Transmuted Singh-Maddala Distribution: A new Flexible and Upside-Down Bathtub Shaped Hazard Function Distribution
The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is rel...
- Autores:
-
Shahzad, Mirza Naveed
Merovci, Faton
Asghar, Zahid
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66501
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66501
http://bdigital.unal.edu.co/67529/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Moments
Parameter Estimation
Transmuted Singh-Maddala Distribution
TL-Moments
Upsidedown Bathtub Shaped Hazard Rate
distribución Singh-Maddala transmuetada
función de riesgo invertida
momentos
momentos TL
estimación de parámetros.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution. |
---|