Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6

ilustraciones

Autores:
Sarmiento Vanegas, Javier Alberto
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83649
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83649
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Magnetismo
Campos magnéticos-efectos fisiológicos
Diamagnetism
Magnetic fields - Physiological effects
Perovskita
Perovskite
Ferrocobaltita
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9f53c4631efee0b70c3e9b940d96832a
oai_identifier_str oai:repositorio.unal.edu.co:unal/83649
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
dc.title.translated.eng.fl_str_mv Effect of Sm and Eu on the structural, magnetic and electrical characteristics of ferrocobaltite (Sm, Eu)2CoFeO6
title Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
spellingShingle Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
530 - Física
Magnetismo
Campos magnéticos-efectos fisiológicos
Diamagnetism
Magnetic fields - Physiological effects
Perovskita
Perovskite
Ferrocobaltita
title_short Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
title_full Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
title_fullStr Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
title_full_unstemmed Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
title_sort Efecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
dc.creator.fl_str_mv Sarmiento Vanegas, Javier Alberto
dc.contributor.advisor.none.fl_str_mv Roa Rojas, Jairo
dc.contributor.author.none.fl_str_mv Sarmiento Vanegas, Javier Alberto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física de Nuevos Materiales - GFNM
dc.contributor.orcid.spa.fl_str_mv Sarmiento Vanegas, Javier
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Magnetismo
Campos magnéticos-efectos fisiológicos
Diamagnetism
Magnetic fields - Physiological effects
Perovskita
Perovskite
Ferrocobaltita
dc.subject.lemb.spa.fl_str_mv Magnetismo
Campos magnéticos-efectos fisiológicos
dc.subject.lemb.eng.fl_str_mv Diamagnetism
Magnetic fields - Physiological effects
dc.subject.proposal.spa.fl_str_mv Perovskita
Perovskite
Ferrocobaltita
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-21T16:59:23Z
dc.date.available.none.fl_str_mv 2023-03-21T16:59:23Z
dc.date.issued.none.fl_str_mv 2023-03
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83649
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83649
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Patrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.
Emad K Al-Shakarchi and Natheer B Mahmood. Three techniques used to produce BaTiO3 fine powder. Journal of Modern Physics, 2011, 2011.
Graham King and Patrick M Woodward. Cation ordering in perovskites. Journal of Materials Chemistry, 20(28):5785–5796, 2010.
Diana Marcela Arciniegas Jaimes. Estudio de nuevas perovskitas AA′BB′06: influencia de los cationes A y B sobre sus propiedades físicas y estructuras cristalinas y magnéticas. 2018.
Greg Vialle. Inductive activation of magnetite filled shape memory polymers. PhD thesis, Georgia Institute of Technology, 2009.
José Ruzzante, Pablo Alonso Castillo, and Roberto Suárez Ántola. passe-muraille realizada por jean-bernard métais. basada en el libro de marcel ayme. 2021.
Thomas Wolfram and Sinasi Ellialtioglu. Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.
Ying Zhao and Jiawei Wang. Variable range hopping model based on gaussian disorde red organic semiconductor for seebeck effect in thermoelectric device. Micromachines, 13(5):707, 2022.
Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials. Nature Reviews Materials, 6(7):560–586, 2021.
Suk−Joong L Kang. Sintering: densification, grain growth and microstructure. Elsevier, 2004.
T Kikuchi. Single crystal orientation measurement by x-ray methods. Rigaku J, 7(1):27−−35, 1990.
Jaime Renau-Piqueras and Magdalena Faura. Principios básicos del microscopio electrónico de barrido. 1994.
Yang Leng. Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons, 2009.
Freddy P Guachún and Víctor J Raposo. Diseno y calibración de un magnetómetro de muestra vibrante: Caracterización de materiales magnéticos. Momento, (56):45–62, 2018.
OB Pavlovska, LO Vasylechko, IV Lutsyuk, NM Koval, Ya A Zhydachevskii, and A Pienika˙zek. Structure peculiarities of micro-and nanocrystalline perovskite ferrites LaxSmxFeo3. Nanoscale Research Letters, 12(1):1–6, 2017.
M Marezio, JP Remeika, and PD Dernier. The crystal chemistry of the rare earth orthoferrites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(12):2008–2022, 1970.
Jung-Hoon Lee, Young Kyu Jeong, Jung Hwan Park, Min-Ae Oak, Hyun Myung Jang, Jong Yeog Son, and James F Scott. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Physical review letters, 107(11):117201, 2011.
C-Y Kuo, Y Drees, MT Fern´andez-D´ıaz, L Zhao, L Vasylechko, D Sheptyakov, AMT Bell, TW Pi, H-J Lin, M-K Wu, et al. k= 0 magnetic structure and absence of ferroelectricity in SmFeO3. Physical review letters, 113(21):217203, 2014.
Jian Kang, Yali Yang, Xiaolong Qian, Kai Xu, Xiaopeng Cui, Yifei Fang, Venkatesh Chandragiri, Baojuan Kang, Bin Chen, Alessandro Stroppa, et al. Spin-reorientation magnetic transitions in mn-doped SmFeO3. IUCrJ, 4(5):598–603, 2017.
EIK Olsson. Computational modelling of SmCoO3 based cathode materials for solid oxide fuel cells. PhD thesis, UCL (University College London), 2017.
Emilia Olsson, Xavier Aparicio-Angles, and Nora H de Leeuw. A DFT+ U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO3. The Journal of chemical physics, 145(22):224704, 2016.
M Topsakal, C Leighton, and RM Wentzcovitch. First-principles study of crystal and electronic structure of rare-earth cobaltites. Journal of Applied Physics, 119(24):244310, 2016.
Kenichirou Umemoto, Yasuyoshi Seto, and Yoshio Masuda. Structure and magnetic property of CexEu1- xCoO3 prepared by means of the thermal decomposition of CexEu1−x[Co[CN6]· nH2O. Thermochimica acta, 431(1-2):117–122, 2005.
GR Haripriya, R Pradheesh, MN Singh, AK Sinha, K Sethupathi, and V Sankaranarayanan. Temperature dependent structural studies on the spin correlated system A2FeCoO6 (A= Sm, Eu, Dy and Ho) using synchrotron radiation. AIP Advances, 7(5):055826, 2017.
Sonia LC Pinho, Joao S Amaral, Alain Wattiaux, Mathieu Duttine, Marie-Helene Delville, and Carlos FGC Geraldes. Synthesis and characterization of rare-earth orthoferrite LnFeO3 nanoparticles for bioimaging. European Journal of Inorganic Chemistry, 2018(31):3570–3578, 2018.
Khalid Sultan, M Ikram, and K Asokan. Effect of Mn doping on structural, morphological and dielectric properties of EuFeO3 ceramics. RSC advances, 5(114):93867–93876, 2015.
Amber K Choquette, Robert Colby, Eun Ju Moon, Christian M Schlepu`Iˆtz, Mark D Scafetta, David J Keavney, and Steven J May. Synthesis, structure, and spectroscopy of epitaxial EuFeO3 thin films. Crystal growth & design, 15(3):1105–1111, 2015.
NOEL W Thomas. Crystal structure–physical property relationships in perovskites. Acta Crystallographica Section B: Structural Science, 45(4):337–344, 1989.
Netzahualpille Hern´andez Navarro. Materiales tipo perovskita LnxBi1−xFe0,95M0,05O3(Ln: Pr, Nd; M: Co, Mn, Sc; x= 0 − 0,15) para su potencial aplicaci´on en memorias magnetoel´ectricas. 2012.
Meghan C Knapp and Patrick M Woodward. A-site cation ordering in AA’BB’O6 perovskites. Journal of Solid State Chemistry, 179(4):1076–1085, 2006.
JA Jaramillo Palacio, KA Muñoz Pulido, J Arbey Rodríguez, DA Landínez Téllez, and J Roa-Rojas. Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified pechini route. Journal of Advanced Dielectrics, 11(03):2140003, 2021.
GR Haripriya, Harikrishnan S Nair, R Pradheesh, S Rayaprol, V Siruguri, Durgesh Singh, R Venkatesh, V Ganesan, K Sethupathi, and V Sankaranarayanan. Spin reorientation and disordered rare earth magnetism in Ho2FeCoO6. Journal of Physics: Condensed Matter, 29(47):475804, 2017.
Leonardo S de Oliveira, Fernando P Sabino, Daniel Z de Florio, Anderson Janotti, Gustavo M Dalpian, and Jose A Souza. Insulator–metal transition in the Nd2CoFeO6 disordered double perovskite. The Journal of Physical Chemistry C, 124(41):22733– 22742, 2020.
Saad Tariq, Afaq Ahmed, Saher Saad, and Samar Tariq. Structural, electronic and elastic properties of the cubic catio3 under pressure: A dft study. Aip Advances, 5(7):077111, 2015.
HP Correa, IP Cavalcante, DO Souza, EZ Santos, MT D Orlando, H Belich, FJ Silva, EF Medeiro, JM Pires, JL Passamai, et al. Synthesis and structural characterization of the Ca2MnReO6 double perovskite. Cerˆamica, 56:193–200, 2010.
Anjan Kumar Jena. Study of structural and electrical Properties of few Double Perovskite Compounds. PhD thesis, 2014.
DA Landinez Télez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Crystallographic, ferroelectric and electronic properties of the Sr2ZrTiO6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013.
Rebecca Ann Ricciardo. Chemical, Magnetic, and Orbital Order of Polycrystalline and Thin film Double Perovskites. PhD thesis, The Ohio State University, 2009.
Thi Hong Quan Vu, Bartosz Bondzior, Dagmara Stefa´nska, Natalia Miniajluk, and Przemys law J Dere´n. Synthesis, structure, morphology, and luminescent properties of Ba2MgWO6: Eu3+ double perovskite obtained by a novel co-precipitation method. Materials, 13(7):1614, 2020.
Kartik Samanta and Tanusri Saha-Dasgupta. Rocksalt versus layered ordering in double perovskites: A case study with La2CuSnO6 and La2CuIrO6. Physical Review B, 95(23):235102, 2017.
ZC Kang, C Caranoni, I Siny, G Nihoul, and C Boulesteix. Study of the ordering of sc and ta atoms in Pb2ScTaO6 by x-ray diffraction and high resolution electron microscopy. Journal of Solid State Chemistry, 87(2):308–320, 1990.
Abdelrahman A Elbadawi, OA Yassin, Mohamed A Siddig, et al. Effect of the cation size disorder at the a-site on the structural properties of SrAFeTiO6 double perovskites (A= La, Pr or Nd). Journal of Materials Science and Chemical Engineering, 3(05):21, 2015.
Samir F Matar, MA Subramanian, A Villesuzanne, Volker Eyert, and M-H Whangbo. First principles investigation of the electronic structure of La2MnNiO6: An insulating ferromagnet. Journal of magnetism and magnetic materials, 308(1):116–119, 2007.
V. M. Goldschmidt. Geochemistry. International series of monographs on physics. Clarendon Press, 1958.
Garrido Barrios, Luis del Cristo, et al. Predicción de las propiedades estructurales, cohesivas y electrónicas en sistemas tipo perovskitas A2BB′O6 utilizando machine learning (ml) y la teor´ıa funcional de densidad (DFT). Master’s thesis, Universidad del Magdalena, 2021.
Anthony M Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(11):3384– 3392, 1972.
Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe).
Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.
David Jiles. Introduction to magnetism and magnetic materials. CRC press, 2015.
Nouredine Zettili. Quantum mechanics: concepts and applications, 2003.
Bernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.
Kannan M Krishnan. Fundamentals and applications of magnetic materials. Oxford University Press, 2016.
Narayanasamy Sabari Arul and Vellalapalayam Devaraj Nithya. Revolution of Perovskite. Springer, 2020.
Rolf E Hummel. Electrical properties of materials. In Understanding Materials Science, pages 180–216. Springer, 1998.
Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.
Mahesh Lohith K S. Electrical Properties of Materials - Electronic conduction in solids. 02 2018.
Uichiro Mizutani. Introduction to the electron theory of metals. Cambridge university press, 2001.
John Singleton. Band theory and electronic properties of solids, volume 2. Oxford University Press, 2001.
Frank Herman. Theoretical investigation of the electronic energy band structure of solids. Reviews of Modern Physics, 30(1):102, 1958.
J Pinochet and G Tarrach. Los semiconductores y sus aplicaciones. Física de sólidos. Facultad de Física, Pontificia Universidad Católica de Chile. Santiago, Chile, 2001.
Laszlo Solymar, Donald Walsh, and Richard RA Syms. Electrical properties of materials. Oxford university press, 2014.
C Quiroga, R Oentrich, I Bonalde, SM Wasim, G Marın, et al. A temperature dependent pre-exponential factor in efros-shklovskii variable range hopping conduction in p-type CuInTe2. Physica E: Low-dimensional Systems and Nanostructures, 18(1-3):292–293, 2003.
NF Mott. The effect of electron interaction on variable-range hopping. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 34(4):643– 645, 1976.
Jesús Puente-Córdova, Martín Reyes-Melo, and Beatriz Lopez-Walle. Estudio de los mecanismos de conducción eléctrica en películas delgadas de PVB. 20:55–72, 07 2017.
Dong Yu, Congjun Wang, Brian L Wehrenberg, and Philippe Guyot-Sionnest. Variable range hopping conduction in semiconductor nanocrystal solids. Physical review letters, 92(21):216802, 2004.
RM Rubinger, GM Ribeiro, AG De Oliveira, HA Albuquerque, RL Da Silva, CPL Rubinger, WN Rodrigues, and MVB Moreira. Temperature-dependent activation energy and variable range hopping in semi-insulating gaas. Semiconductor science and technology, 21(12):1681, 2006.
NF Mott. Conduction and switching in non-crystalline materials. Contemporary Physics, 10(2):125–138, 1969.
