Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
ilustraciones, diagramas
- Autores:
-
Romero Castaño, Juan Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84688
- Palabra clave:
- 660 - Ingeniería química::661 - Tecnología de químicos industriales
Biomasa vegetal
Plant biomass
5 – hidroximetilfurfural
biomasa lignocelulósica
pretratamiento
líquido iónico
extracción reactiva
modelamiento
simulación
Hydroxymethylfurfural
Lignocellulosic biomass
Pretreatment
Pretreatment
Ionic liquid
Reactive extraction
Modeling
Simulation
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_9ecdfca856a92585681a5ac4cdd78019 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84688 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
dc.title.translated.eng.fl_str_mv |
Formulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fiber |
title |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
spellingShingle |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz 660 - Ingeniería química::661 - Tecnología de químicos industriales Biomasa vegetal Plant biomass 5 – hidroximetilfurfural biomasa lignocelulósica pretratamiento líquido iónico extracción reactiva modelamiento simulación Hydroxymethylfurfural Lignocellulosic biomass Pretreatment Pretreatment Ionic liquid Reactive extraction Modeling Simulation |
title_short |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
title_full |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
title_fullStr |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
title_full_unstemmed |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
title_sort |
Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz |
dc.creator.fl_str_mv |
Romero Castaño, Juan Felipe |
dc.contributor.advisor.none.fl_str_mv |
Ruiz Colorado, Angela Adriana |
dc.contributor.author.none.fl_str_mv |
Romero Castaño, Juan Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioprocesos y Flujos Reactivos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::661 - Tecnología de químicos industriales |
topic |
660 - Ingeniería química::661 - Tecnología de químicos industriales Biomasa vegetal Plant biomass 5 – hidroximetilfurfural biomasa lignocelulósica pretratamiento líquido iónico extracción reactiva modelamiento simulación Hydroxymethylfurfural Lignocellulosic biomass Pretreatment Pretreatment Ionic liquid Reactive extraction Modeling Simulation |
dc.subject.lemb.spa.fl_str_mv |
Biomasa vegetal |
dc.subject.lemb.eng.fl_str_mv |
Plant biomass |
dc.subject.proposal.spa.fl_str_mv |
5 – hidroximetilfurfural biomasa lignocelulósica pretratamiento líquido iónico extracción reactiva modelamiento simulación |
dc.subject.proposal.eng.fl_str_mv |
Hydroxymethylfurfural Lignocellulosic biomass Pretreatment Pretreatment Ionic liquid Reactive extraction Modeling Simulation |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-11T17:43:00Z |
dc.date.available.none.fl_str_mv |
2023-09-11T17:43:00Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84688 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84688 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
ABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/ Acosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336 Acosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeley Altway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034 Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001 Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001 Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820H Barcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920 Cavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of Chemical Etecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/ Chatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534K Choudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763 Das, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDF Dedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9 Deuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058a Dutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017 FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL Fuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055 Guo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182 Parada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/ Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057 Hu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253 Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598 Kaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011 López-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813 Luo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975 Luterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748 Megías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395 Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201 Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001 Mon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006 Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488 Rincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589 Sato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077 Schmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010 SCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basic Singh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958 Slak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325 Sorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929 Soukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313 Souzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010 Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515 UN. (2021). UN Comtrade. https://comtradeplus.un.org/ van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182k Wang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037 Wanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-x Xu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338 Zhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791 Zhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220 Zhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857J Zhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
78 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84688/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84688/2/1152460928.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84688/3/1152460928.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 24341f87d172e3efb142a971f1b0f06a f21a2de115140e67b15902d28abfcab2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089385669296128 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Colorado, Angela Adriana60ff4330d25ddf7e73e05a4feb6fa9feRomero Castaño, Juan Felipe993146a8308d05950d5a0fc7ea67e67aBioprocesos y Flujos Reactivos2023-09-11T17:43:00Z2023-09-11T17:43:00Z2023https://repositorio.unal.edu.co/handle/unal/84688Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl calentamiento global generado por la fuerte dependencia de los combustibles fósiles requiere de distintos tipos de soluciones, y entre las más prometedores se encuentra la obtención de productos químicos plataforma a partir de material residual lignocelulósico. En este trabajo se formula una ruta de producción sostenible del compuesto químico plataforma 5 – hidroximetilfurfural a partir de la biomasa lignocelulósica fibra de maíz. La ruta formulada consiste primero de un pretratamiento con líquido iónico en combinación con microondas, seguido de una hidrólisis enzimática para acceder a la glucosa estructural y finalmente una etapa de reacción y separación in situ en un sistema bifásico agua – orgánico conocida como extracción reactiva. Para concluir, se presenta el modelamiento y simulación de esta última etapa del proceso desarrollada en la literatura. (Texto tomado de la fuente)Global warming generated by the strong dependence on fossil fuels requires different types of solutions, and one of the most promising is to obtain platform chemicals from residual lignocellulosic material. In this work, a route for the sustainable production of the chemical compound platform 5 – hydroxymethylfurfural is formulated from the lignocellulosic biomass of corn fiber. The formulated route consists first of a pretreatment with ionic liquid in combination with microwaves, followed by an enzymatic hydrolysis to access the structural glucose and finally a reaction and separation step in situ in a biphasic waterorganic system known as reactive extraction. To conclude, the modeling and simulation of this last stage of the process developed in the literature is presented.MaestríaMagíster en Ingeniería - Ingeniería QuímicaLínea de Investigación: Metabolitos de valor agregado de biomasas Grupo de Investigación: Bioprocesos y Flujos Reactivos - BIOFRUNMetabolitos de valor agregado de biomasasÁrea curricular de Ingeniería Química e Ingeniería de Petróleos78 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::661 - Tecnología de químicos industrialesBiomasa vegetalPlant biomass5 – hidroximetilfurfuralbiomasa lignocelulósicapretratamientolíquido iónicoextracción reactivamodelamientosimulaciónHydroxymethylfurfuralLignocellulosic biomassPretreatmentPretreatmentIonic liquidReactive extractionModelingSimulationFormulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maízFormulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fiberTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/Acosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336Acosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeleyAltway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820HBarcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920Cavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of ChemicalEtecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/Chatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534KChoudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763Das, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDFDedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9Deuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058aDutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCLFuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055Guo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182Parada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057Hu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598Kaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011López-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813Luo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975Luterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748Megías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001Mon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488Rincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589Sato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077Schmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010SCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basicSingh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958Slak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325Sorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929Soukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313Souzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515UN. (2021). UN Comtrade. https://comtradeplus.un.org/van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182kWang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037Wanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-xXu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338Zhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791Zhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220Zhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857JZhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120EstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84688/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152460928.2023.pdf1152460928.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1740476https://repositorio.unal.edu.co/bitstream/unal/84688/2/1152460928.2023.pdf24341f87d172e3efb142a971f1b0f06aMD52THUMBNAIL1152460928.2023.pdf.jpg1152460928.2023.pdf.jpgGenerated Thumbnailimage/jpeg5532https://repositorio.unal.edu.co/bitstream/unal/84688/3/1152460928.2023.pdf.jpgf21a2de115140e67b15902d28abfcab2MD53unal/84688oai:repositorio.unal.edu.co:unal/846882023-09-11 23:03:26.77Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |