Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz

ilustraciones, diagramas

Autores:
Romero Castaño, Juan Felipe
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84688
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84688
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::661 - Tecnología de químicos industriales
Biomasa vegetal
Plant biomass
5 – hidroximetilfurfural
biomasa lignocelulósica
pretratamiento
líquido iónico
extracción reactiva
modelamiento
simulación
Hydroxymethylfurfural
Lignocellulosic biomass
Pretreatment
Pretreatment
Ionic liquid
Reactive extraction
Modeling
Simulation
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9ecdfca856a92585681a5ac4cdd78019
oai_identifier_str oai:repositorio.unal.edu.co:unal/84688
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
dc.title.translated.eng.fl_str_mv Formulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fiber
title Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
spellingShingle Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
660 - Ingeniería química::661 - Tecnología de químicos industriales
Biomasa vegetal
Plant biomass
5 – hidroximetilfurfural
biomasa lignocelulósica
pretratamiento
líquido iónico
extracción reactiva
modelamiento
simulación
Hydroxymethylfurfural
Lignocellulosic biomass
Pretreatment
Pretreatment
Ionic liquid
Reactive extraction
Modeling
Simulation
title_short Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
title_full Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
title_fullStr Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
title_full_unstemmed Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
title_sort Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
dc.creator.fl_str_mv Romero Castaño, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Ruiz Colorado, Angela Adriana
dc.contributor.author.none.fl_str_mv Romero Castaño, Juan Felipe
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y Flujos Reactivos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::661 - Tecnología de químicos industriales
topic 660 - Ingeniería química::661 - Tecnología de químicos industriales
Biomasa vegetal
Plant biomass
5 – hidroximetilfurfural
biomasa lignocelulósica
pretratamiento
líquido iónico
extracción reactiva
modelamiento
simulación
Hydroxymethylfurfural
Lignocellulosic biomass
Pretreatment
Pretreatment
Ionic liquid
Reactive extraction
Modeling
Simulation
dc.subject.lemb.spa.fl_str_mv Biomasa vegetal
dc.subject.lemb.eng.fl_str_mv Plant biomass
dc.subject.proposal.spa.fl_str_mv 5 – hidroximetilfurfural
biomasa lignocelulósica
pretratamiento
líquido iónico
extracción reactiva
modelamiento
simulación
dc.subject.proposal.eng.fl_str_mv Hydroxymethylfurfural
Lignocellulosic biomass
Pretreatment
Pretreatment
Ionic liquid
Reactive extraction
Modeling
Simulation
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-11T17:43:00Z
dc.date.available.none.fl_str_mv 2023-09-11T17:43:00Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84688
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84688
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv ABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/
Acosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336
Acosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeley
Altway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034
Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001
Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001
Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820H
Barcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920
Cavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of Chemical
Etecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/
Chatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534K
Choudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763
Das, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDF
Dedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9
Deuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058a
Dutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017
FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL
Fuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055
Guo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182
Parada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057
Hu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253
Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598
Kaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011
López-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813
Luo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975
Luterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748
Megías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395
Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201
Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001
Mon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006
Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488
Rincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589
Sato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077
Schmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010
SCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basic
Singh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958
Slak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325
Sorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929
Soukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313
Souzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010
Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515
UN. (2021). UN Comtrade. https://comtradeplus.un.org/
van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182k
Wang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037
Wanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-x
Xu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338
Zhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791
Zhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220
Zhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857J
Zhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84688/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84688/2/1152460928.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84688/3/1152460928.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
24341f87d172e3efb142a971f1b0f06a
f21a2de115140e67b15902d28abfcab2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089385669296128
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Colorado, Angela Adriana60ff4330d25ddf7e73e05a4feb6fa9feRomero Castaño, Juan Felipe993146a8308d05950d5a0fc7ea67e67aBioprocesos y Flujos Reactivos2023-09-11T17:43:00Z2023-09-11T17:43:00Z2023https://repositorio.unal.edu.co/handle/unal/84688Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl calentamiento global generado por la fuerte dependencia de los combustibles fósiles requiere de distintos tipos de soluciones, y entre las más prometedores se encuentra la obtención de productos químicos plataforma a partir de material residual lignocelulósico. En este trabajo se formula una ruta de producción sostenible del compuesto químico plataforma 5 – hidroximetilfurfural a partir de la biomasa lignocelulósica fibra de maíz. La ruta formulada consiste primero de un pretratamiento con líquido iónico en combinación con microondas, seguido de una hidrólisis enzimática para acceder a la glucosa estructural y finalmente una etapa de reacción y separación in situ en un sistema bifásico agua – orgánico conocida como extracción reactiva. Para concluir, se presenta el modelamiento y simulación de esta última etapa del proceso desarrollada en la literatura. (Texto tomado de la fuente)Global warming generated by the strong dependence on fossil fuels requires different types of solutions, and one of the most promising is to obtain platform chemicals from residual lignocellulosic material. In this work, a route for the sustainable production of the chemical compound platform 5 – hydroxymethylfurfural is formulated from the lignocellulosic biomass of corn fiber. The formulated route consists first of a pretreatment with ionic liquid in combination with microwaves, followed by an enzymatic hydrolysis to access the structural glucose and finally a reaction and separation step in situ in a biphasic waterorganic system known as reactive extraction. To conclude, the modeling and simulation of this last stage of the process developed in the literature is presented.MaestríaMagíster en Ingeniería - Ingeniería QuímicaLínea de Investigación: Metabolitos de valor agregado de biomasas Grupo de Investigación: Bioprocesos y Flujos Reactivos - BIOFRUNMetabolitos de valor agregado de biomasasÁrea curricular de Ingeniería Química e Ingeniería de Petróleos78 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::661 - Tecnología de químicos industrialesBiomasa vegetalPlant biomass5 – hidroximetilfurfuralbiomasa lignocelulósicapretratamientolíquido iónicoextracción reactivamodelamientosimulaciónHydroxymethylfurfuralLignocellulosic biomassPretreatmentPretreatmentIonic liquidReactive extractionModelingSimulationFormulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maízFormulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fiberTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/Acosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336Acosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeleyAltway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820HBarcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920Cavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of ChemicalEtecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/Chatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534KChoudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763Das, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDFDedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9Deuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058aDutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCLFuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055Guo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182Parada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057Hu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598Kaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011López-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813Luo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975Luterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748Megías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001Mon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488Rincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589Sato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077Schmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010SCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basicSingh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958Slak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325Sorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929Soukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313Souzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515UN. (2021). UN Comtrade. https://comtradeplus.un.org/van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182kWang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037Wanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-xXu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338Zhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791Zhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220Zhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857JZhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120EstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84688/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152460928.2023.pdf1152460928.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1740476https://repositorio.unal.edu.co/bitstream/unal/84688/2/1152460928.2023.pdf24341f87d172e3efb142a971f1b0f06aMD52THUMBNAIL1152460928.2023.pdf.jpg1152460928.2023.pdf.jpgGenerated Thumbnailimage/jpeg5532https://repositorio.unal.edu.co/bitstream/unal/84688/3/1152460928.2023.pdf.jpgf21a2de115140e67b15902d28abfcab2MD53unal/84688oai:repositorio.unal.edu.co:unal/846882023-09-11 23:03:26.77Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=