Boris Isaakovich Shklovskii and Alex L Efros. Electronic properties of doped semiconductors, volume 45. Springer Science Business Media, 2013.
David Emin. Transport properties of small polarons. Journal of Solid State Chemistry, 12(3-4):246–252, 1975.
JT Devreese. Polarons. arXiv preprint cond-mat/0004497, 2000.
Steven JF Byrnes. Basic theory and phenomenology of polarons. Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, 2008.
IK Naik and Tseng-Ying Tien. Small-polaron mobility in nonstoichiometric cerium dioxide. Journal of Physics and Chemistry of Solids, 39(3):311–315, 1978.
Massimo Capone, Marco Grilli, and Walter Stephan. Small polaron formation in manyparticle states of the hubbard-holstein model: The one-dimensional case. The European Physical Journal B-Condensed Matter and Complex Systems, 11(4):551–557, 1999.
Mohamed N Rahaman. Sintering of ceramics. CRC press, 2007.
Luz Amparo Palacio Santos. Métodos de síntesis de nuevos materiales basados en metales de transición. Revista Facultad de Ingeniería Universidad de Antioquia, (32):51−−61, 2004.
Andrei A Bunaciu, Elena Gabriela UdriS¸Tioiu, and Hassan Y Aboul-Enein. X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4):289−−299, 2015.
VK Pecharsky and PY Zavalij. Fundamentals of powder diffraction and structural characterization of materials (2nd version). 2009.
GA Pérez and HD Colorado. Difracción de rayos x y el método rietveld teoría y software de refinamiento. Universidad del Valle, 2011.
S Petrick Casagrande and Ronald Castillo Blanco. Método de rietveld para el estudio de estructuras cristalinas. Revista de la facultad deficiencias de la UNI, 9, 2004.
Francisco Alejandro Vargas Fajardo and Alvaro Eduardo Varón Sabogal. Refinamiento ´ estructural por el método de rietveld a tres fases del sistema K2Pr2/3Ta2O7. 2015.
Jorge Ignacio Villa Hernández. Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB’O6.
Kai He, Nuofu Chen, Congjie Wang, Lishuai Wei, and Jikun Chen. Method for determining crystal grain size by x-ray diffraction. Crystal Research and Technology, 53(2):1700157, 2018.
Uwe Holzwarth and Neil Gibson. The scherrer equation versus the’debye-scherrer equation’. Nature nanotechnology, 6(9):534–534, 2011.
J Il Langford and AJC Wilson. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 11(2):102–113, 1978.
Luc+ia Martínez Goyeneche et al. Determinación del tamaño de partícula mediante difracción de rayos x. 2018.
M Abd Mutalib, MA Rahman, MHD Othman, AF Ismail, and J Jaafar. Scanning electron microscopy (sem) and energy-dispersive x-ray (edx) spectroscopy. In Membrane characterization, pages 161–179. Elsevier, 2017.
Ana Violeta Girao, Gianvito Caputo, and Marta C Ferro. Application of scanning electron microscopy–energy dispersive x-ray spectroscopy (sem-eds). In Comprehensive analytical chemistry, volume 75, pages 153–168. Elsevier, 2017.
Mel I Mendelson. Average grain size in polycrystalline ceramics. Journal of the American Ceramic society, 52(8):443–446, 1969.
Gérard Bergeret and Pierre Gallezot. Particle size and dispersion measurements. Handbook of heterogeneous catalysis, 2:439, 2008.
Yoshimasa Takayama, Norio Furushiro, Tatsumi Tozawa, Hajime Kato, and Shigenori Hori. A significant method for estimation of the grain size of polycrystalline materials. Materials Transactions, JIM, 32(3):214–221, 1991.
Simon Foner. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30(7):548–557, 1959.
Syed Alamdar Hussain Shah. Vibrating sample magnetometery: Analysis and construction. Syed Babar Ali School of Science and Engineering, LUMS, 2013.
Yvonne M Mos, Arnold C Vermeulen, Cees JN Buisman, and Jan Weijma. X-ray diffraction of iron containing samples: the importance of a suitable configuration. Geomicrobiology Journal, 35(6):511–517, 2018.
Michael W Lufaso and Patrick M Woodward. Prediction of the crystal structures of perovskites using the software program spuds. Acta Crystallographica Section B: Structural Science, 57(6):725–738, 2001.
Allen C Larson and Robert B Von Dreele. Gsas. Report lAUR, pages 86–748, 1994.
M Dhilip, J Stella Punitha, R Rameshkumar, S Rameshkumar, P Karuppasamy, Muthu Senthil Pandian, P Ramasamy, K Saravana Kumar, V Anbarasu, and K Elangovan. A novel double perovskite oxide Sm2CoFeO6 phosphor for orange leds: structural, magnetic and luminescence properties. Applied Physics A, 128(4):1–9, 2022.
Bernard Dennis Cullity. Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.
David A Landínez Téllez and Jairo Roa-Rojas. Linea de irreversibilidad magnética en el compuesto superconductor CaLaBaCu3O7. REVISTA COLOMBIANA DE F´ISICA, 37(1):250, 2005.
Xiaoxiong Wang, Jing Yu, Xu Yan, Yunze Long, Keqing Ruan, and Xiaoguang Li. Magnetization and low temperature heat capacity of SmFeO3 single crystal. Journal of Magnetism and Magnetic Materials, 443:104–106, 2017.
Zhiqiang Zhou, Li Guo, Haixia Yang, Qiang Liu, and Feng Ye. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of alloys and compounds, 583:21–31, 2014.
Guang-Hua Guo and Hai-Bei Zhang. The spin reorientation transition and first-order magnetization process of TbMn6Sn6 compound. Journal of alloys and compounds, 448(1-2):17–20, 2008.
GR Haripriya, R Pradheesh, K Sethupathi, and V Sankaranarayanan. The order of magnetic phase transitions in disordered double perovskite oxides Sm2FeCoO6 and Dy2FeCoO6. AIP Advances, 8(10):101340, 2018.
Weiyao Zhao, Shixun Cao, Ruoxiang Huang, Yiming Cao, Kai Xu, Baojuan Kang, Jincang Zhang, and Wei Ren. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Physical Review B, 91(10):104425, 2015.
SC Parida, SK Rakshit, and Ziley Singh. Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. Journal of Solid State Chemistry, 181(1):101–121, 2008.
VR Estrada Contreras, CE Alarcón Suesca, CE Deluque Toro, DA Landínez Téllez, and J Roa-Rojas. Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6. Ceramics International, 47(10):14408– 14417, 2021.
RN Bhowmik and A Saravanan. Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. Journal of Applied Physics, 107(5):053916, 2010.
XL Wang, M James, J Horvat, and SX Dou. Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Superconductor Science and Technology, 15(3):427, 2002.
Nélson Pereira, Maite Mujika, Sergio Arana, Teresa Correia, AMT Silva, Helder T Gomes, Pedro Joao Rodrigues, and Rui Lima. The effect of a static magnetic field on the flow of iron oxide magnetic nanoparticles through glass capillaries. In Visualization and simulation of complex flows in biomedical engineering, pages 181–196. Springer, 2014.
Kwan Chi Kao. Charge carrier injection from electrical contacts. Dielectric Phenomena in Solids, 1:327–380, 2004.
Javier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of Sm2Bi2 Fe4O12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.
Konstantinos Bavelis, Erion Gjonaj, and Thomas Weiland. Modeling of electrical transport in zinc oxide varistors. Advances in Radio Science, 12(B. 3):29–34, 2014.
Agnes Vojta, Qingzhe Wen, and David R Clarke. Influence of microstructural disorder on the current transport behavior of varistor ceramics. Computational materials science, 6(1):51–62, 1996.
Gregg Lavenuta. Negative temperature coefficient thermistors. Sensors-the Journal of Applied Sensing Technology, 14(5):46–55, 1997.
Yuqi Lan, Shenyin Yang, Guangming Chen, Sifeng Yang, et al. Characteristics of a type of ntc thermistors for cryogenic applications. Advances in Materials Physics and Chemistry, 10(08):167, 2020.
Woonyoung Lee and Jinseong Park. Ntc thermistors of Y-Al-Mn-Fe-Ni-Cr-O ceramics for wide temperature range measurement. International Journal on Smart Sensing and Intelligent Systems, 7(5):1–4, 2014.
Subhanarayan Sahoo, SKS Parashar, and SM Ali. Catio3 nano ceramic for ntcr thermistor based sensor application. Journal of Advanced Ceramics, 3(2):117–124, 2014.
Antonio Feteira. Negative temperature coefficient resistance (ntcr) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 92(5):967– 983, 2009.
Xiang Sun, Zhicheng Li, Weiyi Fu, Shiyuan Chen, and Hong Zhang. Li/fe modified zn0. 3ni0. 7o ntc thermistors with adjustable resistivities and temperature sensitivity. Journal of Materials Science: Materials in Electronics, 29(1):343–350, 2018.
NTC Thermistors. General technical information, 2009.
SM Wasim, L Essaleh, G Mar´ın, C Rinc´on, S Amhil, and J Galibert. Efros-shklovskii type variable range hopping conduction and magnetoresistance in p-type CuGa3Te5. Superlattices and Microstructures, 107:285–292, 2017.
Moumin Rudra, Saswata Halder, Sujoy Saha, Alo Dutta, and TP Sinha. Temperature dependent conductivity mechanisms observed in Pr2NiTiO6. Materials Chemistry and Physics, 230:277–286, 2019.
MHA Pramanik and D Islam. The mott t−1/4 law from the rate equation formalism. Journal of Non-Crystalline Solids, 45(3):325–333, 1981.
SW Koch, M Kira, G Khitrova, and HM Gibbs. Semiconductor excitons in new light. Nature materials, 5(7):523–531, 2006.
John O Dimmock. Introduction to the theory of exciton states in semiconductors. In Semiconductors and semimetals, volume 3, pages 259–319. Elsevier, 1967.
Rohan Singh. Excitons in Semiconductor Quantum Wells Studied Using TwoDimensional Coherent Spectroscopy. PhD thesis, University of Colorado at Boulder, 2015.
Ximena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6. Física, 2018.
Alexey Chernikov, Timothy C Berkelbach, Heather M Hill, Albert Rigosi, Yilei Li, Burak Aslan, David R Reichman, Mark S Hybertsen, and Tony F Heinz. Exciton binding energy and nonhydrogenic rydberg series in monolayer ws 2. Physical review letters, 113(7):076802, 2014.
Thomas Mueller and Ermin Malic. Exciton physics and device application of twodimensional transition metal dichalcogenide semiconductors. npj 2D Materials and Applications, 2(1):1–12, 2018.
Ho-Wa Li, Zhiqiang Guan, Yuanhang Cheng, Taili Lui, Qingdan Yang, Chun-Sing Lee, Song Chen, and Sai-Wing Tsang. On the study of exciton binding energy with direct charge generation in photovoltaic polymers. Advanced Electronic Materials, 2(11):1600200, 2016.
Vipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.
Abigail Ganopol, Leandro Giuliani, and Maríıa Luz Martínez Ricci. Medición del band gap en semiconductores de si y ge. 2002.
Beleño Kelvin, Ivaldo Torres, and Jorge L Diaz. Caracterización del c-si y estimación del gap óptico a través de medidas de transmisión con led convencionales de bajo coste. Bistua: Revista de la Facultad de Ciencias Básicas, 10(1):62–70, 2012.
Neil W Ashcroft and N David Mermin. Solid state physics. Cengage Learning, 2022.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 76 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83649/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83649/2/1024478675-2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83649/3/1024478675-2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
de088eea3a50378d94ae3404939a1635
3219c81d9ca14a8a1dc67fce3bd6c343
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089977135366144
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roa Rojas, Jairo2e10826bd7af55149f1d326253c3336fSarmiento Vanegas, Javier Albertod10bda36b751e616cb361e70fe4d7fddGrupo de Física de Nuevos Materiales - GFNMSarmiento Vanegas, Javier2023-03-21T16:59:23Z2023-03-21T16:59:23Z2023-03https://repositorio.unal.edu.co/handle/unal/83649Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLos materiales tipo perovskita compleja Sm2FeCoO6 y Eu2FeCoO6 se produjeron mediante el método de síntesis de reacción de estado sólido, caracterizando su morfología, composición, estructura, respuesta magnética y eléctrica. A partir de la técnica de difracción de rayos X se caracterizó la estructura para ambos compuestos mostrando que los sistemas cristalizan en estructura ortorrómbica con grupo espacial P nma (#62). El refinamiento Rietvelt mediante el código GSAS-I permitió obtener los parámetros reticulares asociados a cada material. Al realizar la sustitución del catión Sm3+ por Eu3+ hubo una leve inclinación en los octaedros, pues los enlaces B-O1-B evidencian que los ángulos cambiaron de 148,03° a 149,73°, las distancias de los enlaces B-O1 se redujeron de 1,98 ˚A a 1,96 ˚A, al igual que la distancia de los enlaces B-O2 en el plano ecuatorial del octaedro, pasaron de 2,14 ˚A y 1,75 ˚A a 1,98 ˚A y 1,99 ˚A, respectivamente. Los resultados de microscopía electrónica de barrido permitieron visualizar la evolución morfológica a través de micrografías generadas por electrones secundarios, con las micrografías obtenidas por electrones retrodisperados se evidencia que ambos materiales presentan solo una composición. El espectro de dispersión de energía por rayos X sugiere que los materiales en estudio contienen solamente los elementos Sm, Eu, Fe, Co y O, correspondientes a las fórmulas estequiométricas Sm2FeCoO6 y Eu2FeCoO6. Los resultados de magnetización en función de la temperatura indicaron efectos de irreversibilidad en las curvas ZFC y FC problamente producidos por desorden magnetocristalino, desorden catiónico de los iones Fe, Co y distorsiones estructurales de los octaedros. Igualmente, se visualiza que posiblemente ambos compuestos transitan de una fase antiferromagnética a ferromagnética con temperaturas de Néel de 90 K y 260 K para el compuesto con Sm y Eu, respectivamente. Este comportamiento fue comprobado con las curvas de magnetización en función del campo aplicado, donde además se evidencia la presencia de magnetización de remanencia en la histéresis magnética de las isotermas de 50 K, 200 K y 300 K. Las curvas de densidad de corriente en función del campo aplicado muestran un comportamiento a bajos campos similar a un material óhmico, con valores de resistividad ρSm = 2, 247 ± 0, 001 MΩ·cm y ρEu = 6, 919 ± 0, 003 MΩ·cm, en altos campos presentan un comportamiento no lineal semejante a un material tipo semiconductor. Las curvas de resistividad en función de la temperatura permitieron confirmar el comportamiento semiconductor en ambos materiales y obtener la constante de sensibilidad térmica con valores de BSm = 5232, 20 K y BEu = 5238, 74 K. Por último, la respuesta de reflectancia difusa confirma el comportamiento semiconductor a temperatura ambiente, obteniéndose un gap de 1,18 eV y 1,15 eV para el Sm2FeCoO6 y Eu2FeCoO6, respectivamente. (Texto tomado de la fuente)The complex perovskite-type materials Sm2FeCoO6 and Eu2FeCoO6 were produced by the solid-state reaction synthesis method, characterizing their morphology, composition, struc ture, magnetic and electric response. From X-ray diffraction technique the structure for both compounds was characterized showing that the systems crystallize in orthorhombic structu re with space group P nma (62). Rietvelt refinement using the GSAS-I code allowed us to obtain the lattice parameters associated with each material. Upon substitution of the Sm3+ cation by Eu3+ there was a slight tilt in the octahedra, since the B-O1-B bonds show that the angles changed from 148,03◦ to 149,73◦, the distances of the B-O1 bonds decreased from 1,98 ˚A to 1,96 ˚A, as well as the distance of the B-O2 bonds in the equatorial plane of the octahedron went from 2,14 ˚A and 1,75 ˚A to 1,98 ˚A and 1,99 ˚A, respectively. The scanning electron microscopy results allowed visualizing the morphological evolution through micrographs generated by secondary electrons, with the micrographs obtained by backscattered electrons showing that both materials present only one composition. The X-ray energy dispersion spectra suggest that the materials under study contain only the elements Sm, Eu, Fe, Co and O, corresponding to the stoichiometric formulas Sm2FeCoO6 and Eu2FeCoO6. The results of magnetization as a function of temperature indicated irreversibility effects in the ZFC and FC curves probably produced by magnetocrystalline disorder, cationic disorder of Fe, Co ions and structural distortions of the octahedra. Likewise, it is visualized that possibly both compounds transition from an antiferromagnetic phase to a ferromagnetic phase with N-temperatures of 90 K and 260 K for the compound with Sm and Eu, respectively. This behavior was verified with the magnetization curves as a function of the applied field, where it is also evident the presence of remanence magnetization in the magnetic hysteresis of the 50 K, 200 K and 300 K isotherms. The current density curves as a function of the applied field show a behavior at low fields similar to an ohmic material, with resisti vity values of ρSm = 2, 247 ± 0, 001 MΩ·cm y ρEu = 6, 919 ± 0, 003 MΩ·cm, at high fields they show a nonlinear behavior similar to a semiconductor type material. The resistivity curves as a function of temperature allowed to confirm the semiconductor behavior in both materials and to obtain the thermal sensitivity constant with values of BSm = 5232, 20 K and BEu = 5238, 74 K. Finally, the diffuse reflectance response confirms the semiconducting behavior at room temperature, obtaining a gap of 1,18 eV and 1,15 eV for Sm2FeCoO6 and Eu2FeCoO6, respectively.MaestríaFísica de Nuevos Materialesxi, 76 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaMagnetismoCampos magnéticos-efectos fisiológicosDiamagnetismMagnetic fields - Physiological effectsPerovskitaPerovskiteFerrocobaltitaEfecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6Effect of Sm and Eu on the structural, magnetic and electrical characteristics of ferrocobaltite (Sm, Eu)2CoFeO6Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPatrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.Emad K Al-Shakarchi and Natheer B Mahmood. Three techniques used to produce BaTiO3 fine powder. Journal of Modern Physics, 2011, 2011.Graham King and Patrick M Woodward. Cation ordering in perovskites. Journal of Materials Chemistry, 20(28):5785–5796, 2010.Diana Marcela Arciniegas Jaimes. Estudio de nuevas perovskitas AA′BB′06: influencia de los cationes A y B sobre sus propiedades físicas y estructuras cristalinas y magnéticas. 2018.Greg Vialle. Inductive activation of magnetite filled shape memory polymers. PhD thesis, Georgia Institute of Technology, 2009.José Ruzzante, Pablo Alonso Castillo, and Roberto Suárez Ántola. passe-muraille realizada por jean-bernard métais. basada en el libro de marcel ayme. 2021.Thomas Wolfram and Sinasi Ellialtioglu. Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.Ying Zhao and Jiawei Wang. Variable range hopping model based on gaussian disorde red organic semiconductor for seebeck effect in thermoelectric device. Micromachines, 13(5):707, 2022.Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials. Nature Reviews Materials, 6(7):560–586, 2021.Suk−Joong L Kang. Sintering: densification, grain growth and microstructure. Elsevier, 2004.T Kikuchi. Single crystal orientation measurement by x-ray methods. Rigaku J, 7(1):27−−35, 1990.Jaime Renau-Piqueras and Magdalena Faura. Principios básicos del microscopio electrónico de barrido. 1994.Yang Leng. Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons, 2009.Freddy P Guachún and Víctor J Raposo. Diseno y calibración de un magnetómetro de muestra vibrante: Caracterización de materiales magnéticos. Momento, (56):45–62, 2018.OB Pavlovska, LO Vasylechko, IV Lutsyuk, NM Koval, Ya A Zhydachevskii, and A Pienika˙zek. Structure peculiarities of micro-and nanocrystalline perovskite ferrites LaxSmxFeo3. Nanoscale Research Letters, 12(1):1–6, 2017.M Marezio, JP Remeika, and PD Dernier. The crystal chemistry of the rare earth orthoferrites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(12):2008–2022, 1970.Jung-Hoon Lee, Young Kyu Jeong, Jung Hwan Park, Min-Ae Oak, Hyun Myung Jang, Jong Yeog Son, and James F Scott. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Physical review letters, 107(11):117201, 2011.C-Y Kuo, Y Drees, MT Fern´andez-D´ıaz, L Zhao, L Vasylechko, D Sheptyakov, AMT Bell, TW Pi, H-J Lin, M-K Wu, et al. k= 0 magnetic structure and absence of ferroelectricity in SmFeO3. Physical review letters, 113(21):217203, 2014.Jian Kang, Yali Yang, Xiaolong Qian, Kai Xu, Xiaopeng Cui, Yifei Fang, Venkatesh Chandragiri, Baojuan Kang, Bin Chen, Alessandro Stroppa, et al. Spin-reorientation magnetic transitions in mn-doped SmFeO3. IUCrJ, 4(5):598–603, 2017.EIK Olsson. Computational modelling of SmCoO3 based cathode materials for solid oxide fuel cells. PhD thesis, UCL (University College London), 2017.Emilia Olsson, Xavier Aparicio-Angles, and Nora H de Leeuw. A DFT+ U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO3. The Journal of chemical physics, 145(22):224704, 2016.M Topsakal, C Leighton, and RM Wentzcovitch. First-principles study of crystal and electronic structure of rare-earth cobaltites. Journal of Applied Physics, 119(24):244310, 2016.Kenichirou Umemoto, Yasuyoshi Seto, and Yoshio Masuda. Structure and magnetic property of CexEu1- xCoO3 prepared by means of the thermal decomposition of CexEu1−x[Co[CN6]· nH2O. Thermochimica acta, 431(1-2):117–122, 2005.GR Haripriya, R Pradheesh, MN Singh, AK Sinha, K Sethupathi, and V Sankaranarayanan. Temperature dependent structural studies on the spin correlated system A2FeCoO6 (A= Sm, Eu, Dy and Ho) using synchrotron radiation. AIP Advances, 7(5):055826, 2017.Sonia LC Pinho, Joao S Amaral, Alain Wattiaux, Mathieu Duttine, Marie-Helene Delville, and Carlos FGC Geraldes. Synthesis and characterization of rare-earth orthoferrite LnFeO3 nanoparticles for bioimaging. European Journal of Inorganic Chemistry, 2018(31):3570–3578, 2018.Khalid Sultan, M Ikram, and K Asokan. Effect of Mn doping on structural, morphological and dielectric properties of EuFeO3 ceramics. RSC advances, 5(114):93867–93876, 2015.Amber K Choquette, Robert Colby, Eun Ju Moon, Christian M Schlepu`Iˆtz, Mark D Scafetta, David J Keavney, and Steven J May. Synthesis, structure, and spectroscopy of epitaxial EuFeO3 thin films. Crystal growth & design, 15(3):1105–1111, 2015.NOEL W Thomas. Crystal structure–physical property relationships in perovskites. Acta Crystallographica Section B: Structural Science, 45(4):337–344, 1989.Netzahualpille Hern´andez Navarro. Materiales tipo perovskita LnxBi1−xFe0,95M0,05O3(Ln: Pr, Nd; M: Co, Mn, Sc; x= 0 − 0,15) para su potencial aplicaci´on en memorias magnetoel´ectricas. 2012.Meghan C Knapp and Patrick M Woodward. A-site cation ordering in AA’BB’O6 perovskites. Journal of Solid State Chemistry, 179(4):1076–1085, 2006.JA Jaramillo Palacio, KA Muñoz Pulido, J Arbey Rodríguez, DA Landínez Téllez, and J Roa-Rojas. Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified pechini route. Journal of Advanced Dielectrics, 11(03):2140003, 2021.GR Haripriya, Harikrishnan S Nair, R Pradheesh, S Rayaprol, V Siruguri, Durgesh Singh, R Venkatesh, V Ganesan, K Sethupathi, and V Sankaranarayanan. Spin reorientation and disordered rare earth magnetism in Ho2FeCoO6. Journal of Physics: Condensed Matter, 29(47):475804, 2017.Leonardo S de Oliveira, Fernando P Sabino, Daniel Z de Florio, Anderson Janotti, Gustavo M Dalpian, and Jose A Souza. Insulator–metal transition in the Nd2CoFeO6 disordered double perovskite. The Journal of Physical Chemistry C, 124(41):22733– 22742, 2020.Saad Tariq, Afaq Ahmed, Saher Saad, and Samar Tariq. Structural, electronic and elastic properties of the cubic catio3 under pressure: A dft study. Aip Advances, 5(7):077111, 2015.HP Correa, IP Cavalcante, DO Souza, EZ Santos, MT D Orlando, H Belich, FJ Silva, EF Medeiro, JM Pires, JL Passamai, et al. Synthesis and structural characterization of the Ca2MnReO6 double perovskite. Cerˆamica, 56:193–200, 2010.Anjan Kumar Jena. Study of structural and electrical Properties of few Double Perovskite Compounds. PhD thesis, 2014.DA Landinez Télez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Crystallographic, ferroelectric and electronic properties of the Sr2ZrTiO6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013.Rebecca Ann Ricciardo. Chemical, Magnetic, and Orbital Order of Polycrystalline and Thin film Double Perovskites. PhD thesis, The Ohio State University, 2009.Thi Hong Quan Vu, Bartosz Bondzior, Dagmara Stefa´nska, Natalia Miniajluk, and Przemys law J Dere´n. Synthesis, structure, morphology, and luminescent properties of Ba2MgWO6: Eu3+ double perovskite obtained by a novel co-precipitation method. Materials, 13(7):1614, 2020.Kartik Samanta and Tanusri Saha-Dasgupta. Rocksalt versus layered ordering in double perovskites: A case study with La2CuSnO6 and La2CuIrO6. Physical Review B, 95(23):235102, 2017.ZC Kang, C Caranoni, I Siny, G Nihoul, and C Boulesteix. Study of the ordering of sc and ta atoms in Pb2ScTaO6 by x-ray diffraction and high resolution electron microscopy. Journal of Solid State Chemistry, 87(2):308–320, 1990.Abdelrahman A Elbadawi, OA Yassin, Mohamed A Siddig, et al. Effect of the cation size disorder at the a-site on the structural properties of SrAFeTiO6 double perovskites (A= La, Pr or Nd). Journal of Materials Science and Chemical Engineering, 3(05):21, 2015.Samir F Matar, MA Subramanian, A Villesuzanne, Volker Eyert, and M-H Whangbo. First principles investigation of the electronic structure of La2MnNiO6: An insulating ferromagnet. Journal of magnetism and magnetic materials, 308(1):116–119, 2007.V. M. Goldschmidt. Geochemistry. International series of monographs on physics. Clarendon Press, 1958.Garrido Barrios, Luis del Cristo, et al. Predicción de las propiedades estructurales, cohesivas y electrónicas en sistemas tipo perovskitas A2BB′O6 utilizando machine learning (ml) y la teor´ıa funcional de densidad (DFT). Master’s thesis, Universidad del Magdalena, 2021.Anthony M Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(11):3384– 3392, 1972.Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe).Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.David Jiles. Introduction to magnetism and magnetic materials. CRC press, 2015.Nouredine Zettili. Quantum mechanics: concepts and applications, 2003.Bernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.Kannan M Krishnan. Fundamentals and applications of magnetic materials. Oxford University Press, 2016.Narayanasamy Sabari Arul and Vellalapalayam Devaraj Nithya. Revolution of Perovskite. Springer, 2020.Rolf E Hummel. Electrical properties of materials. In Understanding Materials Science, pages 180–216. Springer, 1998.Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.Mahesh Lohith K S. Electrical Properties of Materials - Electronic conduction in solids. 02 2018.Uichiro Mizutani. Introduction to the electron theory of metals. Cambridge university press, 2001.John Singleton. Band theory and electronic properties of solids, volume 2. Oxford University Press, 2001.Frank Herman. Theoretical investigation of the electronic energy band structure of solids. Reviews of Modern Physics, 30(1):102, 1958.J Pinochet and G Tarrach. Los semiconductores y sus aplicaciones. Física de sólidos. Facultad de Física, Pontificia Universidad Católica de Chile. Santiago, Chile, 2001.Laszlo Solymar, Donald Walsh, and Richard RA Syms. Electrical properties of materials. Oxford university press, 2014.C Quiroga, R Oentrich, I Bonalde, SM Wasim, G Marın, et al. A temperature dependent pre-exponential factor in efros-shklovskii variable range hopping conduction in p-type CuInTe2. Physica E: Low-dimensional Systems and Nanostructures, 18(1-3):292–293, 2003.NF Mott. The effect of electron interaction on variable-range hopping. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 34(4):643– 645, 1976.Jesús Puente-Córdova, Martín Reyes-Melo, and Beatriz Lopez-Walle. Estudio de los mecanismos de conducción eléctrica en películas delgadas de PVB. 20:55–72, 07 2017.Dong Yu, Congjun Wang, Brian L Wehrenberg, and Philippe Guyot-Sionnest. Variable range hopping conduction in semiconductor nanocrystal solids. Physical review letters, 92(21):216802, 2004.RM Rubinger, GM Ribeiro, AG De Oliveira, HA Albuquerque, RL Da Silva, CPL Rubinger, WN Rodrigues, and MVB Moreira. Temperature-dependent activation energy and variable range hopping in semi-insulating gaas. Semiconductor science and technology, 21(12):1681, 2006.NF Mott. Conduction and switching in non-crystalline materials. Contemporary Physics, 10(2):125–138, 1969.Boris Isaakovich Shklovskii and Alex L Efros. Electronic properties of doped semiconductors, volume 45. Springer Science Business Media, 2013.David Emin. Transport properties of small polarons. Journal of Solid State Chemistry, 12(3-4):246–252, 1975.JT Devreese. Polarons. arXiv preprint cond-mat/0004497, 2000.Steven JF Byrnes. Basic theory and phenomenology of polarons. Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, 2008.IK Naik and Tseng-Ying Tien. Small-polaron mobility in nonstoichiometric cerium dioxide. Journal of Physics and Chemistry of Solids, 39(3):311–315, 1978.Massimo Capone, Marco Grilli, and Walter Stephan. Small polaron formation in manyparticle states of the hubbard-holstein model: The one-dimensional case. The European Physical Journal B-Condensed Matter and Complex Systems, 11(4):551–557, 1999.Mohamed N Rahaman. Sintering of ceramics. CRC press, 2007.Luz Amparo Palacio Santos. Métodos de síntesis de nuevos materiales basados en metales de transición. Revista Facultad de Ingeniería Universidad de Antioquia, (32):51−−61, 2004.Andrei A Bunaciu, Elena Gabriela UdriS¸Tioiu, and Hassan Y Aboul-Enein. X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4):289−−299, 2015.VK Pecharsky and PY Zavalij. Fundamentals of powder diffraction and structural characterization of materials (2nd version). 2009.GA Pérez and HD Colorado. Difracción de rayos x y el método rietveld teoría y software de refinamiento. Universidad del Valle, 2011.S Petrick Casagrande and Ronald Castillo Blanco. Método de rietveld para el estudio de estructuras cristalinas. Revista de la facultad deficiencias de la UNI, 9, 2004.Francisco Alejandro Vargas Fajardo and Alvaro Eduardo Varón Sabogal. Refinamiento ´ estructural por el método de rietveld a tres fases del sistema K2Pr2/3Ta2O7. 2015.Jorge Ignacio Villa Hernández. Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB’O6.Kai He, Nuofu Chen, Congjie Wang, Lishuai Wei, and Jikun Chen. Method for determining crystal grain size by x-ray diffraction. Crystal Research and Technology, 53(2):1700157, 2018.Uwe Holzwarth and Neil Gibson. The scherrer equation versus the’debye-scherrer equation’. Nature nanotechnology, 6(9):534–534, 2011.J Il Langford and AJC Wilson. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 11(2):102–113, 1978.Luc+ia Martínez Goyeneche et al. Determinación del tamaño de partícula mediante difracción de rayos x. 2018.M Abd Mutalib, MA Rahman, MHD Othman, AF Ismail, and J Jaafar. Scanning electron microscopy (sem) and energy-dispersive x-ray (edx) spectroscopy. In Membrane characterization, pages 161–179. Elsevier, 2017.Ana Violeta Girao, Gianvito Caputo, and Marta C Ferro. Application of scanning electron microscopy–energy dispersive x-ray spectroscopy (sem-eds). In Comprehensive analytical chemistry, volume 75, pages 153–168. Elsevier, 2017.Mel I Mendelson. Average grain size in polycrystalline ceramics. Journal of the American Ceramic society, 52(8):443–446, 1969.Gérard Bergeret and Pierre Gallezot. Particle size and dispersion measurements. Handbook of heterogeneous catalysis, 2:439, 2008.Yoshimasa Takayama, Norio Furushiro, Tatsumi Tozawa, Hajime Kato, and Shigenori Hori. A significant method for estimation of the grain size of polycrystalline materials. Materials Transactions, JIM, 32(3):214–221, 1991.Simon Foner. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30(7):548–557, 1959.Syed Alamdar Hussain Shah. Vibrating sample magnetometery: Analysis and construction. Syed Babar Ali School of Science and Engineering, LUMS, 2013.Yvonne M Mos, Arnold C Vermeulen, Cees JN Buisman, and Jan Weijma. X-ray diffraction of iron containing samples: the importance of a suitable configuration. Geomicrobiology Journal, 35(6):511–517, 2018.Michael W Lufaso and Patrick M Woodward. Prediction of the crystal structures of perovskites using the software program spuds. Acta Crystallographica Section B: Structural Science, 57(6):725–738, 2001.Allen C Larson and Robert B Von Dreele. Gsas. Report lAUR, pages 86–748, 1994.M Dhilip, J Stella Punitha, R Rameshkumar, S Rameshkumar, P Karuppasamy, Muthu Senthil Pandian, P Ramasamy, K Saravana Kumar, V Anbarasu, and K Elangovan. A novel double perovskite oxide Sm2CoFeO6 phosphor for orange leds: structural, magnetic and luminescence properties. Applied Physics A, 128(4):1–9, 2022.Bernard Dennis Cullity. Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.David A Landínez Téllez and Jairo Roa-Rojas. Linea de irreversibilidad magnética en el compuesto superconductor CaLaBaCu3O7. REVISTA COLOMBIANA DE F´ISICA, 37(1):250, 2005.Xiaoxiong Wang, Jing Yu, Xu Yan, Yunze Long, Keqing Ruan, and Xiaoguang Li. Magnetization and low temperature heat capacity of SmFeO3 single crystal. Journal of Magnetism and Magnetic Materials, 443:104–106, 2017.Zhiqiang Zhou, Li Guo, Haixia Yang, Qiang Liu, and Feng Ye. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of alloys and compounds, 583:21–31, 2014.Guang-Hua Guo and Hai-Bei Zhang. The spin reorientation transition and first-order magnetization process of TbMn6Sn6 compound. Journal of alloys and compounds, 448(1-2):17–20, 2008.GR Haripriya, R Pradheesh, K Sethupathi, and V Sankaranarayanan. The order of magnetic phase transitions in disordered double perovskite oxides Sm2FeCoO6 and Dy2FeCoO6. AIP Advances, 8(10):101340, 2018.Weiyao Zhao, Shixun Cao, Ruoxiang Huang, Yiming Cao, Kai Xu, Baojuan Kang, Jincang Zhang, and Wei Ren. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Physical Review B, 91(10):104425, 2015.SC Parida, SK Rakshit, and Ziley Singh. Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. Journal of Solid State Chemistry, 181(1):101–121, 2008.VR Estrada Contreras, CE Alarcón Suesca, CE Deluque Toro, DA Landínez Téllez, and J Roa-Rojas. Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6. Ceramics International, 47(10):14408– 14417, 2021.RN Bhowmik and A Saravanan. Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. Journal of Applied Physics, 107(5):053916, 2010.XL Wang, M James, J Horvat, and SX Dou. Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Superconductor Science and Technology, 15(3):427, 2002.Nélson Pereira, Maite Mujika, Sergio Arana, Teresa Correia, AMT Silva, Helder T Gomes, Pedro Joao Rodrigues, and Rui Lima. The effect of a static magnetic field on the flow of iron oxide magnetic nanoparticles through glass capillaries. In Visualization and simulation of complex flows in biomedical engineering, pages 181–196. Springer, 2014.Kwan Chi Kao. Charge carrier injection from electrical contacts. Dielectric Phenomena in Solids, 1:327–380, 2004.Javier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of Sm2Bi2 Fe4O12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.Konstantinos Bavelis, Erion Gjonaj, and Thomas Weiland. Modeling of electrical transport in zinc oxide varistors. Advances in Radio Science, 12(B. 3):29–34, 2014.Agnes Vojta, Qingzhe Wen, and David R Clarke. Influence of microstructural disorder on the current transport behavior of varistor ceramics. Computational materials science, 6(1):51–62, 1996.Gregg Lavenuta. Negative temperature coefficient thermistors. Sensors-the Journal of Applied Sensing Technology, 14(5):46–55, 1997.Yuqi Lan, Shenyin Yang, Guangming Chen, Sifeng Yang, et al. Characteristics of a type of ntc thermistors for cryogenic applications. Advances in Materials Physics and Chemistry, 10(08):167, 2020.Woonyoung Lee and Jinseong Park. Ntc thermistors of Y-Al-Mn-Fe-Ni-Cr-O ceramics for wide temperature range measurement. International Journal on Smart Sensing and Intelligent Systems, 7(5):1–4, 2014.Subhanarayan Sahoo, SKS Parashar, and SM Ali. Catio3 nano ceramic for ntcr thermistor based sensor application. Journal of Advanced Ceramics, 3(2):117–124, 2014.Antonio Feteira. Negative temperature coefficient resistance (ntcr) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 92(5):967– 983, 2009.Xiang Sun, Zhicheng Li, Weiyi Fu, Shiyuan Chen, and Hong Zhang. Li/fe modified zn0. 3ni0. 7o ntc thermistors with adjustable resistivities and temperature sensitivity. Journal of Materials Science: Materials in Electronics, 29(1):343–350, 2018.NTC Thermistors. General technical information, 2009.SM Wasim, L Essaleh, G Mar´ın, C Rinc´on, S Amhil, and J Galibert. Efros-shklovskii type variable range hopping conduction and magnetoresistance in p-type CuGa3Te5. Superlattices and Microstructures, 107:285–292, 2017.Moumin Rudra, Saswata Halder, Sujoy Saha, Alo Dutta, and TP Sinha. Temperature dependent conductivity mechanisms observed in Pr2NiTiO6. Materials Chemistry and Physics, 230:277–286, 2019.MHA Pramanik and D Islam. The mott t−1/4 law from the rate equation formalism. Journal of Non-Crystalline Solids, 45(3):325–333, 1981.SW Koch, M Kira, G Khitrova, and HM Gibbs. Semiconductor excitons in new light. Nature materials, 5(7):523–531, 2006.John O Dimmock. Introduction to the theory of exciton states in semiconductors. In Semiconductors and semimetals, volume 3, pages 259–319. Elsevier, 1967.Rohan Singh. Excitons in Semiconductor Quantum Wells Studied Using TwoDimensional Coherent Spectroscopy. PhD thesis, University of Colorado at Boulder, 2015.Ximena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6. Física, 2018.Alexey Chernikov, Timothy C Berkelbach, Heather M Hill, Albert Rigosi, Yilei Li, Burak Aslan, David R Reichman, Mark S Hybertsen, and Tony F Heinz. Exciton binding energy and nonhydrogenic rydberg series in monolayer ws 2. Physical review letters, 113(7):076802, 2014.Thomas Mueller and Ermin Malic. Exciton physics and device application of twodimensional transition metal dichalcogenide semiconductors. npj 2D Materials and Applications, 2(1):1–12, 2018.Ho-Wa Li, Zhiqiang Guan, Yuanhang Cheng, Taili Lui, Qingdan Yang, Chun-Sing Lee, Song Chen, and Sai-Wing Tsang. On the study of exciton binding energy with direct charge generation in photovoltaic polymers. Advanced Electronic Materials, 2(11):1600200, 2016.Vipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.Abigail Ganopol, Leandro Giuliani, and Maríıa Luz Martínez Ricci. Medición del band gap en semiconductores de si y ge. 2002.Beleño Kelvin, Ivaldo Torres, and Jorge L Diaz. Caracterización del c-si y estimación del gap óptico a través de medidas de transmisión con led convencionales de bajo coste. Bistua: Revista de la Facultad de Ciencias Básicas, 10(1):62–70, 2012.Neil W Ashcroft and N David Mermin. Solid state physics. Cengage Learning, 2022.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83649/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024478675-2023.pdf1024478675-2023.pdfTesis Maestría en Ciencias - Físicaapplication/pdf77367767https://repositorio.unal.edu.co/bitstream/unal/83649/2/1024478675-2023.pdfde088eea3a50378d94ae3404939a1635MD52THUMBNAIL1024478675-2023.pdf.jpg1024478675-2023.pdf.jpgGenerated Thumbnailimage/jpeg5231https://repositorio.unal.edu.co/bitstream/unal/83649/3/1024478675-2023.pdf.jpg3219c81d9ca14a8a1dc67fce3bd6c343MD53unal/83649oai:repositorio.unal.edu.co:unal/836492024-07-29 00:00:30.655Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=