Transmuted Singh-Maddala Distribution: A new Flexible and Upside-Down Bathtub Shaped Hazard Function Distribution

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is rel...

Full description

Autores:
Shahzad, Mirza Naveed
Merovci, Faton
Asghar, Zahid
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66501
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66501
http://bdigital.unal.edu.co/67529/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Moments
Parameter Estimation
Transmuted Singh-Maddala Distribution
TL-Moments
Upsidedown Bathtub Shaped Hazard Rate
distribución Singh-Maddala transmuetada
función de riesgo invertida
momentos
momentos TL
estimación de parámetros.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmutedSingh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.