Comportamiento de funciones armónicas sobre variedades de curvatura negativa

ilustraciones, gráficas

Autores:
Bravo Buitrago, John Edison
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84324
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84324
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::515 - Análisis
Análisis armónico
Análisis funcional
Harmonic analysis
Functional analysis
Variedad diferenciable
Funciones Armónicas
Desigualdades diferenciales
Ecuación de Laplace
Problema de Dirichlet
Smooth Manifold
Harmonic Functions
Differential Inequalities
Laplace Equation
Dirichlet Problem
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9ee872561280cf893deec0a4633db6b4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84324
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Comportamiento de funciones armónicas sobre variedades de curvatura negativa
dc.title.translated.eng.fl_str_mv Behavior of harmonic functions on manifolds of negative curvature
title Comportamiento de funciones armónicas sobre variedades de curvatura negativa
spellingShingle Comportamiento de funciones armónicas sobre variedades de curvatura negativa
510 - Matemáticas::515 - Análisis
Análisis armónico
Análisis funcional
Harmonic analysis
Functional analysis
Variedad diferenciable
Funciones Armónicas
Desigualdades diferenciales
Ecuación de Laplace
Problema de Dirichlet
Smooth Manifold
Harmonic Functions
Differential Inequalities
Laplace Equation
Dirichlet Problem
title_short Comportamiento de funciones armónicas sobre variedades de curvatura negativa
title_full Comportamiento de funciones armónicas sobre variedades de curvatura negativa
title_fullStr Comportamiento de funciones armónicas sobre variedades de curvatura negativa
title_full_unstemmed Comportamiento de funciones armónicas sobre variedades de curvatura negativa
title_sort Comportamiento de funciones armónicas sobre variedades de curvatura negativa
dc.creator.fl_str_mv Bravo Buitrago, John Edison
dc.contributor.advisor.none.fl_str_mv Cortissoz Iriarte, Jean Carlos
dc.contributor.author.none.fl_str_mv Bravo Buitrago, John Edison
dc.contributor.other.none.fl_str_mv Rodríguez Blanco, Guillermo
dc.contributor.orcid.spa.fl_str_mv Bravo Buitrago, John Edison [0001823088]
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::515 - Análisis
topic 510 - Matemáticas::515 - Análisis
Análisis armónico
Análisis funcional
Harmonic analysis
Functional analysis
Variedad diferenciable
Funciones Armónicas
Desigualdades diferenciales
Ecuación de Laplace
Problema de Dirichlet
Smooth Manifold
Harmonic Functions
Differential Inequalities
Laplace Equation
Dirichlet Problem
dc.subject.lemb.spa.fl_str_mv Análisis armónico
Análisis funcional
dc.subject.lemb.eng.fl_str_mv Harmonic analysis
Functional analysis
dc.subject.proposal.spa.fl_str_mv Variedad diferenciable
Funciones Armónicas
Desigualdades diferenciales
Ecuación de Laplace
Problema de Dirichlet
dc.subject.proposal.eng.fl_str_mv Smooth Manifold
Harmonic Functions
Differential Inequalities
Laplace Equation
Dirichlet Problem
description ilustraciones, gráficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-25
dc.date.accessioned.none.fl_str_mv 2023-07-27T17:00:25Z
dc.date.available.none.fl_str_mv 2023-07-27T17:00:25Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84324
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84324
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M. Anderson. “The Dirichlet problem at infinity for manifolds of negative curvature". J. Differ. Geom. 18, 701–721, (1983).
M. Anderson and R. Schoen. “Positive harmonic functions on complete manifolds of negative curvature". Ann. Math. 2. 121, 429–461. , (1985).
S. Y. Cheng and S. T. Yau. “Differential equations on Riemannian manifolds and their geometric applications" Comm. Pure Appl. Math. 28, 333–354, (1975).
