Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing
ilustraciones, diagramas
- Autores:
-
León-Henao, Henry
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82672
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Levas
Turbinas de gas
Cams
Manufactura aditiva metales
Álabe GTD 111
L-PBF
L-DED
Additive Manufacturing
Gas turbine
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_9e503a96d949d1cb2fda011d13bf51b3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82672 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
dc.title.translated.spa.fl_str_mv |
Factibilidad técnica de la recuperación de álabes de GTD 111 degradados en servicio mediante tratamiento térmico y manufactura aditiva |
title |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
spellingShingle |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Levas Turbinas de gas Cams Manufactura aditiva metales Álabe GTD 111 L-PBF L-DED Additive Manufacturing Gas turbine |
title_short |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
title_full |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
title_fullStr |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
title_full_unstemmed |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
title_sort |
Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing |
dc.creator.fl_str_mv |
León-Henao, Henry |
dc.contributor.advisor.none.fl_str_mv |
Toro Betancur, Alejandro Giraldo Barrada, Jorge Enrique |
dc.contributor.author.none.fl_str_mv |
León-Henao, Henry |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Soldadura Grupo de Investigación en Corrosión, Tribologia y Energía |
dc.contributor.orcid.spa.fl_str_mv |
León Henao, Henry [0000-0002-1582-9386] Giraldo Barrada, Jorge Enrique [0000-0001-6614-0661] |
dc.contributor.googlescholar.spa.fl_str_mv |
Henry León-Henao |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Levas Turbinas de gas Cams Manufactura aditiva metales Álabe GTD 111 L-PBF L-DED Additive Manufacturing Gas turbine |
dc.subject.lemb.spa.fl_str_mv |
Levas Turbinas de gas |
dc.subject.lemb.eng.fl_str_mv |
Cams |
dc.subject.proposal.spa.fl_str_mv |
Manufactura aditiva metales Álabe GTD 111 |
dc.subject.proposal.eng.fl_str_mv |
L-PBF L-DED Additive Manufacturing Gas turbine |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-09T17:04:23Z |
dc.date.available.none.fl_str_mv |
2022-11-09T17:04:23Z |
dc.date.issued.none.fl_str_mv |
2022-08-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82672 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https:/repositorio.una.edu.co |
url |
https://repositorio.unal.edu.co/handle/unal/82672 https:/repositorio.una.edu.co |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
A. Lou, C. Grosvenor, Selective laser sintering, birth of an industry, http://www.me.utexas.edu/news/news/selective-laser-sintering-birth-of-an-industry. Accessed 12//2021., (2012). American Society for Testing and Materials, “Standard Guide for Directed Energy Deposition of Metals, ASTM F3187,” 2016. American Society for Testing and Materials, “Standard Terminology for Nondestructive Examinations, ASTM E1316,” vol. 02, no. June 2014. p. 39, 2019. American Welding Society. (2010). AWS A3. 0M/A3. 0: 2010: standard welding terms and definition and thermo-mechanical fatigue of CM247LC-DS. Warrendale, PA, USA: TMS, 1996. p.319. Astm, I. (2015). ASTM 52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken, PA, 3(4), 5. Athiroj, A., Wangyao, P., Hartung, F., & Lothongkum, G. (2018). Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal. Materials Testing, 60(1), 22-30. A. Willis and D. McCartney, “A Comparative Study of Solidification Features in Nickel-Base Superalloy: Microstructural Evolution and Microsegregation, Mat. Sci. & Eng, Vol. A 145, No.2, pp. 223-232, (1991). Balikci, E., Raman, A., & Mirshams, R. A. (1997). Influence of various heat treatments on the microstructure of polycrystalline IN738LC. Metallurgical and Materials Transactions A, 28(10), 1993-2003. Basak, A., (2017). Advanced Powder Bed Fusion-Based Additive manufacturing with Turbine Engine Hot-Section Alloys through Scanning Laser Epitaxy. Dissertation. Berahmand, M., & Sajjadi, S. A. (2012). An investigation on the coarsening behavior of γ′ precipitate in GTD-111 Ni-base superalloy. Phase Transitions, 85(1-2), 1-12. Berahmand, M., & Sajjadi, S. A. (2013). Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters. International journal of materials research, 104(3), 275-280. Beretta, S., & Romano, S. (2017). A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 94, 178-191. Biondo, C., Page, J., Samuelson, J., Fuchs, G., Stannley, T., Wlodek, R. (2016) US 2010/0080729 A1. Kansas City: U.S. Patent and Trademark Office. Bor HY, Chao CC, Ma CY. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) 2000;31:1365. Brooks, R.B. 1982, Heat treatment, structure and properties of nonferrous alloys. ASM International, materials Park, OH, p. 145. C. Deckard, J. Beaman, J. Darrah, Method for selective laser sintering with layerwise cross-scanning, in, 1986. C. Deckard, Method and apparatus for producing parts by selective sintering, in, 1986. 204. C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62 (2012) 32-38. Caiazzo, F., Alfieri, V., Cardaropoli, F., & Sergi, V. (2017). Investigation on edge joints of Inconel 625 sheets processed with laser welding. Optics & Laser Technology, 93, 180-186. Carlota, V. Optomec Customers Have Repaired More than 10 Million Turbine Blades- Optomec. Available online: https://www.3dnatives.com/en/optomec-customer-surpass-10-million-turbine-blade-repairs-260820204/#! (accessed on 6 February 2022). Charalampous, P., Kostavelis, I., & Tzovaras, D. (2020). Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyping Journal. Chen, C., Wu, H. C., & Chiang, M. F. (2008). Laser cladding in repair of IN738 turbine blades. International Heat Treatment and Surface Engineering, 2(3-4), 140-146. Choi, B. G., Kim, I. S., Kim, D. H., & Jo, C. Y. (2008). Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111. Materials Science and Engineering: A, 478(1-2), 329-335. Daleo, J. A., & Wilson, J. R. (1996, June). GTD111 Alloy Material Study. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78767, p. V005T12A017). American Society of Mechanical Engineers. Daleo, J.A. and Wilson, J.R., 1998, “GTD111 alloy material study,” Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 120(2), pp. 375-382. Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9(7), 418. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224. Deng, D. (2018). Additively Manufactured Inconel 718: Microstructures and Mechanical Properties (Vol. 1798). Linköping University Electronic Press. Donachie MJ, Donachie SJ. Superalloys: A Technical Guide. Ohio: ASM International, 2002. DuPont , J. N. , Robino , C. V. , Marder , A. R. , Notis , M. R. , and Michael , J. R. 1988. Solidification of Nb - Bearing Superalloys: Part I. Reaction Sequences , Metallurgical and Material Transactions A , 29A : 2785 – 2796. Dutta, B., Babu, S., & Jared, B. H. (2019). Science, technology and applications of metals in additive manufacturing. Elsevier. Eisenbarth, D. (2020). Buildup strategies for additive manufacturing by direct metal deposition (Doctoral dissertation, ETH Zurich). F. J. Fela, “Influence of Chemical Composition Variations on the Elemental Solidification Segregation Segregation in Nickel-Base Single Crystal Superalloy”, Maser’s The University of Florida, May 2000. Gandini, E., Agnesone, F., Taricco, F., & Arrighi, L. (1997, June). Advances in gas turbine blade repair by laser welding. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78712, p. V004T12A011). American Society of Mechanical Engineers. Groh, J., Gabb, T., Helmink, R., & Wusatowska-Sarnek, A. (2014, December). René 65 billet material for forged turbine components. In Proc. 8th Int. Symp. Superalloy 718 Deriv (p. 107). John Wiley & Sons. Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. Hale, J. M. (1994). IGTI, vol. 9. ASME. Hardy, M. C., Detrois, M., McDevitt, E. T., Argyrakis, C., Saraf, V., Jablonski, P. D., ... & Tin, S. (2020). Solving recent challenges for wrought Ni-base superalloys. Metallurgical and Materials Transactions A, 51(6), 2626-2650. Heaney, J.A.; Lasonde, M.L.; Powell, A.M.; Bond, B.J.; O’Brien, C.M. Development of a New Cast and Wrought Alloy (Rene 65) for High Temperature Disk Applications. In Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA, USA, 28 September–1 October 2014. https://www.3dsystems.com/our-story. Accesed 12/2/2021 https://www.eos.info/about_eos/history. Accesed 12/2/2021 Huarte-Mendicoa, L., Penaranda, X., Lamikiz, A., & Moralejo, S. (2019). Experimental Microstructure Evaluation of Rene 80 in Laser Cladding. Lasers in Manufacturing and Materials Processing, 6(3), 317-331. Ian Gibson, I. G. (2015). Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. Ion, J. C. (2005). Laser processing of engineering materials. principles, procedure and industrial application. Chapter 12–Cladding. ISO/ASTM52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken. J. Johnson and M. J. Donachie, Microstructure of Precipitation Strengthened Nickel-Base Superalloys, in National Metal Congress, Chicago, 1966. J. Kranz, D. Herzog, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, Journal of Laser Applications, 27 (2015). J.K. Tien, Superalloys, Supercomposites and Superceramics, Elsevier, 2012. J.R. Davis, ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Ohio, 1997 Jena, A., Atabay, S. E., Gontcharov, A., Lowden, P., & Brochu, M. (2021). Laser powder bed fusion of a new high gamma prime Ni-based superalloy with improved weldability. Materials & Design, 208, 109895. Jones, J. B., McNutt, P., Tosi, R., Perry, C., & Wimpenny, D. I. (2012). Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine. Jovanović, M. T., Mišković, Z., & Lukić, B. (1998). Microstructure and stress-rupture life of polycrystal, directionally solidified, and single crystal castings of nickel-based IN 939 superalloy. Materials characterization, 40(4-5), 261-268. Kaplanskii, Y. Y., Levashov, E. A., Korotitskiy, A. V., Loginov, P. A., Sentyurina, Z. A., & Mazalov, A. B. (2020). Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing, 31, 100999. Keicher, D. M., Smugeresky, J. E., Romero, J. A., Gri_th, M. L., Harwell, L. D. (1997). Using the laser engineered net shaping (lens) process to produce complex components from a cad solid model. Photonics West. SPIE Vol. 2993, pp. 91-97. Keshavarz, M. K., Gontcharov, A., Lowden, P., Chan, A., Kulkarni, D., & Brochu, M. (2021). Turbine Blade Tip Repair by Laser Directed Energy Deposition Additive Manufacturing Using a Rene 142–MERL 72 Powder Blend. Journal of Manufacturing and Materials Processing, 5(1), 21. Kountras, A. (2004). Metallographic study of gamma-gamma prime structure in the Ni-based superalloy GTD111 (Doctoral dissertation, Massachusetts Institute of Technology). Lawrence, J. R. (Ed.). (2017). Advances in laser materials processing: technology, research and applications. Woodhead Publishing. Lewandowski, J. J., & Seifi, M. (2016). Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 46, 151-186. Lewis, G., Nemec, R., Milewski, J., Thoma, D., Cremers, D., Barbe, M. (1994). Directed light fabrication. Applications of Lasers and Electro-Optics. Li, L., 2006, “Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping,” Journal of Materials Science, 41(23), pp. 7886-7893. Li, L., Deceuster, A., & Zhang, C. (2012). Effect of process parameters on pulsed-laser repair of a directionally solidified superalloy. Metallography, Microstructure, and Analysis, 1(2), 92-98. Li, X. W., Wang, L., Dong, J. S., & Lou, L. H. (2014). Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. Journal of Materials Science & Technology, 30(12), 1296-1300. Lifshitz, I. M. and Sloyozov, V.V. 1961. The kinetics of precipitation from supersaturated solid solutions, Journal of Physical Chemistry of Solids, 19 (1 – 2 ): 35 – 50. Lippold, J. C. (2014). Welding metallurgy and weldability. John Wiley & Sons. Liu, Y., Li, Y., & Peng, H. (2010, March). Laser net shape manufacturing of Rene80. In Pacific International Conference on Applications of Lasers and Optics (Vol. 2010, No. 1, p. 609). Laser Institute of America. Liu, Z. Y., Li, C., Fang, X. Y., & Guo, Y. B. (2018). Energy consumption in additive manufacturing of metal parts. Procedia Manufacturing, 26, 834-845. M. Seifi, A. Salem, J. Beuth, O. Harrysson, J. Lewandowski, Overview of materials characterization needs for metal additive manufacturing, Journal of Materials, 68 (2016) 747-764. M. Durand-Charee, “The Microstructure of Superalloys”, Gordon and Breach Science Publishers, Toronto, Canada, p. 60-69, (1997). M. Gell, D.N. Duhl, K. Gupta, and K Sheffler, “Advanced Superalloys Airfoils”, Journal of Metals, Vol. 39, No. 7, pp.11-15, (1987). Mazumder, J., Choi, J., Nagarathnam, K., Koch, J., Hetzner, D. (1997). The direct metal deposition of h13 tool steel for 3-d components. JOM 49 (5), pp. 55-60. Melia, M. A., Whetten, S. R., Puckett, R., Jones, M., Heiden, M. J., Argibay, N., & Kustas, A. B. (2020). High-throughput additive manufacturing and characterization of refractory high entropy alloys. Applied Materials Today, 19, 100560. Olufayo, O. A., Che, H., Songmene, V., Katsari, C., & Yue, S. (2019). Machinability of Rene 65 superalloy. Materials, 12(12), 2034. Pauzi, A. A., Berahim, N., & Husin, S. (2016). Degradation of Gas Turbine Blades for a Thermal Power Plant. In MATEC Web of Conferences (Vol. 54, p. 03002). EDP Sciences. Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials & Design, 114, 441-449. Qi, H., Azer, M., & Singh, P. (2010). Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. The International Journal of Advanced Manufacturing Technology, 48(1), 121-131. R. Baker, Method of making decorative articles, in, Westinghouse Electric & Mfg Co, 1920. Rehme, O., & Emmelmann, C. (2005, June). Reproducibility for properties of selective laser melting products. In Proceedings of the Third International WLT-Conference on Lasers in Manufacturing (pp. 227-232). Proc. Third Int. WLT-Conference Lasers Manuf. Munich. Rittinghaus, S. K., Schmelzer, J., Rackel, M. W., Hemes, S., Vogelpoth, A., Hecht, U., & Weisheit, A. (2020). Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades. Materials, 13(19), 4392. Rolls-Royce plc, The Jet Engine, 4th edn (Derby, UK: The Technical Publications Department, Rolls-Royce plc, 1992). Sajjadi, S. A., and Nategh, S., 2001, “A High Temperature Deformation Mechanism Map for the High Performance Ni-Base Superalloy GTD-111,” Materials Science and Engineering A, 307(1-2), pp. 158-164. Sajjadi, S. A., Nategh, S., & Guthrie, R. I. (2002). Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Materials Science and Engineering: A, 325(1-2), 484-489. Sajjadi, S. A., Zebarjad, S. M., Guthrie, R. I. L., & Isac, M. (2006). Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters. Journal of materials processing technology, 175(1-3), 376-381. Scheibel, J. R., Aluru, R., & Van Esch, H. (2018, June). Mechanical Properties in GTD-111 Alloy in Heavy Frame Gas Turbines. In Turbo Expo: Power for Land, Sea, and Air (Vol. 51128, p. V006T24A009). American Society of Mechanical Engineers. Schilke, P. W., Foster, A.D., Pepe, J. J., and Beltran, A. M., 1992, “Advanced Materials Propel Progress in LAND-BASED GAS TURBINES,” Advanced Materials and Processes, 141(4), pp. 22-30. Schilke, P.W., 2004, “Advanced Gas Turbine Materials and Coatings,” GE ENERGY, Schenectady, NY. Sims CT. Contemporary view of nickel-base superalloys. Journal of Metals 1966;18:1119. Smallman, R. E. and Bishop, R. J., 1999, Modern physical metallurgy and materials engineering: science, process, applications, Butterworth-Heinemann, pg 46-47. Sosa, J. M., Huber, D. E., Welk, B. A., & Fraser, H. L. (2017). MIPAR™: 2D and 3D Image Analysis Software Designed by Materials Scientists, for All Scientists. Microscopy and Microanalysis, 23(S1), 230-231. Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a. Stewart, C. (2009). Tertiary creep damage modeling of a transversely isotropic Ni-based superalloy. Sun, W. R., Lee, J. H., Seo, S. M., Choe, S. J., & Hu, Z. Q. (1999). The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy. Materials Science and Engineering: A, 271(1-2), 143-149. T. Wohlers, T. Gornet, History of additive manufacturing, Wohlers Report 2014, (2014). T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power, 22 (2006) 361-374. Thiesen Junior, A. (2021). Selection of processing parameters for the laser directed energy deposition process applied to additive manufacturing: a methodological proposal. Thornton, P. H. Davies , P. H. , and Johnston , T. L. 1970 . Temperature dependence of the fl ow stress of the gamma prime phase based upon Ni 3 Al , Metallurgical Transactions A , 1 ( 1 ): 207 – 218.) Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press. Turazi, A., de Oliveira, C. A. S., Bohórquez, C. E. N., & Comeli, F. W. (2015). Study of GTD-111 superalloy microstructural evolution during high-temperature aging and after rejuvenation treatments. Metallography, Microstructure, and Analysis, 4(1), 3-12. Ünal-Saewe, T., Gahn, L., Kittel, J., Gasser, A., & Schleifenbaum, J. H. (2020). Process development for tip repair of complex shaped turbine blades with IN718. Procedia Manufacturing, 47, 1050-1057. Villada, J. A., Bayro-Lazcano, R. G., Martinez-Franco, E., Espinosa-Arbelaez, D. G., Gonzalez-Hernandez, J., & Alvarado-Orozco, J. M. (2019). Relationship between γ′ phase degradation and in-Service GTD-111 first-stage blade local temperature. Journal of Materials Engineering and Performance, 28(4), 1950-1957. Viswanathan, R., and Scheirer, S. T., 1998, “Materials Advances in Land-Based Gas Turbines,” POWER-GEN 1998 Conference, Orlando, FL. Wangyao, P., Krongtong, V., Tuengsook, P., Hormkrajai, W., & Panich, N. (2006). The relationship between reheat-treatment and hardness behaviour of cast nickel superalloy, GTD-111. Journal of Metals, Materials and Minerals, 16(1). Wangyao, P., Phansri, L., Hirisatja, P., Saelor, K., Zrník, J., & Novy, Z. (2015). Effect of Precipitation Aging Conditions on Microstructural Refurbishment in Cast Nickel Base Superalloy GTD-111. In Advanced Materials Research (Vol. 1127, pp. 79-84). Trans Tech Publications Ltd. Wangyao, P., Polsilapa, S., Chaishom, P., Zrnik, J., Homkrajai, W., & Panich, N. (2008). Gamma prime particle coarsening behavior at elevated temperatures in cast nickel-based superalloy, GTD-111 EA. High Temperature Materials and Processes, 27(1), 41-50. Wangyao, P., Suvanchai, P., Chuankrerkkul, N., Krongtong, V., Thueploy, A., & Homkrajai, W. (2010). Microstructural analysis after reheat treatments and long-term heating in cast nickel base superalloy, GTD-111. High Temperature Materials and Processes, 29(4), 277-286. Wessman A, Laurence A, Cormier J, Villechaise P, Billot T, Franchet J-M (2016) Thermal stability of cast and wrought alloy Rene 65. Proceedings of the International Symposium on Superalloys. Wessman, A., Cormier, J., Hamon, F., Rainey, K., Tin, S., Tiparti, D., & Dial, L. (2020). Microstructure and Mechanical Properties of Additively Manufactured Rene 65. In Superalloys 2020 (pp. 961-971). Springer, Cham. Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178. Wohlers, T., Campbell, I., Diegel, O., Kowen, J., Fidan, I., Bourell, D. (2018). Wohlers Report 2018. Wohlers Associates, Fort Collins. Xue, L., Chen, J. Y., Islam, M. U., Pritchard, J., Manente, D., & Rush, S. (2000, October). Laser consolidation of Ni-base IN-738 superalloy for repairing gas turbine blades. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2000, No. 1, pp. D30-D39). Laser Institute of America. Yilmaz, O., Gindy, N., & Gao, J. (2010). A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190-201. Zhang, X., Chai, Z., Chen, H., Xu, J., Xu, L., Lu, H., & Chen, X. (2021). A novel method to prevent cracking in directed energy deposition of Inconel 738 by in-situ doping Inconel 718. Materials & Design, 197, 109214. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
152 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82672/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82672/2/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20Mec%c3%a1nica_Henry%20Leon%20Henao%201088291511.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82672/3/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20Mec%c3%a1nica_Henry%20Leon%20Henao%201088291511.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a eb7a47ff9a08a1b3883406c2e9e4ade4 7ce1642de1b2bc5fe92455cb89753ef9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090228399341568 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Toro Betancur, Alejandroeef8cfc23e5965d8d651306ca5a5e8c7Giraldo Barrada, Jorge Enrique02940d1aa0f9f6e96d7caa3ef6691328600León-Henao, Henryd50aae118a882cb0a32fff658fe3fff9600Grupo de SoldaduraGrupo de Investigación en Corrosión, Tribologia y EnergíaLeón Henao, Henry [0000-0002-1582-9386]Giraldo Barrada, Jorge Enrique [0000-0001-6614-0661]Henry León-Henao2022-11-09T17:04:23Z2022-11-09T17:04:23Z2022-08-08https://repositorio.unal.edu.co/handle/unal/82672Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps:/repositorio.una.edu.coilustraciones, diagramasRepair components of the hot gas path is crucial for economic reasons in gas turbine engines. In this work, a characterization of deposits applied by Laser Powder Bed Fusion (LPBF) and Laser Powder Directed Energized Deposition (LP-DED) on a 1st stage blade made of GTD 111 DS superalloy were carried out. The 1st stage blades are damaged in operation due to collision of external objects, development of thermal fatigue cracks and hightemperature erosion, which drastically reduces their lifetime. The process parameters for LDED and L-PBF were established as a function of the integrity and geometry of the deposits. René 65 powder was used for both processes without preheating. Visual inspection and macro etching were used to evaluate the weld metal deposits soundness. Optical microscopy and scanning electron microscopy were used to examine the microstructure of the deposited layers in the cross-section and EBSD allowed studying the crystallographic texture. Compared to conventional processes, L-PBF and LP-DED provide crack-free deposits and better control of shape and dimensions, reducing machining time. In particular, the L-PBF process has greater precision, which makes it ideal for replicating the blade’s cooling holes. The study demonstrates the feasibility to restore dimensions of a tip blades and illustrates the significant potential of Additive Manufacturing (AM) utilizing powders of high γ' avoiding hot cracking.La reparación de los componentes de la ruta del gas caliente es crucial por razones económicas en las turbinas a gas. En este trabajo se realizó una caracterización de los depósitos aplicados por Laser Powder Bed Fusion (L-PBF) y Laser Powder Directed Energized Deposition (LP-DED) sobre un álabe de primera etapa fabricado con la superaleación GTD 111 DS. Al deteriorarse en funcionamiento debido a la colisión de objetos externos, el crecimiento de grietas por fatiga térmica y la erosión por alta temperatura, se reduce drásticamente su vida útil. Los parámetros del proceso para L-DED y L-PBF se establecieron en función de la integridad y la geometría de los depósitos. Para ambos procesos se utilizó polvo René 65 sin precalentamiento. Se utilizó inspección visual y análisis metalográfico para evaluar la solidez de los depósitos de manufactura aditiva. Se usó microscopía óptica y microscopía electrónica de barrido para examinar la microestructura de las capas depositadas en la sección transversal y el análisis de EBSD permitió estudiar la textura cristalográfica. En comparación con los procesos convencionales, L-PBF y LP-DED proporcionan depósitos sin grietas y un mejor control de la forma y las dimensiones, lo que reduce el tiempo de mecanizado. En particular, el proceso L-PBF tiene una mayor precisión, lo que lo hace ideal para replicar los orificios de enfriamiento de la hoja. El estudio demuestra la viabilidad de restaurar las dimensiones de los álabes en el borde chirriante e ilustra el importante potencial de la fabricación aditiva (FA) que utiliza polvos de alto contenido de γ' evitando el agrietamiento en caliente. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería MecánicaSoldadura. Manufactura aditivaÁrea Curricular de Ingeniería Mecánica152 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaLevasTurbinas de gasCamsManufactura aditiva metalesÁlabe GTD 111L-PBFL-DEDAdditive ManufacturingGas turbineTechnical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturingFactibilidad técnica de la recuperación de álabes de GTD 111 degradados en servicio mediante tratamiento térmico y manufactura aditivaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaA. Lou, C. Grosvenor, Selective laser sintering, birth of an industry, http://www.me.utexas.edu/news/news/selective-laser-sintering-birth-of-an-industry. Accessed 12//2021., (2012).American Society for Testing and Materials, “Standard Guide for Directed Energy Deposition of Metals, ASTM F3187,” 2016.American Society for Testing and Materials, “Standard Terminology for Nondestructive Examinations, ASTM E1316,” vol. 02, no. June 2014. p. 39, 2019.American Welding Society. (2010). AWS A3. 0M/A3. 0: 2010: standard welding terms and definition and thermo-mechanical fatigue of CM247LC-DS. Warrendale, PA, USA: TMS, 1996. p.319. Astm, I. (2015).ASTM 52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken, PA, 3(4), 5.Athiroj, A., Wangyao, P., Hartung, F., & Lothongkum, G. (2018). Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal. Materials Testing, 60(1), 22-30.A. Willis and D. McCartney, “A Comparative Study of Solidification Features in Nickel-Base Superalloy: Microstructural Evolution and Microsegregation, Mat. Sci. & Eng, Vol. A 145, No.2, pp. 223-232, (1991).Balikci, E., Raman, A., & Mirshams, R. A. (1997). Influence of various heat treatments on the microstructure of polycrystalline IN738LC. Metallurgical and Materials Transactions A, 28(10), 1993-2003.Basak, A., (2017). Advanced Powder Bed Fusion-Based Additive manufacturing with Turbine Engine Hot-Section Alloys through Scanning Laser Epitaxy. Dissertation.Berahmand, M., & Sajjadi, S. A. (2012). An investigation on the coarsening behavior of γ′ precipitate in GTD-111 Ni-base superalloy. Phase Transitions, 85(1-2), 1-12.Berahmand, M., & Sajjadi, S. A. (2013). Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters. International journal of materials research, 104(3), 275-280.Beretta, S., & Romano, S. (2017). A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 94, 178-191.Biondo, C., Page, J., Samuelson, J., Fuchs, G., Stannley, T., Wlodek, R. (2016) US 2010/0080729 A1. Kansas City: U.S. Patent and Trademark Office.Bor HY, Chao CC, Ma CY. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) 2000;31:1365.Brooks, R.B. 1982, Heat treatment, structure and properties of nonferrous alloys. ASM International, materials Park, OH, p. 145.C. Deckard, J. Beaman, J. Darrah, Method for selective laser sintering with layerwise cross-scanning, in, 1986.C. Deckard, Method and apparatus for producing parts by selective sintering, in, 1986. 204.C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62 (2012) 32-38.Caiazzo, F., Alfieri, V., Cardaropoli, F., & Sergi, V. (2017). Investigation on edge joints of Inconel 625 sheets processed with laser welding. Optics & Laser Technology, 93, 180-186.Carlota, V. Optomec Customers Have Repaired More than 10 Million Turbine Blades- Optomec. Available online: https://www.3dnatives.com/en/optomec-customer-surpass-10-million-turbine-blade-repairs-260820204/#! (accessed on 6 February 2022).Charalampous, P., Kostavelis, I., & Tzovaras, D. (2020). Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyping Journal.Chen, C., Wu, H. C., & Chiang, M. F. (2008). Laser cladding in repair of IN738 turbine blades. International Heat Treatment and Surface Engineering, 2(3-4), 140-146.Choi, B. G., Kim, I. S., Kim, D. H., & Jo, C. Y. (2008). Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111. Materials Science and Engineering: A, 478(1-2), 329-335.Daleo, J. A., & Wilson, J. R. (1996, June). GTD111 Alloy Material Study. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78767, p. V005T12A017). American Society of Mechanical Engineers.Daleo, J.A. and Wilson, J.R., 1998, “GTD111 alloy material study,” Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 120(2), pp. 375-382.Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9(7), 418.DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224.Deng, D. (2018). Additively Manufactured Inconel 718: Microstructures and Mechanical Properties (Vol. 1798). Linköping University Electronic Press.Donachie MJ, Donachie SJ. Superalloys: A Technical Guide. Ohio: ASM International, 2002.DuPont , J. N. , Robino , C. V. , Marder , A. R. , Notis , M. R. , and Michael , J. R. 1988. Solidification of Nb - Bearing Superalloys: Part I. Reaction Sequences , Metallurgical and Material Transactions A , 29A : 2785 – 2796.Dutta, B., Babu, S., & Jared, B. H. (2019). Science, technology and applications of metals in additive manufacturing. Elsevier.Eisenbarth, D. (2020). Buildup strategies for additive manufacturing by direct metal deposition (Doctoral dissertation, ETH Zurich).F. J. Fela, “Influence of Chemical Composition Variations on the Elemental Solidification Segregation Segregation in Nickel-Base Single Crystal Superalloy”, Maser’s The University of Florida, May 2000.Gandini, E., Agnesone, F., Taricco, F., & Arrighi, L. (1997, June). Advances in gas turbine blade repair by laser welding. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78712, p. V004T12A011). American Society of Mechanical Engineers.Groh, J., Gabb, T., Helmink, R., & Wusatowska-Sarnek, A. (2014, December). René 65 billet material for forged turbine components. In Proc. 8th Int. Symp. Superalloy 718 Deriv (p. 107). John Wiley & Sons.Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164.Hale, J. M. (1994). IGTI, vol. 9. ASME.Hardy, M. C., Detrois, M., McDevitt, E. T., Argyrakis, C., Saraf, V., Jablonski, P. D., ... & Tin, S. (2020). Solving recent challenges for wrought Ni-base superalloys. Metallurgical and Materials Transactions A, 51(6), 2626-2650.Heaney, J.A.; Lasonde, M.L.; Powell, A.M.; Bond, B.J.; O’Brien, C.M. Development of a New Cast and Wrought Alloy (Rene 65) for High Temperature Disk Applications. In Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA, USA, 28 September–1 October 2014.https://www.3dsystems.com/our-story. Accesed 12/2/2021https://www.eos.info/about_eos/history. Accesed 12/2/2021Huarte-Mendicoa, L., Penaranda, X., Lamikiz, A., & Moralejo, S. (2019). Experimental Microstructure Evaluation of Rene 80 in Laser Cladding. Lasers in Manufacturing and Materials Processing, 6(3), 317-331.Ian Gibson, I. G. (2015). Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing.Ion, J. C. (2005). Laser processing of engineering materials. principles, procedure and industrial application. Chapter 12–Cladding.ISO/ASTM52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken.J. Johnson and M. J. Donachie, Microstructure of Precipitation Strengthened Nickel-Base Superalloys, in National Metal Congress, Chicago, 1966.J. Kranz, D. Herzog, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, Journal of Laser Applications, 27 (2015).J.K. Tien, Superalloys, Supercomposites and Superceramics, Elsevier, 2012.J.R. Davis, ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Ohio, 1997Jena, A., Atabay, S. E., Gontcharov, A., Lowden, P., & Brochu, M. (2021). Laser powder bed fusion of a new high gamma prime Ni-based superalloy with improved weldability. Materials & Design, 208, 109895.Jones, J. B., McNutt, P., Tosi, R., Perry, C., & Wimpenny, D. I. (2012). Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine.Jovanović, M. T., Mišković, Z., & Lukić, B. (1998). Microstructure and stress-rupture life of polycrystal, directionally solidified, and single crystal castings of nickel-based IN 939 superalloy. Materials characterization, 40(4-5), 261-268.Kaplanskii, Y. Y., Levashov, E. A., Korotitskiy, A. V., Loginov, P. A., Sentyurina, Z. A., & Mazalov, A. B. (2020). Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing, 31, 100999.Keicher, D. M., Smugeresky, J. E., Romero, J. A., Gri_th, M. L., Harwell, L. D. (1997). Using the laser engineered net shaping (lens) process to produce complex components from a cad solid model. Photonics West. SPIE Vol. 2993, pp. 91-97.Keshavarz, M. K., Gontcharov, A., Lowden, P., Chan, A., Kulkarni, D., & Brochu, M. (2021). Turbine Blade Tip Repair by Laser Directed Energy Deposition Additive Manufacturing Using a Rene 142–MERL 72 Powder Blend. Journal of Manufacturing and Materials Processing, 5(1), 21.Kountras, A. (2004). Metallographic study of gamma-gamma prime structure in the Ni-based superalloy GTD111 (Doctoral dissertation, Massachusetts Institute of Technology).Lawrence, J. R. (Ed.). (2017). Advances in laser materials processing: technology, research and applications. Woodhead Publishing.Lewandowski, J. J., & Seifi, M. (2016). Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 46, 151-186.Lewis, G., Nemec, R., Milewski, J., Thoma, D., Cremers, D., Barbe, M. (1994). Directed light fabrication. Applications of Lasers and Electro-Optics.Li, L., 2006, “Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping,” Journal of Materials Science, 41(23), pp. 7886-7893.Li, L., Deceuster, A., & Zhang, C. (2012). Effect of process parameters on pulsed-laser repair of a directionally solidified superalloy. Metallography, Microstructure, and Analysis, 1(2), 92-98.Li, X. W., Wang, L., Dong, J. S., & Lou, L. H. (2014). Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. Journal of Materials Science & Technology, 30(12), 1296-1300.Lifshitz, I. M. and Sloyozov, V.V. 1961. The kinetics of precipitation from supersaturated solid solutions, Journal of Physical Chemistry of Solids, 19 (1 – 2 ): 35 – 50.Lippold, J. C. (2014). Welding metallurgy and weldability. John Wiley & Sons.Liu, Y., Li, Y., & Peng, H. (2010, March). Laser net shape manufacturing of Rene80. In Pacific International Conference on Applications of Lasers and Optics (Vol. 2010, No. 1, p. 609). Laser Institute of America.Liu, Z. Y., Li, C., Fang, X. Y., & Guo, Y. B. (2018). Energy consumption in additive manufacturing of metal parts. Procedia Manufacturing, 26, 834-845.M. Seifi, A. Salem, J. Beuth, O. Harrysson, J. Lewandowski, Overview of materials characterization needs for metal additive manufacturing, Journal of Materials, 68 (2016) 747-764.M. Durand-Charee, “The Microstructure of Superalloys”, Gordon and Breach Science Publishers, Toronto, Canada, p. 60-69, (1997).M. Gell, D.N. Duhl, K. Gupta, and K Sheffler, “Advanced Superalloys Airfoils”, Journal of Metals, Vol. 39, No. 7, pp.11-15, (1987).Mazumder, J., Choi, J., Nagarathnam, K., Koch, J., Hetzner, D. (1997). The direct metal deposition of h13 tool steel for 3-d components. JOM 49 (5), pp. 55-60.Melia, M. A., Whetten, S. R., Puckett, R., Jones, M., Heiden, M. J., Argibay, N., & Kustas, A. B. (2020). High-throughput additive manufacturing and characterization of refractory high entropy alloys. Applied Materials Today, 19, 100560.Olufayo, O. A., Che, H., Songmene, V., Katsari, C., & Yue, S. (2019). Machinability of Rene 65 superalloy. Materials, 12(12), 2034.Pauzi, A. A., Berahim, N., & Husin, S. (2016). Degradation of Gas Turbine Blades for a Thermal Power Plant. In MATEC Web of Conferences (Vol. 54, p. 03002). EDP Sciences.Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials & Design, 114, 441-449.Qi, H., Azer, M., & Singh, P. (2010). Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. The International Journal of Advanced Manufacturing Technology, 48(1), 121-131.R. Baker, Method of making decorative articles, in, Westinghouse Electric & Mfg Co, 1920.Rehme, O., & Emmelmann, C. (2005, June). Reproducibility for properties of selective laser melting products. In Proceedings of the Third International WLT-Conference on Lasers in Manufacturing (pp. 227-232). Proc. Third Int. WLT-Conference Lasers Manuf. Munich.Rittinghaus, S. K., Schmelzer, J., Rackel, M. W., Hemes, S., Vogelpoth, A., Hecht, U., & Weisheit, A. (2020). Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades. Materials, 13(19), 4392.Rolls-Royce plc, The Jet Engine, 4th edn (Derby, UK: The Technical Publications Department, Rolls-Royce plc, 1992).Sajjadi, S. A., and Nategh, S., 2001, “A High Temperature Deformation Mechanism Map for the High Performance Ni-Base Superalloy GTD-111,” Materials Science and Engineering A, 307(1-2), pp. 158-164.Sajjadi, S. A., Nategh, S., & Guthrie, R. I. (2002). Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Materials Science and Engineering: A, 325(1-2), 484-489.Sajjadi, S. A., Zebarjad, S. M., Guthrie, R. I. L., & Isac, M. (2006). Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters. Journal of materials processing technology, 175(1-3), 376-381.Scheibel, J. R., Aluru, R., & Van Esch, H. (2018, June). Mechanical Properties in GTD-111 Alloy in Heavy Frame Gas Turbines. In Turbo Expo: Power for Land, Sea, and Air (Vol. 51128, p. V006T24A009). American Society of Mechanical Engineers.Schilke, P. W., Foster, A.D., Pepe, J. J., and Beltran, A. M., 1992, “Advanced Materials Propel Progress in LAND-BASED GAS TURBINES,” Advanced Materials and Processes, 141(4), pp. 22-30.Schilke, P.W., 2004, “Advanced Gas Turbine Materials and Coatings,” GE ENERGY, Schenectady, NY.Sims CT. Contemporary view of nickel-base superalloys. Journal of Metals 1966;18:1119.Smallman, R. E. and Bishop, R. J., 1999, Modern physical metallurgy and materials engineering: science, process, applications, Butterworth-Heinemann, pg 46-47.Sosa, J. M., Huber, D. E., Welk, B. A., & Fraser, H. L. (2017). MIPAR™: 2D and 3D Image Analysis Software Designed by Materials Scientists, for All Scientists. Microscopy and Microanalysis, 23(S1), 230-231.Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a.Stewart, C. (2009). Tertiary creep damage modeling of a transversely isotropic Ni-based superalloy.Sun, W. R., Lee, J. H., Seo, S. M., Choe, S. J., & Hu, Z. Q. (1999). The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy. Materials Science and Engineering: A, 271(1-2), 143-149.T. Wohlers, T. Gornet, History of additive manufacturing, Wohlers Report 2014, (2014).T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power, 22 (2006) 361-374.Thiesen Junior, A. (2021). Selection of processing parameters for the laser directed energy deposition process applied to additive manufacturing: a methodological proposal.Thornton, P. H. Davies , P. H. , and Johnston , T. L. 1970 . Temperature dependence of the fl ow stress of the gamma prime phase based upon Ni 3 Al , Metallurgical Transactions A , 1 ( 1 ): 207 – 218.)Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.Turazi, A., de Oliveira, C. A. S., Bohórquez, C. E. N., & Comeli, F. W. (2015). Study of GTD-111 superalloy microstructural evolution during high-temperature aging and after rejuvenation treatments. Metallography, Microstructure, and Analysis, 4(1), 3-12.Ünal-Saewe, T., Gahn, L., Kittel, J., Gasser, A., & Schleifenbaum, J. H. (2020). Process development for tip repair of complex shaped turbine blades with IN718. Procedia Manufacturing, 47, 1050-1057.Villada, J. A., Bayro-Lazcano, R. G., Martinez-Franco, E., Espinosa-Arbelaez, D. G., Gonzalez-Hernandez, J., & Alvarado-Orozco, J. M. (2019). Relationship between γ′ phase degradation and in-Service GTD-111 first-stage blade local temperature. Journal of Materials Engineering and Performance, 28(4), 1950-1957.Viswanathan, R., and Scheirer, S. T., 1998, “Materials Advances in Land-Based Gas Turbines,” POWER-GEN 1998 Conference, Orlando, FL.Wangyao, P., Krongtong, V., Tuengsook, P., Hormkrajai, W., & Panich, N. (2006). The relationship between reheat-treatment and hardness behaviour of cast nickel superalloy, GTD-111. Journal of Metals, Materials and Minerals, 16(1).Wangyao, P., Phansri, L., Hirisatja, P., Saelor, K., Zrník, J., & Novy, Z. (2015). Effect of Precipitation Aging Conditions on Microstructural Refurbishment in Cast Nickel Base Superalloy GTD-111. In Advanced Materials Research (Vol. 1127, pp. 79-84). Trans Tech Publications Ltd.Wangyao, P., Polsilapa, S., Chaishom, P., Zrnik, J., Homkrajai, W., & Panich, N. (2008). Gamma prime particle coarsening behavior at elevated temperatures in cast nickel-based superalloy, GTD-111 EA. High Temperature Materials and Processes, 27(1), 41-50.Wangyao, P., Suvanchai, P., Chuankrerkkul, N., Krongtong, V., Thueploy, A., & Homkrajai, W. (2010). Microstructural analysis after reheat treatments and long-term heating in cast nickel base superalloy, GTD-111. High Temperature Materials and Processes, 29(4), 277-286.Wessman A, Laurence A, Cormier J, Villechaise P, Billot T, Franchet J-M (2016) Thermal stability of cast and wrought alloy Rene 65. Proceedings of the International Symposium on Superalloys.Wessman, A., Cormier, J., Hamon, F., Rainey, K., Tin, S., Tiparti, D., & Dial, L. (2020). Microstructure and Mechanical Properties of Additively Manufactured Rene 65. In Superalloys 2020 (pp. 961-971). Springer, Cham.Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178.Wohlers, T., Campbell, I., Diegel, O., Kowen, J., Fidan, I., Bourell, D. (2018). Wohlers Report 2018. Wohlers Associates, Fort Collins.Xue, L., Chen, J. Y., Islam, M. U., Pritchard, J., Manente, D., & Rush, S. (2000, October). Laser consolidation of Ni-base IN-738 superalloy for repairing gas turbine blades. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2000, No. 1, pp. D30-D39). Laser Institute of America.Yilmaz, O., Gindy, N., & Gao, J. (2010). A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190-201.Zhang, X., Chai, Z., Chen, H., Xu, J., Xu, L., Lu, H., & Chen, X. (2021). A novel method to prevent cracking in directed energy deposition of Inconel 738 by in-situ doping Inconel 718. Materials & Design, 197, 109214.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82672/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ingeniería Mecánica_Henry Leon Henao 1088291511.2022.pdfTesis de Maestría en Ingeniería Mecánica_Henry Leon Henao 1088291511.2022.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf14845936https://repositorio.unal.edu.co/bitstream/unal/82672/2/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20Mec%c3%a1nica_Henry%20Leon%20Henao%201088291511.2022.pdfeb7a47ff9a08a1b3883406c2e9e4ade4MD52THUMBNAILTesis de Maestría en Ingeniería Mecánica_Henry Leon Henao 1088291511.2022.pdf.jpgTesis de Maestría en Ingeniería Mecánica_Henry Leon Henao 1088291511.2022.pdf.jpgGenerated Thumbnailimage/jpeg5161https://repositorio.unal.edu.co/bitstream/unal/82672/3/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20Mec%c3%a1nica_Henry%20Leon%20Henao%201088291511.2022.pdf.jpg7ce1642de1b2bc5fe92455cb89753ef9MD53unal/82672oai:repositorio.unal.edu.co:unal/826722024-08-12 23:11:34.741Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |