Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)

Ilustraciones, tablas

Autores:
Jaramillo Valencia, Angélica María
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79860
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79860
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Carotenoides
Mandioca
cassava
Biofortificación
regulación postranscripcional
PCR tiempo real cuantitativo
Manihot esculenta
Biofortification
posttranscriptional regulation
quantitative real time PCR
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9ecfa29680e8f3899cb324c26f657344
oai_identifier_str oai:repositorio.unal.edu.co:unal/79860
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
dc.title.translated.eng.fl_str_mv Orange (OR) protein role in the production and accumulation of β-carotene in cassava roots (Manihot esculenta Crantz)
title Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
spellingShingle Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Carotenoides
Mandioca
cassava
Biofortificación
regulación postranscripcional
PCR tiempo real cuantitativo
Manihot esculenta
Biofortification
posttranscriptional regulation
quantitative real time PCR
title_short Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
title_full Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
title_fullStr Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
title_full_unstemmed Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
title_sort Función de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
dc.creator.fl_str_mv Jaramillo Valencia, Angélica María
dc.contributor.advisor.none.fl_str_mv Ocampo, Jhon Albeiro
Álvarez Álvarez, Daniel
dc.contributor.author.none.fl_str_mv Jaramillo Valencia, Angélica María
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Carotenoides
Mandioca
cassava
Biofortificación
regulación postranscripcional
PCR tiempo real cuantitativo
Manihot esculenta
Biofortification
posttranscriptional regulation
quantitative real time PCR
dc.subject.agrovoc.none.fl_str_mv Carotenoides
Mandioca
cassava
dc.subject.proposal.spa.fl_str_mv Biofortificación
regulación postranscripcional
PCR tiempo real cuantitativo
dc.subject.proposal.other.fl_str_mv Manihot esculenta
dc.subject.proposal.eng.fl_str_mv Biofortification
posttranscriptional regulation
quantitative real time PCR
description Ilustraciones, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-28T15:19:47Z
dc.date.available.none.fl_str_mv 2021-07-28T15:19:47Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79860
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79860
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahrazem, O., López, A. J., Argandoña, J., Castillo, R., Rubio-Moraga, Á., & Gómez-Gómez, L. (2020). Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57480-2
Álvarez, D., Voß, B., Maass, D., Wüst, F., Schaub, P., Beyer, P., & Welsch, R. (2016). Carotenogenesis Is Regulated by 5′UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiology, 172(4), 2314–2326. https://doi.org/10.1104/pp.16.01262
Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251–1262. https://doi.org/10.1007/s00425-010-1250-6
Awoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica, 76(3), 195–202. https://doi.org/10.1007/BF00022164
Behnam, B., Bohorquez-Chaux, A., Fernando Castaneda-Mendez, O., Tsuji, H., Ishitani, M., & Becerra Lopez-Lavalle, L. A. (2019). An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio, 9, 814–825. https://doi.org/10.1002/2211-5463.12561
Beyene, G., Solomon, F. R., Chauhan, R. D., Gaitán-Solis, E., Narayanan, N., Gehan, J., … Cahoon, E. B. (2017). Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1–15. https://doi.org/10.1111/pbi.12862
Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-X
Bouis, H., Birol, E., Boy, E., Gannon, B., Hass, J., Mehta, S., … Welch, R. (2020). Food Biofortification—Reaping the Benefits of Science to Overcome Hidden Hunger. Council for Agricultural Science and Technology Issue Paper, (69). Retrieved from https://www.cast-science.org/publication/food-biofortification-reaping-the-benefits-of-science-to-overcome-hidden-hunger/
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1), S31–S40. https://doi.org/10.1177/15648265110321S105
Campos, K. M., Royo, C., Schulthess, A., Villegas, D., Matus, I., Ammar, K., & Schwember, A. R. (2016). Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 207(1), 109–117. https://doi.org/10.1007/s10681-015-1541-x
Canene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability. In Carotenoids (pp. 115–148). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7501-0_7
Carvalho, L.J.C.B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 120(1), 133–142. https://doi.org/https://doi.org/10.1023/A:1017548930235
Carvalho, Luiz J.C.B., Agustini, M. A. V., Anderson, J. V., Vieira, E. A., de Souza, C. R. B., Chen, S., … Silva, J. P. (2016). Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. BMC Plant Biology, 16(1), 1–23. https://doi.org/10.1186/s12870-016-0826-0
Carvalho, Luiz Joaquim Castelo Branco, Lippolis, J., Chen, S., de Souza, C. R. B., Vieira, E. A., & Anderson, J. V. (2012). Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot Esculenta Crantz) storage root. The Open Biochemistry Journal, 6, 116–130. https://doi.org/1874-091X/12
Ceballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., & Andersson, M. S. (2017). Carotenoids in Cassava Roots. In Carotenoids. InTech. https://doi.org/10.5772/intechopen.68279
Ceballos, H., & De la Cruz, G. A. (2002). Taxonomía y Morfología de la Yuca. In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 16–32). Centro Internacional de Agricultura Tropical (CIAT).
Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics, 128(9), 1647–1667. https://doi.org/10.1007/s00122-015-2555-4
Ceballos, H., Morante, N., Sánchez, T., Ortiz, D., Aragón, I., Chávez, A. L., … Dufour, D. (2013). Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Science, 53(6), 2342–2351. https://doi.org/10.2135/cropsci2013.02.0123
Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava : a review. In Vitro Cellular & Developmental Biology - Plant, 52, 461–478. https://doi.org/10.1007/s11627-016-9776-3
Chavarriaga-Aguirre, P., Prías, M., López, D., Ortiz, D., Toro-Perea, N., & Tohme, J. (2017). Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Research, 26(5), 639–651. https://doi.org/10.1007/s11248-017-0037-y
Chayut, N., Yuan, H., Ohali, S., Meir, A., Sa’ar, U., Tzuri, G., … Tadmor, Y. (2017). Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173(1), 376–389. https://doi.org/10.1104/pp.16.01256
Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology. https://doi.org/10.1186/s12870-015-0661-8
Colombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers. Genetics and Molecular Biology, 23(2), 417–423. https://doi.org/10.1590/S1415-47572000000200030
Crisp, P., Walkey, D. G. A., Bellman, E., & Roberts, E. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica, 24(1), 173–176. https://doi.org/10.1007/BF00147182
Ding, Z., Zhang, Y., Xiao, Y., Liu, F., Wang, M., Zhu, X., … Li, P. (2016). Transcriptome response of cassava leaves under natural shade. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep31673
Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350. https://doi.org/10.1371/journal.pone.0000350
Duputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043. https://doi.org/10.1111/j.1365-2699.2011.02474.x
Ellison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., … Dawson, J. C. (2018). Carotenoid presence is associated with the or gene in domesticated carrot. Genetics. https://doi.org/10.1534/genetics.118.301299
Ellison, S., Senalik, D., Bostan, H., Iorizzo, M., & Simon, P. (2017). Fine Mapping, Transcriptome Analysis, and Marker Development for Y 2 , the Gene That Conditions b-Carotene Accumulation in Carrot (Daucus carota L.). https://doi.org/10.1534/g3.117.043067
Esuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., … Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110. https://doi.org/10.1007/s10681-016-1772-5
Failla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., & Sayre, R. T. (2012). Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry, 60(15), 3861–3866. https://doi.org/10.1021/jf204958w
FAO. (2013). Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations.
FAO, & IFAD. (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana,the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy, 2. Retrieved from http://www.fao.org/docrep/009/a0154e/A0154E00.HTM#TOC
FAOSTAT. (2020). Food and Agriculture Organization of the United Nations. Retrieved November 3, 2020, from http://www.fao.org/faostat/es/#data/QC
Finkelstein, J. L., Mehta, S., Udipi, S. A., Ghugre, P. S., Luna, S. V., Wenger, M. J., … Haas, J. D. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. Journal of Nutrition, 145(7), 1576–1581. https://doi.org/10.3945/jn.114.208009
Fraser, P., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265. https://doi.org/10.1016/j.plipres.2003.10.002
Fregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., … Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics, 89(6), 719–727. https://doi.org/10.1007/BF00223711
Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580
Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180. https://doi.org/10.1016/j.copbio.2017.02.001
Haas, J. D., Luna, S. V, Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., Beebe, S., … Egli, I. M. (2016). Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. The Journal of Nutrition, 146(8), 1586–1592. https://doi.org/10.3945/jn.115.224741
Hillocks, R. J., Thresh, J. M., & Bellotti, A. (2002). Cassava : biology, production and utilization. CABI Pub.
Howeler, R. (2012). Recent trends in production and utilization of cassava in Asia. In R. Howeler (Ed.), The cassava handbook: A reference manual based on the asian regional cassava training course, held in Thailand (pp. 1–22). Bangkok: Centro Internacional de Agricultura Tropical (CIAT).
Hu, M., Hu, W., Xia, Z., Zhou, X., & Wang, W. (2016). Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Frontiers in Plant Science, 7(680), 1–12. https://doi.org/10.3389/fpls.2016.00680
Jaramillo, A., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLOS ONE, 13(12), e0209702. https://doi.org/10.1371/journal.pone.0209702
Jeong, H. B., Kang, M. Y., Jung, A., Han, K., Lee, J. H., Jo, J., … Kang, B. C. (2019). Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17(6), 1081–1093. https://doi.org/10.1111/pbi.13039
Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432. https://doi.org/10.1093/nar/gkm256
Kim, H. S., Ji, C. Y., Lee, C., Kim, S., Park, S.-C., & Kwak, S. (2018). Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. Journal of Experimental Botany, 69(14), 3393–3400. https://doi.org/10.1093/jxb/ery023
Kim, S. E., Kim, H. S., Wang, Z., Ke, Q., Lee, C. J., Park, S. U., … Kwak, S. S. (2019). A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Reports, 38(11), 1393–1402. https://doi.org/10.1007/s00299-019-02448-4
Kim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S., & Kwak, S.-S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69–78. https://doi.org/10.1016/j.phytochem.2011.11.003
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
Latham, M. C. (2002). Nutricion Humana en el Mundo en Desarrollo. Colección FAO: Alimentación y nutrición N° 29. Ithaca: FAO. https://doi.org/10.1017/CBO9781107415324.004
Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., & Garvin, D. F. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal, 26(1), 59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.x
Li, S., Yu, X., Cheng, Z., Zeng, C., Li, W., Zhang, L., & Peng, M. (2020). Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany, 71(1), 422–434. https://doi.org/10.1093/jxb/erz444
Lindgren, L. O., Stålberg, K. G., & Höglund, A. S. (2003). Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779–785. https://doi.org/10.1104/pp.102.017053
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262
Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213–223. https://doi.org/10.1093/jxb/erm299
Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates highlevels of β-carotene accumulation. The Plant Cell Online, 18(12), 3594–3605. https://doi.org/10.1105/tpc.106.046417
Luo, X., Tomlins, K. I., Carvalho, L. J. C. B., Li, K., & Chen, S. (2018). The analysis of candidate genes and loci involved with carotenoid metabolism in cassava (Manihot esculenta Crantz) using SLAF-seq. Acta Physiologiae Plantarum, 40(4), 1–11. https://doi.org/10.1007/s11738-018-2634-7
Malik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Sholihin, Srean, P., … Ishitani, M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 70(2), 145–166. https://doi.org/10.1270/jsbbs.18180 Minagricultura. (2018). Agronet. Retrieved November 3, 2020, from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative Splicing and DNA Damage Response in Plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00091
Nweke, F. (2004). New challenges in the cassava transformation in Nigeria and Ghana. Intl Food Policy Res Inst., 118. Retrieved from http://ageconsearch.umn.edu/bitstream/16113/1/ep040118.pdf
Okogbenin, E., Marin, J., & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica, 147(3), 433–440. https://doi.org/10.1007/s10681-005-9042-y
Olsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88(1), 131–142. https://doi.org/10.2307/2657133
Palmer, A. C., Healy, K., Barffour, M. A., Siamusantu, W., Chileshe, J., Schulze, K. J., … Labrique, A. B. (2016). Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. The Journal of Nutrition, 146(12), 2551–2558. https://doi.org/10.3945/jn.116.239202
Park, S., Kim, H. S., Jung, Y. J., Kim, S. H., Ji, C. Y., Wang, Z., … Kwak, S. (2016). Orange protein has a role in phytoene synthase stabilization in sweetpotato. Nature Publishing Group, 1–12. https://doi.org/10.1038/srep33563
Prochnik, S., Reddy Marri, P., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., … Danforth, D. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biol, 5, 88–94. https://doi.org/10.1007/s12042-011-9088-z
Pulido, P., & Leister, D. (2017). Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827
Rabbi, I. Y., Hamblin, M. T., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/J.VIRUSRES.2013.12.028
Rabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., … Kulakow, P. (2017). Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(0), 0. https://doi.org/10.3835/plantgenome2016.09.0094
Raila, J., Enjalbert, F., Mothes, R., Hurtienne, A., & Schweigert, F. J. (2012). Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma. Veterinary Clinical Pathology, 41(1), 119–122. https://doi.org/10.1111/j.1939-165X.2012.00400.x
Roa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., & Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87(11), 1647–1655. https://doi.org/10.2307/2656741
Roa, A. C., Maya, M. M., Duque, M. C., Tohme, J., Allem, A. C., & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics, 95(5–6), 741–750. https://doi.org/10.1007/s001220050620
Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book, 10, e0158. https://doi.org/10.1199/tab.0158
Salcedo, A., Zambrana, C., & Siritunga, D. (2014). Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biology, 7(2), 53–64. https://doi.org/10.1007/s12042-014-9137-5
Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/10.1016/j.gfs.2012.12.003
Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F., … Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chemistry, 151, 444–451. https://doi.org/10.1016/j.foodchem.2013.11.081
Sennepin, A. D., Charpentier, S., Normand, T., Sarré, C., Legrand, A., & Mollet, L. M. (2009). Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Analytical Biochemistry, 393, 129–131. https://doi.org/10.1016/j.ab.2009.06.004
Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412. https://doi.org/10.1046/j.1365-313x.1999.00611.x
Soto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., … López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4
Talsma, E. F., Brouwer, I. D., Verhoef, H., Mbera, G. N., Mwangi, A. M., Demir, A. Y., … Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 103(1), 258–267. https://doi.org/10.3945/ajcn.114.100164
Trösch, R., Mühlhaus, T., Schroda, M., & Willmund, F. (2015). ATP-dependent molecular chaperones in plastids - More complex than expected. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 872–888. https://doi.org/10.1016/j.bbabio.2015.01.002
Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., … Tadmor, Y. (2015). A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814
Udoh, L. I., Gedil, M., Parkes, E. Y., Kulakow, P., Adesoye, A., Nwuba, C., & Rabbi, I. Y. (2017). Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 37(10). https://doi.org/10.1007/s11032-017-0718-5
von Lintig, J. (2012). Metabolism of carotenoids and retinoids related to vision. The Journal of Biological Chemistry, 287(3), 1627–1634. https://doi.org/10.1074/jbc.R111.303990
Wahyuni, Y., Anika, M., Putri, D. H., Hartati, N. S., Harmoko, R., & Sudarmonowati, E. (2020). Variation in transcriptional profiles of carotenoid biosynthetic genes in Indonesian yellow- and white-fleshed tuberous root cassava (Manihot esculenta Crantz) accessions. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012016
Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., … Beyer, P. (2010). Provitamin A Accumulation in Cassava ( Manihot esculenta ) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22(10), 3348–3356. https://doi.org/10.1105/tpc.110.077560
Welsch, R., Zhou, X., Koschmieder, J., Schlossarek, T., Yuan, H., Sun, T., & Li, L. (2020). Characterization of Cauliflower OR Mutant Variants. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01716
WHO. (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficienc. WHO. Geneva: World Health Organization. Retrieved from http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/
Wu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., … Fei, Z. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-06983-8
Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/SCIENCE.287.5451.303
Zhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., … Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences, 112(11). https://doi.org/10.1073/pnas.1420831112
Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18232–18237. https://doi.org/10.1073/pnas.0809737105
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira Valle del Cauca
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79860/7/1130612219.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79860/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79860/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79860/8/1130612219.2021.pdf.jpg
bitstream.checksum.fl_str_mv c0fae70acd129be21a33dcb23bb9882c
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
1f161988f5cb6403dba3a26f78820ad9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090172214542336
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombia, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ocampo, Jhon Albeiro631e706ac5a1235a653c7220186a0da3Álvarez Álvarez, Daniel834a5ca8532c8c48aaa04199948d9c4dJaramillo Valencia, Angélica Maríad67de92c8fe7f0f17b64668e2bd05fb72021-07-28T15:19:47Z2021-07-28T15:19:47Z2021https://repositorio.unal.edu.co/handle/unal/79860Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasEl desarrollo de nuevos cultivares de yuca con alto contenido de carotenoides hace parte de una estrategia para combatir la deficiencia de vitamina A gracias a su amplio consumo a nivel mundial. Orange (OR) y fitoeno sintasa (PSY) son proteínas reguladoras en la producción de carotenoides, pero la función de OR, así como su relación con PSY, no ha sido estudiada en yuca. El objetivo de este trabajo fue estudiar la función de la proteína OR en la producción de β-caroteno en raíces de yuca y su relación con PSY. Para esto se realizó un análisis bioinformático para identificar genes codificantes de OR en yuca, y posteriormente se llevó a cabo un estudio de expresión de los genes detectados en raíces de un genotipo de yuca blanca (60444) y dos genotipos de yuca amarilla (GM5309-57 y GM3736-37). Los datos se analizaron mediante un análisis univariado de varianza y se utilizó una prueba de comparación de medias Dunnett (p˂0.05) con el programa SAS (v9.3). Los resultados mostraron la presencia de cuatro genes hipotéticos OR con porcentajes de identidad con Arabidopsis thaliana entre 65,8 y 76,3%. El nivel de transcritos de los genes OR permanecieron constantes, mientras que se encontró una mayor acumulación de proteína OR en los genotipos amarillos. Asimismo, se observó una sobreexpresión de 3,7 veces del gen PSY1 y una disminución de 4,7 y 1,6 veces para NCED y BCH, respectivamente, lo cual podría relacionarse con un posible mecanismo de atenuación del catabolismo del β-caroteno promovido por OR. Mientras que se encontraron diferencias significativas (p˂0.05) en los genotipos amarillos en comparación con el blanco para el contenido de carotenos, proteína OR y expresión génica de PSY1 y NCED, el gen BCH presentó diferencias significativas solo en uno de los genotipos amarillos. Los resultados obtenidos invitan a futuras investigaciones enfocadas al mejoramiento del contenido de carotenoides en la yuca.The development of new cassava cultivars with high concentration of carotenoids is part of a strategy to combat vitamin A deficiency due to its wide consumption worldwide. Orange (OR) and phytoene synthase (PSY) are regulatory proteins in the production of carotenoids, but OR function, as well as its relationship with PSY, has not yet been studied in cassava. The aim of this work has been the study if the OR protein function upon the production of β-carotene in cassava roots, as well as its relationship with PSY protein. A bioinformatic analysis was carried out to identify cassava OR genes, and a subsequent expression study of the detected genes in roots of one white (60444) and two yellow (GM5309-57 and GM3736-37) cassava genotypes was conducted. Data was analyzed with a univariate analysis of variance and a Dunnett mean comparison test (p˂ 0.05) with the SAS program (v9.3). Results showed the presence of four hypothetical OR genes with identity percentages with Arabidopsis thaliana between 65.8 and 76.3%. The transcripts levels of the OR genes remained constant, while a higher accumulation of OR protein was found in the yellow genotypes. Likewise, a 3.7-fold overexpression of PSY1 and a 4.7- and 1.6-fold decrease for NCED and BCH were observed, respectively, which could be related to a possible mechanism of attenuation of the catabolism of β-carotene promoted by OR. Whereas significant differences (p˂ 0.05) were found in yellow genotypes compared to white for carotene content, protein OR and gene expression of PSY1 and NCED. the BCH gene presented only significant differences in one of the yellow genotypes. These results encourage further research aiming to carotenoids enhancement in cassava.MaestríaMagíster en Ciencias BiológicasLa secuencia de la región de codificación (CDS) del gen OR de Arabidopsis thaliana (AtOR) (AY117226.1) se utilizó como referencia para la búsqueda de los genes hipotéticos de OR en el genoma de la yuca en Phytozome. Se seleccionaron tres genotipos de yuca provenientes del programa de mejoramiento de yuca del CIAT (3° 30’N, 76° 21’O; 965 msnm, Palmira, Colombia). El material seleccionado correspondió a un genotipo con raíz de color blanco (60444) y dos genotipos con pulpa amarilla (GM 5309-57 y GM3736-37).87 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias BiológicasFacultad de Ciencias AgropecuariasPalmira Valle del CaucaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesCarotenoidesMandiocacassavaBiofortificaciónregulación postranscripcionalPCR tiempo real cuantitativoManihot esculentaBiofortificationposttranscriptional regulationquantitative real time PCRFunción de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)Orange (OR) protein role in the production and accumulation of β-carotene in cassava roots (Manihot esculenta Crantz)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAhrazem, O., López, A. J., Argandoña, J., Castillo, R., Rubio-Moraga, Á., & Gómez-Gómez, L. (2020). Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57480-2Álvarez, D., Voß, B., Maass, D., Wüst, F., Schaub, P., Beyer, P., & Welsch, R. (2016). Carotenogenesis Is Regulated by 5′UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiology, 172(4), 2314–2326. https://doi.org/10.1104/pp.16.01262Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251–1262. https://doi.org/10.1007/s00425-010-1250-6Awoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica, 76(3), 195–202. https://doi.org/10.1007/BF00022164Behnam, B., Bohorquez-Chaux, A., Fernando Castaneda-Mendez, O., Tsuji, H., Ishitani, M., & Becerra Lopez-Lavalle, L. A. (2019). An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio, 9, 814–825. https://doi.org/10.1002/2211-5463.12561Beyene, G., Solomon, F. R., Chauhan, R. D., Gaitán-Solis, E., Narayanan, N., Gehan, J., … Cahoon, E. B. (2017). Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1–15. https://doi.org/10.1111/pbi.12862Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-XBouis, H., Birol, E., Boy, E., Gannon, B., Hass, J., Mehta, S., … Welch, R. (2020). Food Biofortification—Reaping the Benefits of Science to Overcome Hidden Hunger. Council for Agricultural Science and Technology Issue Paper, (69). Retrieved from https://www.cast-science.org/publication/food-biofortification-reaping-the-benefits-of-science-to-overcome-hidden-hunger/Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1), S31–S40. https://doi.org/10.1177/15648265110321S105Campos, K. M., Royo, C., Schulthess, A., Villegas, D., Matus, I., Ammar, K., & Schwember, A. R. (2016). Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 207(1), 109–117. https://doi.org/10.1007/s10681-015-1541-xCanene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability. In Carotenoids (pp. 115–148). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7501-0_7Carvalho, L.J.C.B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 120(1), 133–142. https://doi.org/https://doi.org/10.1023/A:1017548930235Carvalho, Luiz J.C.B., Agustini, M. A. V., Anderson, J. V., Vieira, E. A., de Souza, C. R. B., Chen, S., … Silva, J. P. (2016). Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. BMC Plant Biology, 16(1), 1–23. https://doi.org/10.1186/s12870-016-0826-0Carvalho, Luiz Joaquim Castelo Branco, Lippolis, J., Chen, S., de Souza, C. R. B., Vieira, E. A., & Anderson, J. V. (2012). Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot Esculenta Crantz) storage root. The Open Biochemistry Journal, 6, 116–130. https://doi.org/1874-091X/12Ceballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., & Andersson, M. S. (2017). Carotenoids in Cassava Roots. In Carotenoids. InTech. https://doi.org/10.5772/intechopen.68279Ceballos, H., & De la Cruz, G. A. (2002). Taxonomía y Morfología de la Yuca. In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 16–32). Centro Internacional de Agricultura Tropical (CIAT).Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics, 128(9), 1647–1667. https://doi.org/10.1007/s00122-015-2555-4Ceballos, H., Morante, N., Sánchez, T., Ortiz, D., Aragón, I., Chávez, A. L., … Dufour, D. (2013). Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Science, 53(6), 2342–2351. https://doi.org/10.2135/cropsci2013.02.0123Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava : a review. In Vitro Cellular & Developmental Biology - Plant, 52, 461–478. https://doi.org/10.1007/s11627-016-9776-3Chavarriaga-Aguirre, P., Prías, M., López, D., Ortiz, D., Toro-Perea, N., & Tohme, J. (2017). Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Research, 26(5), 639–651. https://doi.org/10.1007/s11248-017-0037-yChayut, N., Yuan, H., Ohali, S., Meir, A., Sa’ar, U., Tzuri, G., … Tadmor, Y. (2017). Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173(1), 376–389. https://doi.org/10.1104/pp.16.01256Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology. https://doi.org/10.1186/s12870-015-0661-8Colombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers. Genetics and Molecular Biology, 23(2), 417–423. https://doi.org/10.1590/S1415-47572000000200030Crisp, P., Walkey, D. G. A., Bellman, E., & Roberts, E. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica, 24(1), 173–176. https://doi.org/10.1007/BF00147182Ding, Z., Zhang, Y., Xiao, Y., Liu, F., Wang, M., Zhu, X., … Li, P. (2016). Transcriptome response of cassava leaves under natural shade. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep31673Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350. https://doi.org/10.1371/journal.pone.0000350Duputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043. https://doi.org/10.1111/j.1365-2699.2011.02474.xEllison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., … Dawson, J. C. (2018). Carotenoid presence is associated with the or gene in domesticated carrot. Genetics. https://doi.org/10.1534/genetics.118.301299Ellison, S., Senalik, D., Bostan, H., Iorizzo, M., & Simon, P. (2017). Fine Mapping, Transcriptome Analysis, and Marker Development for Y 2 , the Gene That Conditions b-Carotene Accumulation in Carrot (Daucus carota L.). https://doi.org/10.1534/g3.117.043067Esuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., … Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110. https://doi.org/10.1007/s10681-016-1772-5Failla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., & Sayre, R. T. (2012). Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry, 60(15), 3861–3866. https://doi.org/10.1021/jf204958wFAO. (2013). Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations.FAO, & IFAD. (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana,the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy, 2. Retrieved from http://www.fao.org/docrep/009/a0154e/A0154E00.HTM#TOCFAOSTAT. (2020). Food and Agriculture Organization of the United Nations. Retrieved November 3, 2020, from http://www.fao.org/faostat/es/#data/QCFinkelstein, J. L., Mehta, S., Udipi, S. A., Ghugre, P. S., Luna, S. V., Wenger, M. J., … Haas, J. D. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. Journal of Nutrition, 145(7), 1576–1581. https://doi.org/10.3945/jn.114.208009Fraser, P., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265. https://doi.org/10.1016/j.plipres.2003.10.002Fregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., … Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics, 89(6), 719–727. https://doi.org/10.1007/BF00223711Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180. https://doi.org/10.1016/j.copbio.2017.02.001Haas, J. D., Luna, S. V, Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., Beebe, S., … Egli, I. M. (2016). Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. The Journal of Nutrition, 146(8), 1586–1592. https://doi.org/10.3945/jn.115.224741Hillocks, R. J., Thresh, J. M., & Bellotti, A. (2002). Cassava : biology, production and utilization. CABI Pub.Howeler, R. (2012). Recent trends in production and utilization of cassava in Asia. In R. Howeler (Ed.), The cassava handbook: A reference manual based on the asian regional cassava training course, held in Thailand (pp. 1–22). Bangkok: Centro Internacional de Agricultura Tropical (CIAT).Hu, M., Hu, W., Xia, Z., Zhou, X., & Wang, W. (2016). Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Frontiers in Plant Science, 7(680), 1–12. https://doi.org/10.3389/fpls.2016.00680Jaramillo, A., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLOS ONE, 13(12), e0209702. https://doi.org/10.1371/journal.pone.0209702Jeong, H. B., Kang, M. Y., Jung, A., Han, K., Lee, J. H., Jo, J., … Kang, B. C. (2019). Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17(6), 1081–1093. https://doi.org/10.1111/pbi.13039Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432. https://doi.org/10.1093/nar/gkm256Kim, H. S., Ji, C. Y., Lee, C., Kim, S., Park, S.-C., & Kwak, S. (2018). Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. Journal of Experimental Botany, 69(14), 3393–3400. https://doi.org/10.1093/jxb/ery023Kim, S. E., Kim, H. S., Wang, Z., Ke, Q., Lee, C. J., Park, S. U., … Kwak, S. S. (2019). A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Reports, 38(11), 1393–1402. https://doi.org/10.1007/s00299-019-02448-4Kim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S., & Kwak, S.-S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69–78. https://doi.org/10.1016/j.phytochem.2011.11.003Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0Latham, M. C. (2002). Nutricion Humana en el Mundo en Desarrollo. Colección FAO: Alimentación y nutrición N° 29. Ithaca: FAO. https://doi.org/10.1017/CBO9781107415324.004Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., & Garvin, D. F. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal, 26(1), 59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.xLi, S., Yu, X., Cheng, Z., Zeng, C., Li, W., Zhang, L., & Peng, M. (2020). Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany, 71(1), 422–434. https://doi.org/10.1093/jxb/erz444Lindgren, L. O., Stålberg, K. G., & Höglund, A. S. (2003). Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779–785. https://doi.org/10.1104/pp.102.017053Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213–223. https://doi.org/10.1093/jxb/erm299Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates highlevels of β-carotene accumulation. The Plant Cell Online, 18(12), 3594–3605. https://doi.org/10.1105/tpc.106.046417Luo, X., Tomlins, K. I., Carvalho, L. J. C. B., Li, K., & Chen, S. (2018). The analysis of candidate genes and loci involved with carotenoid metabolism in cassava (Manihot esculenta Crantz) using SLAF-seq. Acta Physiologiae Plantarum, 40(4), 1–11. https://doi.org/10.1007/s11738-018-2634-7Malik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Sholihin, Srean, P., … Ishitani, M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 70(2), 145–166. https://doi.org/10.1270/jsbbs.18180 Minagricultura. (2018). Agronet. Retrieved November 3, 2020, from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative Splicing and DNA Damage Response in Plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00091Nweke, F. (2004). New challenges in the cassava transformation in Nigeria and Ghana. Intl Food Policy Res Inst., 118. Retrieved from http://ageconsearch.umn.edu/bitstream/16113/1/ep040118.pdfOkogbenin, E., Marin, J., & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica, 147(3), 433–440. https://doi.org/10.1007/s10681-005-9042-yOlsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88(1), 131–142. https://doi.org/10.2307/2657133Palmer, A. C., Healy, K., Barffour, M. A., Siamusantu, W., Chileshe, J., Schulze, K. J., … Labrique, A. B. (2016). Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. The Journal of Nutrition, 146(12), 2551–2558. https://doi.org/10.3945/jn.116.239202Park, S., Kim, H. S., Jung, Y. J., Kim, S. H., Ji, C. Y., Wang, Z., … Kwak, S. (2016). Orange protein has a role in phytoene synthase stabilization in sweetpotato. Nature Publishing Group, 1–12. https://doi.org/10.1038/srep33563Prochnik, S., Reddy Marri, P., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., … Danforth, D. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biol, 5, 88–94. https://doi.org/10.1007/s12042-011-9088-zPulido, P., & Leister, D. (2017). Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827Rabbi, I. Y., Hamblin, M. T., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/J.VIRUSRES.2013.12.028Rabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., … Kulakow, P. (2017). Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(0), 0. https://doi.org/10.3835/plantgenome2016.09.0094Raila, J., Enjalbert, F., Mothes, R., Hurtienne, A., & Schweigert, F. J. (2012). Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma. Veterinary Clinical Pathology, 41(1), 119–122. https://doi.org/10.1111/j.1939-165X.2012.00400.xRoa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., & Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87(11), 1647–1655. https://doi.org/10.2307/2656741Roa, A. C., Maya, M. M., Duque, M. C., Tohme, J., Allem, A. C., & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics, 95(5–6), 741–750. https://doi.org/10.1007/s001220050620Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book, 10, e0158. https://doi.org/10.1199/tab.0158Salcedo, A., Zambrana, C., & Siritunga, D. (2014). Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biology, 7(2), 53–64. https://doi.org/10.1007/s12042-014-9137-5Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/10.1016/j.gfs.2012.12.003Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F., … Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chemistry, 151, 444–451. https://doi.org/10.1016/j.foodchem.2013.11.081Sennepin, A. D., Charpentier, S., Normand, T., Sarré, C., Legrand, A., & Mollet, L. M. (2009). Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Analytical Biochemistry, 393, 129–131. https://doi.org/10.1016/j.ab.2009.06.004Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412. https://doi.org/10.1046/j.1365-313x.1999.00611.xSoto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., … López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4Talsma, E. F., Brouwer, I. D., Verhoef, H., Mbera, G. N., Mwangi, A. M., Demir, A. Y., … Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 103(1), 258–267. https://doi.org/10.3945/ajcn.114.100164Trösch, R., Mühlhaus, T., Schroda, M., & Willmund, F. (2015). ATP-dependent molecular chaperones in plastids - More complex than expected. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 872–888. https://doi.org/10.1016/j.bbabio.2015.01.002Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., … Tadmor, Y. (2015). A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814Udoh, L. I., Gedil, M., Parkes, E. Y., Kulakow, P., Adesoye, A., Nwuba, C., & Rabbi, I. Y. (2017). Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 37(10). https://doi.org/10.1007/s11032-017-0718-5von Lintig, J. (2012). Metabolism of carotenoids and retinoids related to vision. The Journal of Biological Chemistry, 287(3), 1627–1634. https://doi.org/10.1074/jbc.R111.303990Wahyuni, Y., Anika, M., Putri, D. H., Hartati, N. S., Harmoko, R., & Sudarmonowati, E. (2020). Variation in transcriptional profiles of carotenoid biosynthetic genes in Indonesian yellow- and white-fleshed tuberous root cassava (Manihot esculenta Crantz) accessions. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012016Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., … Beyer, P. (2010). Provitamin A Accumulation in Cassava ( Manihot esculenta ) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22(10), 3348–3356. https://doi.org/10.1105/tpc.110.077560Welsch, R., Zhou, X., Koschmieder, J., Schlossarek, T., Yuan, H., Sun, T., & Li, L. (2020). Characterization of Cauliflower OR Mutant Variants. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01716WHO. (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficienc. WHO. Geneva: World Health Organization. Retrieved from http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/Wu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., … Fei, Z. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-06983-8Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/SCIENCE.287.5451.303Zhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., … Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences, 112(11). https://doi.org/10.1073/pnas.1420831112Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18232–18237. https://doi.org/10.1073/pnas.0809737105ORIGINAL1130612219.2021.pdf1130612219.2021.pdfTesis de maestría en ciencias biológicasapplication/pdf3386223https://repositorio.unal.edu.co/bitstream/unal/79860/7/1130612219.2021.pdfc0fae70acd129be21a33dcb23bb9882cMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79860/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79860/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56THUMBNAIL1130612219.2021.pdf.jpg1130612219.2021.pdf.jpgGenerated Thumbnailimage/jpeg5364https://repositorio.unal.edu.co/bitstream/unal/79860/8/1130612219.2021.pdf.jpg1f161988f5cb6403dba3a26f78820ad9MD58unal/79860oai:repositorio.unal.edu.co:unal/798602023-07-23 23:03:42.362Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==