H. Choi. “In asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds" Trans. Am. Math. Soc. 281, 691–716, (1984).
J. E. Bravo. J. C. Cortissoz. D. P. Stein. “Some Observations on Liouville’s Theorem on Surfaces and the Dirichlet Problem at Infinity" Lobachevskii Journal of Mathematics, Vol. 43, No. 1, pp. 71–77, (2022)
J. C. Cortissoz. “A note on harmonic functions on surfaces" Am. Math. Mon. 123, 884–893, (2016).
J. C. Cortissoz. "An Observation on the Dirichlet Problem at Infinity on Riemannian cones" arXiv:2111.11351 [math.DG], aceptado en Nagoya Math. J. (2021).
M.A. Al-Gwaiz. “Sturm-Liouville Theory and its Applications" Springer Undergraduate Mathematics Series, (2007).
B.G. Pachpatte. “Inequalities for Differential and Integral Equations" Mathematics in science and engineering 197, (1998).
D. Gilbarg, N. S. Trudinger. “Ëlliptic Partial Differential Equations of Second Order" Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, (2001).
G. Herglotz. “Über potenzreihen mit positivem, realem Teil im Einheitskreis" Ber. Verh. Sachs, Akad. Wiss., Math.-Phys. Kl. 63, (1911).
R. Ji. “The asymptotic Dirichlet problems on manifolds with unbounded negative curvature" Math. Proc. Cambridge Phil. Soc. 167, 133–157, (2019).
P. li. “Geometric Analysis" Vol. 134 of Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, (2012).
J. Milnor. “On deciding whether a surface is parabolic or hyperbolic" Am. Math. Mon. 84, 43–46, (1977).
Jost, Jörgen. “Riemannian geometry and geometric analysis" Springer International., (2017).
L. Ni and L. F. Tam. “Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature" J. Differ. Geom. 64, 457–524, (2003).
D. Sullivan. “The Dirichlet problem at infinity for a negatively curved manifold" J. Differ. Geom. 18, 723–732, (1983).
Elias M. Stein, Rami Shakarchi. “Fourier analysis: an introduction" Princeton Lectures in Analysis, Volume 1. 18, (2003).
S. T. Yau. “Harmonic functions on complete Riemannian manifolds" JComm. Pure Appl. Math. 28, 201–228, (1975).
M. H. Protter, H. F. Weinberger,. “Maximum Principles in Differential Equations" PrenticeHall, Engle- wood Cliffs, NJ, (1967).
dc.rights.none.fl_str_mv Derechos reservados al autor, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2023
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 64 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84324/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84324/2/1072661695.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84324/3/1072661695.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
84393b5cbc98dace1898615ce374a95f
1ee9dc16d5c803cc8e303098c3b2fefc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089668709318656
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortissoz Iriarte, Jean Carlosbddf218a35f638aa90c1b352ace59374Bravo Buitrago, John Edisona36acd1412b4d33f1be2d1ce264545e4Rodríguez Blanco, GuillermoBravo Buitrago, John Edison [0001823088]2023-07-27T17:00:25Z2023-07-27T17:00:25Z2022-07-25https://repositorio.unal.edu.co/handle/unal/84324Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasEl propósito de esta tesis de maestría es estudiar la existencia de funciones armónicas acotadas no constantes, dando demostraciones novedosas con estimativos explícitos de versiones de teoremas, ahora ya clásicos, sobre la existencia de dichas funciones armónicas acotadas no constantes como demostraron Anderson y Sullivan en [1] y [17]. Entre los métodos usados en esta tesis está una generalización de la conocida desigualdad de Gronwall, la teoría de Sturm-Liouville y ecuación de Riccatti parecen dictar el comportamiento de la parte radial de las soluciones a la ecuación de Laplace obtenidas por el método de separación de variables en el caso de métricas obtenidas por productos torcidos (alabeados -warped en inglés). (Texto tomado de la fuente)The purpose of this master’s thesis is to study the existence of non-constant bounded harmonic functions, giving new proofs with explicit estimates of versions of theorems, now classical, on the existence of the said non-constant bounded harmonic functions as shown by Anderson and Sullivan in [1] and [17]. Among the methods used in this thesis is a generalization of the well-known Gronwall inequality, the Sturm-Liouville theory and Riccatti equation that seem to dictate the behavior of the radial part of the solutions to Laplace’s equation obtained by the method of separation of variables in the case of metrics obtained by twisted products called warped.MaestríaMagíster en Ciencias - Matemáticas64 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::515 - AnálisisAnálisis armónicoAnálisis funcionalHarmonic analysisFunctional analysisVariedad diferenciableFunciones ArmónicasDesigualdades diferencialesEcuación de LaplaceProblema de DirichletSmooth ManifoldHarmonic FunctionsDifferential InequalitiesLaplace EquationDirichlet ProblemComportamiento de funciones armónicas sobre variedades de curvatura negativaBehavior of harmonic functions on manifolds of negative curvatureTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM. Anderson. “The Dirichlet problem at infinity for manifolds of negative curvature". J. Differ. Geom. 18, 701–721, (1983).M. Anderson and R. Schoen. “Positive harmonic functions on complete manifolds of negative curvature". Ann. Math. 2. 121, 429–461. , (1985).S. Y. Cheng and S. T. Yau. “Differential equations on Riemannian manifolds and their geometric applications" Comm. Pure Appl. Math. 28, 333–354, (1975).H. Choi. “In asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds" Trans. Am. Math. Soc. 281, 691–716, (1984).J. E. Bravo. J. C. Cortissoz. D. P. Stein. “Some Observations on Liouville’s Theorem on Surfaces and the Dirichlet Problem at Infinity" Lobachevskii Journal of Mathematics, Vol. 43, No. 1, pp. 71–77, (2022)J. C. Cortissoz. “A note on harmonic functions on surfaces" Am. Math. Mon. 123, 884–893, (2016).J. C. Cortissoz. "An Observation on the Dirichlet Problem at Infinity on Riemannian cones" arXiv:2111.11351 [math.DG], aceptado en Nagoya Math. J. (2021).M.A. Al-Gwaiz. “Sturm-Liouville Theory and its Applications" Springer Undergraduate Mathematics Series, (2007).B.G. Pachpatte. “Inequalities for Differential and Integral Equations" Mathematics in science and engineering 197, (1998).D. Gilbarg, N. S. Trudinger. “Ëlliptic Partial Differential Equations of Second Order" Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, (2001).G. Herglotz. “Über potenzreihen mit positivem, realem Teil im Einheitskreis" Ber. Verh. Sachs, Akad. Wiss., Math.-Phys. Kl. 63, (1911).R. Ji. “The asymptotic Dirichlet problems on manifolds with unbounded negative curvature" Math. Proc. Cambridge Phil. Soc. 167, 133–157, (2019).P. li. “Geometric Analysis" Vol. 134 of Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, (2012).J. Milnor. “On deciding whether a surface is parabolic or hyperbolic" Am. Math. Mon. 84, 43–46, (1977).Jost, Jörgen. “Riemannian geometry and geometric analysis" Springer International., (2017).L. Ni and L. F. Tam. “Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature" J. Differ. Geom. 64, 457–524, (2003).D. Sullivan. “The Dirichlet problem at infinity for a negatively curved manifold" J. Differ. Geom. 18, 723–732, (1983).Elias M. Stein, Rami Shakarchi. “Fourier analysis: an introduction" Princeton Lectures in Analysis, Volume 1. 18, (2003).S. T. Yau. “Harmonic functions on complete Riemannian manifolds" JComm. Pure Appl. Math. 28, 201–228, (1975).M. H. Protter, H. F. Weinberger,. “Maximum Principles in Differential Equations" PrenticeHall, Engle- wood Cliffs, NJ, (1967).EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84324/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1072661695.2023.pdf1072661695.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1287134https://repositorio.unal.edu.co/bitstream/unal/84324/2/1072661695.2023.pdf84393b5cbc98dace1898615ce374a95fMD52THUMBNAIL1072661695.2023.pdf.jpg1072661695.2023.pdf.jpgGenerated Thumbnailimage/jpeg7828https://repositorio.unal.edu.co/bitstream/unal/84324/3/1072661695.2023.pdf.jpg1ee9dc16d5c803cc8e303098c3b2fefcMD53unal/84324oai:repositorio.unal.edu.co:unal/843242023-08-12 23:04:08.425Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=