23:33:22.903Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |