Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi

ilustraciones, fotografías, graficas

Autores:
Perez Lozada, Jhindy Tatiana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81783
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81783
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Enfermedad de Chagas
Técnicas In Vitro
Chagas Disease
In Vitro Techniques
Trypanosoma cruzi
Trypanosoma cruzi
Epimastigote
In vitro
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_9e181f7fc01be2c602615af717751dfa
oai_identifier_str oai:repositorio.unal.edu.co:unal/81783
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
dc.title.translated.eng.fl_str_mv Optimization of an in vitro pharmacological test for the evaluation of substances with possible activity against Trypanosoma cruzi epimastigotes
title Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
spellingShingle Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
610 - Medicina y salud::615 - Farmacología y terapéutica
Enfermedad de Chagas
Técnicas In Vitro
Chagas Disease
In Vitro Techniques
Trypanosoma cruzi
Trypanosoma cruzi
Epimastigote
In vitro
title_short Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
title_full Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
title_fullStr Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
title_full_unstemmed Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
title_sort Optimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruzi
dc.creator.fl_str_mv Perez Lozada, Jhindy Tatiana
dc.contributor.advisor.none.fl_str_mv Garavito Cardenas, Giovanny
Arias Marciales, María Helena
dc.contributor.author.none.fl_str_mv Perez Lozada, Jhindy Tatiana
dc.contributor.researchgroup.spa.fl_str_mv Fametra
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Enfermedad de Chagas
Técnicas In Vitro
Chagas Disease
In Vitro Techniques
Trypanosoma cruzi
Trypanosoma cruzi
Epimastigote
In vitro
dc.subject.other.spa.fl_str_mv Enfermedad de Chagas
Técnicas In Vitro
dc.subject.other.eng.fl_str_mv Chagas Disease
In Vitro Techniques
dc.subject.other.none.fl_str_mv Trypanosoma cruzi
dc.subject.proposal.none.fl_str_mv Trypanosoma cruzi
Epimastigote
In vitro
description ilustraciones, fotografías, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-04T17:14:29Z
dc.date.available.none.fl_str_mv 2022-08-04T17:14:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81783
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81783
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv AA, G., & MG, L. (2017). Triatomine physiology in the context of trypanosome infection. Journal of Insect Physiology, 97, 66–76. https://doi.org/10.1016/J.JINSPHYS.2016.07.005
AL, V., P, R., M, W., P, M., E, M., & MG, de L. (2010). Fetal bovine serum concentration affects delta9 desaturase activity of Trypanosoma cruzi. Lipids, 45(3), 275–283. https://doi.org/10.1007/S11745-010-3387-2
Álvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez, A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital General de México, 81(3), 154–164. https://doi.org/10.1016/j.hgmx.2016.09.010
AM, C., JM, B., AM, P., CM, P. B., LJ, S., D, X., CL, B., & RL, T. (2010). In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Neglected Tropical Diseases, 4(7). https://doi.org/10.1371/JOURNAL.PNTD.0000740
Amato Neto, V. (n.d.). Origin of the “Y strain” of Trypanosoma cruzi. Revista Do Instituto de Medicina Tropical de Sao Paulo, 52(3), 171. https://doi.org/10.1590/s0036- 46652010000300012
Bhattacharya, A., Corbeil, A., Monte-Neto, R. L. do, & Fernandez-Prada, C. (2020). Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes, 11(7), 1–24. https://doi.org/10.3390/GENES11070722
Carneiro, P. F., Do Nascimento, S. B., Pinto, A. V., Pinto, M. D. C. F. R., Lechuga, G. C., Santos, D. O., Dos Santos Júnior, H. M., Resende, J. A. L. C., Bourguignon, S. C., & Ferreira, V. F. (2012). New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorganic & Medicinal Chemistry, 20(16), 4995–5000. https://doi.org/10.1016/J.BMC.2012.06.027
CDC. (2019). American Trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html
Ceole, L. F., Gandhi, H., Villamizar, L. H., Soares, M. J., & O’Sullivan, T. P. (2018). Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi. Future Medicinal Chemistry, 10(4), 391–408. https://doi.org/10.4155/FMC-2017- 0184
CMBD, S., A, L., RL, K., RCP, R., AH, I., MA, K., DP, P., & CM, P. (2018). Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Memorias Do Instituto Oswaldo Cruz, 113(5). https://doi.org/10.1590/0074-02760170404
Cortez, C., Martins, R. M., Alves, R. M., Silva, R. C., Bilches, L. C., Macedo, S., Atayde, V. D., Kawashita, S. Y., Briones, M. R. S., & Yoshida, N. (2012). Differential Infectivity by the Oral Route of Trypanosoma cruzi Lineages Derived from Y Strain. PLoS Neglected Tropical Diseases, 6(10). https://doi.org/10.1371/JOURNAL.PNTD.0001804
Cos, P., Vlietinck, A. J., Berghe, D. Vanden, & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept.’ Journal of Ethnopharmacology, 106(3), 290–302. https://doi.org/10.1016/J.JEP.2006.04.003
De Lima, A. R., Noris-Suárez, K., Bretaña, A., Contreras, V. T., Navarro, M. C., PérezYbarra, L., & Bubis, J. (2017). Growth arrest and morphological changes triggered by emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie, 142, 31–40. https://doi.org/10.1016/J.BIOCHI.2017.08.005
Dias, J. C. P., Ramos, A. N., Gontijo, E. D., Luquetti, A., Shikanai-Yasuda, M. A., Coura, J. R., Torres, R. M., Melo, J. R. da C., Almeida, E. A. de, Oliveira, W. de, Silveira, A. C., Rezende, J. M. de, Pinto, F. S., Ferreira, A. W., Rassi, A., Fragata, A. A., Sousa, A. S. de, Correia, D., Jansen, A. M., … Alves, R. V. (2016). II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiologia e Servicos de Saude : Revista Do Sistema Unico de Saude Do Brasil, 25(spe), 7–86. https://doi.org/10.5123/S1679- 49742016000500002
ENFERMEDAD DE CHAGAS Ministerio de Salud y Protección Social-Federación Médica Colombiana. (2012).
ENGEL, J. C., & DVORAK, J. A. (1988). Trypanosoma cruzi: Cell Biological Behavior of Epimastigote and Amastigote Forms in Axenic Culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.X
Fallas, J. J., & Chavarría, J. (2011). Implementación del Análisis en Componentes Principales con el software estadístico R. Revista Digital Matemática, Educación e Internet, 11(2), 1659–0643. https://repositoriotec.tec.ac.cr/handle/2238/12882
Gómez Marin, J. E. (2016). Need for a national pharmacy: An issue of national security. Infectio, 20(1), 1–2. https://doi.org/10.1016/j.infect.2015.08.001
Heger, J. I., Froehlich, K., Pastuschek, J., Schmidt, A., Baer, C., Mrowka, R., Backsch, C., Schleußner, E., Markert, U. R., & Schmidt, A. (2018). Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum. Experimental Cell Research, 365(1), 57–65. https://doi.org/10.1016/J.YEXCR.2018.02.017
Hernández, R., Cevallos, A. M., Nepomuceno-Mejía, T., & López-Villaseñor, I. (2012). Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. In Parasitology Research (Vol. 111, Issue 2, pp. 509–514). https://doi.org/10.1007/s00436-012-2974-y
Isabel, L., Jaramillo, J., Mejía, R., María, L., Sánchez, M., & Henao, S. V. (2017). Enfermedad de Chagas: una mirada alternativa al tratamiento Chagas disease: an alternative look to treatment. In Revista Cubana de Medicina Tropical (Vol. 69, Issue 2). http://scielo.sld.cu
Jaimes-Dueñez, J., Triana-Chávez, O., Cantillo-Barraza, O., Hernández, C., Ramírez, J. D., & Góngora-Orjuela, A. (2017). Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia. Preventive Veterinary Medicine, 141, 1–6. https://doi.org/10.1016/j.prevetmed.2017.03.009
JC, E., & JA, D. (1988). Trypanosoma cruzi: cell biological behavior of epimastigote and amastigote forms in axenic culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.X
Kessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular Microbiology, 104(5), 712–736. https://doi.org/10.1111/mmi.13653
Kitamura, Y., Suzuki, M., Tsukioka, T., Isobe, K., Tsujino, T., Watanabe, T., Watanabe, T., Okudera, H., Nakata, K., Tanaka, T., & Kawase, T. (2018). Spectrophotometric determination of platelet counts in platelet-rich plasma. International Journal of Implant Dentistry, 4(1). https://doi.org/10.1186/S40729-018-0140-8
Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198, 105107. https://doi.org/10.1016/j.actatropica.2019.105107
Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., MessiasReason, I. J., & Sandri, T. L. (2019). Chagas Disease: From Discovery to a Worldwide Health Problem. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00166
Lima, D. B., Mello, C. P., Bandeira, I. C. J., De Menezes, R. R. P. P. B., Sampaio, T. L., Falcão, C. B., Morlighem, J. É. R. L., Rádis-Baptista, G., & Martins, A. M. C. (2018). The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biological Chemistry, 399(2), 187–196. https://doi.org/10.1515/HSZ-2017-0198
Lourenço, A. M., Faccini, C. C., Costa, C. A. de J., Mendes, G. B., & Fragata Filho, A. A. (2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Revista Da Sociedade Brasileira de Medicina Tropical, 51(1), 52–56. https://doi.org/10.1590/0037-8682-0285-2017
Martínez-Díaz, R. A., Escario, J. A., Nogal-Ruiz, J. J., & Gómez-Barrio, A. (2001). Biological Characterization of Trypanosoma cruzi Strains. Memorias Do Instituto Oswaldo Cruz, 96(1), 53–59. https://doi.org/10.1590/S0074-02762001000100006
Martinez, F., Perna, E., Perrone, S. V, & Liprandi, A. S. (2019). Chagas DiseZingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., … Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect. European Cardiology Review, 14(2), 82–88. https://doi.org/10.15420/ecr.2018.30.2
MC, E., JP, da C., FP, de F., RA, M., E, F., & S, S. (2007). Morphological events during the Trypanosoma cruzi cell cycle. Protist, 158(2), 147–157. https://doi.org/10.1016/J.PROTIS.2006.10.002
Olivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. In PLoS ONE (Vol. 14Issue 1). Public Library of Science. https://doi.org/10.1371/journal.pone.0210156
OMS | Notas descriptivas: enfermedades tropicales desatendidas. (2017). WHO; World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/chagasdisease-(american-trypanosomiasis) Özbilgin, A., Çavuş, İ., Nuraydın, A., & Ö
Özbilgin, A., Çavuş, İ., Nuraydın, A., & Özel, Y. (2020). The Production of Trypanosoma Brucei Rhodesiense, Cause of African Sleeping Sickness, and Trypanosoma Cruzi, Cause of American Chagas Disease, on Different Medias and Testing a New Media. Turkiye Parazitolojii Dergisi, 44(1), 7–11. https://doi.org/10.4274/TPD.GALENOS.2019.6656
Özbilgin, A., Kaya, T., Çavuş, İ., Yıldırım, A., & Özpınar, N. (2018). Comparison of Reproduction Densities in Different Liquid Media of Trypanosoma cruzi and Cryopreservation. Turkiye Parazitolojii Dergisi, 42(4), 249–253. https://doi.org/10.5152/TPD.2018.5750
Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomedica : Revista Del Instituto Nacional de Salud, 37, 27– 40. https://doi.org/10.7705/biomedica.v37i0.3769
Querales, M., Torres, J., Graterol, D., Arteaga, R., Navarro, M., Contreras, V., Pineda, W., & De Lima, A. R. (2013). Cambios metabólicos durante la epimastigogénesis in vitro de Trypanosoma cruzi. Salus, 17(3). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-71382013000300003
Quinn, G. (2016). What plates to use for measuring bacterial growth in Plate reader?..swer. Https://Www.Researchgate.Net/Post/What_plates_to_use_for_measuring_bacterial_ growth_in_Plate_reader/57d07e54b0366dfb10602cd4/Citation/Download. . https://www.researchgate.net/post/What_plates_to_use_for_measuring_bacterial_gr owth_in_Plate_reader/57d07e54b0366dfb10602cd4/citation/download
Ribeiro, A. R., Lima, L., Almeida, L. A. de, Monteiro, J., Moreno, C. J. G., Nascimento, J. D., Araújo, R. F. de, Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M. G., Silva, M. S., Steindel, M., & Rosa, J. A. da. (2018). Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The American Journal of Tropical Medicine and Hygiene, 98(2), 453.
Rodríguez-Monguí, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E., & Cucunubá, Z. M. (2019). Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. In Parasites and Vectors (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-019- 3541-5
Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288–294. https://doi.org/10.1016/J.JEP.2018.04.008
Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022
RR, K., AH, A. S., E, A.-E. R., AO, S., & HN, O. (2019). Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance. Molecular Biology Reports, 46(4), 4437–4441. https://doi.org/10.1007/S11033-019- 04898-1
Rueda, K., Trujillo, J. E., Carranza, J. C., & Vallejo, G. A. (2014). Transmisión oral de Trypanosoma cruzi: Una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomedica, 34(4), 631–641. https://doi.org/10.7705/biomedica.v34i4.2204
Santos, S. S., de Araújo, R. V., Giarolla, J., Seoud, O. El, & Ferreira, E. I. (2020). Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. International Journal of Antimicrobial Agents, 55(4), 105906. https://doi.org/10.1016/J.IJANTIMICAG.2020.105906
Shafaie, S., Hutter, V., Brown, M. B., Cook, M. T., & Chau, D. Y. S. (2017). Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates. PLOS ONE, 12(10), e0186799.
Tapia, R. A., Salas, C. O., Vázquez, K., Espinosa-Bustos, C., Soto-Delgado, J., Varela, J., Birriel, E., Cerecetto, H., González, M., & Paulino, M. (2014). Synthesis and biological characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents. Bioorganic & Medicinal Chemistry Letters, 24(16), 3919–3922. https://doi.org/10.1016/J.BMCL.2014.06.044
Veiga-Santos, P., Pelizzaro-Rocha, K. J., Santos, A. O., Ueda-Nakamura, T., Filho, B. P. D., Silva, S. O., Sudatti, D. B., Bianco, E. M., Pereira, R. C., & Nakamura, C. V. (2010). In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology, 137(11), 1661–1670. https://doi.org/10.1017/S003118201000034X
Vela, A., Coral-Almeida, M., Sereno, D., Costales, J. A., Barnabé, C., & Brenière, S. F. (2021). In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLOS Neglected Tropical Diseases, 15(3), e0009269. https://doi.org/10.1371/JOURNAL.PNTD.0009269
Zingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 123 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81783/3/1010215217.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81783/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81783/5/1010215217.2022.pdf.jpg
bitstream.checksum.fl_str_mv 492af2005ec9181de2707960716d43e1
8153f7789df02f0a4c9e079953658ab2
209a55aec911a83ff36c34e2d5857c2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089965889388544
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garavito Cardenas, Giovannycb742e0bd2788f9a1b4014da4c24700aArias Marciales, María Helenab98dd40a73a6e8a5262f52a03f2fe202Perez Lozada, Jhindy Tatianaf43dadaaa2617b1cbc6058ad0b28a2efFametra2022-08-04T17:14:29Z2022-08-04T17:14:29Z2021https://repositorio.unal.edu.co/handle/unal/81783Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasLa enfermedad de Chagas causada por el parásito Trypanosoma cruzi, representa un problema de salud pública a nivel mundial. Su tratamiento está restringido a dos fármacos, Benznidazol y Nifurtimox, que poseen efectos adversos, eficacia limitada y su oportunidad de acceso es igualmente limitado. Las pruebas farmacológicas in vitro constituyen la herramienta inicial para el tamizaje de alternativas promisorias, sin embargo, en este caso particular, no existe un consenso en los protocolos utilizados, por lo que es fundamental optimizar una prueba farmacológica in vitro para evaluar sustancias con potencial actividad frente a Trypanosoma cruzi, con el fin de obtener resultados reproducibles y comparables que aporten al avance del desarrollo de nuevo fármacos. En el presente trabajo se optimizó las condiciones más relevantes usadas en las pruebas farmacológicas in vitro a partir de epimastigotes de la cepa Y de Trypanosoma cruzi. Se determinó que el parásito tiene un crecimiento sostenido hasta el día 8 con una estabilización o disminución a partir del día 9 de incubación. El recambio de medio de cultivo debe ser cada 3 días para garantizar un porcentaje de epimastigotes mayor al 90%. Para el cultivo óptimo del parásito se puede usar tanto el medio LIT como el BHI suplementado con 10 % de SFB. En cuanto a la prueba farmacológica se determinó que se puede usar indistintamente placas con fondo en U o fondo plano sin afectar el crecimiento del parásito, los mejores resultados los obtuvimos empleando una concentración de 1x10 6 parásitos/mL como inóculo inicial y una incubación de 72 horas. Se determinó una CI50 de 16,6 µM (4,32 µg/mL) de benznidazole frente a epimastigotes de T. cruzi de la Cepa Y, coincidente con reportes previos bajo las mismas condiciones. (Texto tomado de la fuente)Chagas disease caused by the parasite Trypanosoma cruzi represents a worldwide public health problem. Its treatment is restricted to two drugs, Benznidazole and Nifurtimox, which have adverse effects, limited efficacy, and their opportunity for access is equally limited. In vitro pharmacological tests are the initial tool for screening promising alternatives, however, in this particular case, there is no consensus on the protocols used, so it is essential to optimize an in vitro pharmacological test to evaluate substances with potential activity against Trypanosoma cruzi, in order to obtain reproducible and comparable results that contribute to the advancement of the development of new drugs. In the present work, the most relevant conditions used in vitro pharmacological tests were optimized from epimastigotes of the Y strain of Trypanosoma cruzi. It was determined that the parasite has a sustained growth until day 8 with a stabilization or decrease from day 9 of incubation. The change of culture medium should be every 3 days to guarantee a percentage of epimastigotes greater than 90%. For optimal culture of the parasite, both LIT medium and BHI supplemented with 10% FBS can be used. Regarding the pharmacological test, it was determined that plates with a U-bottom or flat bottom can be used interchangeably without affecting the growth of the parasite; The best results were obtained using a concentration of 1x10 6 parasites / mL as initial inoculum and an incubation of 72 hours. An IC50 of 16.6 µM (4.32 µg/mL) of benznidazole was determined against epimastigotes of T. cruzi of Strain Y, which coincides with previous reports under the same conditions.MaestríaMagíster en Ciencias - Microbiología123 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaEnfermedad de ChagasTécnicas In VitroChagas DiseaseIn Vitro TechniquesTrypanosoma cruziTrypanosoma cruziEpimastigoteIn vitroOptimización de una prueba farmacológica in vitro para la evaluación de sustancias con posible actividad frente a epimastigotes de Trypanosoma cruziOptimization of an in vitro pharmacological test for the evaluation of substances with possible activity against Trypanosoma cruzi epimastigotesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAA, G., & MG, L. (2017). Triatomine physiology in the context of trypanosome infection. Journal of Insect Physiology, 97, 66–76. https://doi.org/10.1016/J.JINSPHYS.2016.07.005AL, V., P, R., M, W., P, M., E, M., & MG, de L. (2010). Fetal bovine serum concentration affects delta9 desaturase activity of Trypanosoma cruzi. Lipids, 45(3), 275–283. https://doi.org/10.1007/S11745-010-3387-2Álvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez, A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital General de México, 81(3), 154–164. https://doi.org/10.1016/j.hgmx.2016.09.010AM, C., JM, B., AM, P., CM, P. B., LJ, S., D, X., CL, B., & RL, T. (2010). In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Neglected Tropical Diseases, 4(7). https://doi.org/10.1371/JOURNAL.PNTD.0000740Amato Neto, V. (n.d.). Origin of the “Y strain” of Trypanosoma cruzi. Revista Do Instituto de Medicina Tropical de Sao Paulo, 52(3), 171. https://doi.org/10.1590/s0036- 46652010000300012Bhattacharya, A., Corbeil, A., Monte-Neto, R. L. do, & Fernandez-Prada, C. (2020). Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes, 11(7), 1–24. https://doi.org/10.3390/GENES11070722Carneiro, P. F., Do Nascimento, S. B., Pinto, A. V., Pinto, M. D. C. F. R., Lechuga, G. C., Santos, D. O., Dos Santos Júnior, H. M., Resende, J. A. L. C., Bourguignon, S. C., & Ferreira, V. F. (2012). New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorganic & Medicinal Chemistry, 20(16), 4995–5000. https://doi.org/10.1016/J.BMC.2012.06.027CDC. (2019). American Trypanosomiasis. https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.htmlCeole, L. F., Gandhi, H., Villamizar, L. H., Soares, M. J., & O’Sullivan, T. P. (2018). Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi. Future Medicinal Chemistry, 10(4), 391–408. https://doi.org/10.4155/FMC-2017- 0184CMBD, S., A, L., RL, K., RCP, R., AH, I., MA, K., DP, P., & CM, P. (2018). Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Memorias Do Instituto Oswaldo Cruz, 113(5). https://doi.org/10.1590/0074-02760170404Cortez, C., Martins, R. M., Alves, R. M., Silva, R. C., Bilches, L. C., Macedo, S., Atayde, V. D., Kawashita, S. Y., Briones, M. R. S., & Yoshida, N. (2012). Differential Infectivity by the Oral Route of Trypanosoma cruzi Lineages Derived from Y Strain. PLoS Neglected Tropical Diseases, 6(10). https://doi.org/10.1371/JOURNAL.PNTD.0001804Cos, P., Vlietinck, A. J., Berghe, D. Vanden, & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept.’ Journal of Ethnopharmacology, 106(3), 290–302. https://doi.org/10.1016/J.JEP.2006.04.003De Lima, A. R., Noris-Suárez, K., Bretaña, A., Contreras, V. T., Navarro, M. C., PérezYbarra, L., & Bubis, J. (2017). Growth arrest and morphological changes triggered by emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie, 142, 31–40. https://doi.org/10.1016/J.BIOCHI.2017.08.005Dias, J. C. P., Ramos, A. N., Gontijo, E. D., Luquetti, A., Shikanai-Yasuda, M. A., Coura, J. R., Torres, R. M., Melo, J. R. da C., Almeida, E. A. de, Oliveira, W. de, Silveira, A. C., Rezende, J. M. de, Pinto, F. S., Ferreira, A. W., Rassi, A., Fragata, A. A., Sousa, A. S. de, Correia, D., Jansen, A. M., … Alves, R. V. (2016). II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiologia e Servicos de Saude : Revista Do Sistema Unico de Saude Do Brasil, 25(spe), 7–86. https://doi.org/10.5123/S1679- 49742016000500002ENFERMEDAD DE CHAGAS Ministerio de Salud y Protección Social-Federación Médica Colombiana. (2012).ENGEL, J. C., & DVORAK, J. A. (1988). Trypanosoma cruzi: Cell Biological Behavior of Epimastigote and Amastigote Forms in Axenic Culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.XFallas, J. J., & Chavarría, J. (2011). Implementación del Análisis en Componentes Principales con el software estadístico R. Revista Digital Matemática, Educación e Internet, 11(2), 1659–0643. https://repositoriotec.tec.ac.cr/handle/2238/12882Gómez Marin, J. E. (2016). Need for a national pharmacy: An issue of national security. Infectio, 20(1), 1–2. https://doi.org/10.1016/j.infect.2015.08.001Heger, J. I., Froehlich, K., Pastuschek, J., Schmidt, A., Baer, C., Mrowka, R., Backsch, C., Schleußner, E., Markert, U. R., & Schmidt, A. (2018). Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum. Experimental Cell Research, 365(1), 57–65. https://doi.org/10.1016/J.YEXCR.2018.02.017Hernández, R., Cevallos, A. M., Nepomuceno-Mejía, T., & López-Villaseñor, I. (2012). Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. In Parasitology Research (Vol. 111, Issue 2, pp. 509–514). https://doi.org/10.1007/s00436-012-2974-yIsabel, L., Jaramillo, J., Mejía, R., María, L., Sánchez, M., & Henao, S. V. (2017). Enfermedad de Chagas: una mirada alternativa al tratamiento Chagas disease: an alternative look to treatment. In Revista Cubana de Medicina Tropical (Vol. 69, Issue 2). http://scielo.sld.cuJaimes-Dueñez, J., Triana-Chávez, O., Cantillo-Barraza, O., Hernández, C., Ramírez, J. D., & Góngora-Orjuela, A. (2017). Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia. Preventive Veterinary Medicine, 141, 1–6. https://doi.org/10.1016/j.prevetmed.2017.03.009JC, E., & JA, D. (1988). Trypanosoma cruzi: cell biological behavior of epimastigote and amastigote forms in axenic culture. The Journal of Protozoology, 35(4), 513–518. https://doi.org/10.1111/J.1550-7408.1988.TB04140.XKessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular Microbiology, 104(5), 712–736. https://doi.org/10.1111/mmi.13653Kitamura, Y., Suzuki, M., Tsukioka, T., Isobe, K., Tsujino, T., Watanabe, T., Watanabe, T., Okudera, H., Nakata, K., Tanaka, T., & Kawase, T. (2018). Spectrophotometric determination of platelet counts in platelet-rich plasma. International Journal of Implant Dentistry, 4(1). https://doi.org/10.1186/S40729-018-0140-8Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198, 105107. https://doi.org/10.1016/j.actatropica.2019.105107Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., MessiasReason, I. J., & Sandri, T. L. (2019). Chagas Disease: From Discovery to a Worldwide Health Problem. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00166Lima, D. B., Mello, C. P., Bandeira, I. C. J., De Menezes, R. R. P. P. B., Sampaio, T. L., Falcão, C. B., Morlighem, J. É. R. L., Rádis-Baptista, G., & Martins, A. M. C. (2018). The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biological Chemistry, 399(2), 187–196. https://doi.org/10.1515/HSZ-2017-0198Lourenço, A. M., Faccini, C. C., Costa, C. A. de J., Mendes, G. B., & Fragata Filho, A. A. (2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Revista Da Sociedade Brasileira de Medicina Tropical, 51(1), 52–56. https://doi.org/10.1590/0037-8682-0285-2017Martínez-Díaz, R. A., Escario, J. A., Nogal-Ruiz, J. J., & Gómez-Barrio, A. (2001). Biological Characterization of Trypanosoma cruzi Strains. Memorias Do Instituto Oswaldo Cruz, 96(1), 53–59. https://doi.org/10.1590/S0074-02762001000100006Martinez, F., Perna, E., Perrone, S. V, & Liprandi, A. S. (2019). Chagas DiseZingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., … Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect. European Cardiology Review, 14(2), 82–88. https://doi.org/10.15420/ecr.2018.30.2MC, E., JP, da C., FP, de F., RA, M., E, F., & S, S. (2007). Morphological events during the Trypanosoma cruzi cell cycle. Protist, 158(2), 147–157. https://doi.org/10.1016/J.PROTIS.2006.10.002Olivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. In PLoS ONE (Vol. 14Issue 1). Public Library of Science. https://doi.org/10.1371/journal.pone.0210156OMS | Notas descriptivas: enfermedades tropicales desatendidas. (2017). WHO; World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/chagasdisease-(american-trypanosomiasis) Özbilgin, A., Çavuş, İ., Nuraydın, A., & ÖÖzbilgin, A., Çavuş, İ., Nuraydın, A., & Özel, Y. (2020). The Production of Trypanosoma Brucei Rhodesiense, Cause of African Sleeping Sickness, and Trypanosoma Cruzi, Cause of American Chagas Disease, on Different Medias and Testing a New Media. Turkiye Parazitolojii Dergisi, 44(1), 7–11. https://doi.org/10.4274/TPD.GALENOS.2019.6656Özbilgin, A., Kaya, T., Çavuş, İ., Yıldırım, A., & Özpınar, N. (2018). Comparison of Reproduction Densities in Different Liquid Media of Trypanosoma cruzi and Cryopreservation. Turkiye Parazitolojii Dergisi, 42(4), 249–253. https://doi.org/10.5152/TPD.2018.5750Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomedica : Revista Del Instituto Nacional de Salud, 37, 27– 40. https://doi.org/10.7705/biomedica.v37i0.3769Querales, M., Torres, J., Graterol, D., Arteaga, R., Navarro, M., Contreras, V., Pineda, W., & De Lima, A. R. (2013). Cambios metabólicos durante la epimastigogénesis in vitro de Trypanosoma cruzi. Salus, 17(3). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-71382013000300003Quinn, G. (2016). What plates to use for measuring bacterial growth in Plate reader?..swer. Https://Www.Researchgate.Net/Post/What_plates_to_use_for_measuring_bacterial_ growth_in_Plate_reader/57d07e54b0366dfb10602cd4/Citation/Download. . https://www.researchgate.net/post/What_plates_to_use_for_measuring_bacterial_gr owth_in_Plate_reader/57d07e54b0366dfb10602cd4/citation/downloadRibeiro, A. R., Lima, L., Almeida, L. A. de, Monteiro, J., Moreno, C. J. G., Nascimento, J. D., Araújo, R. F. de, Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M. G., Silva, M. S., Steindel, M., & Rosa, J. A. da. (2018). Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The American Journal of Tropical Medicine and Hygiene, 98(2), 453.Rodríguez-Monguí, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E., & Cucunubá, Z. M. (2019). Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. In Parasites and Vectors (Vol. 12, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-019- 3541-5Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288–294. https://doi.org/10.1016/J.JEP.2018.04.008Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022RR, K., AH, A. S., E, A.-E. R., AO, S., & HN, O. (2019). Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance. Molecular Biology Reports, 46(4), 4437–4441. https://doi.org/10.1007/S11033-019- 04898-1Rueda, K., Trujillo, J. E., Carranza, J. C., & Vallejo, G. A. (2014). Transmisión oral de Trypanosoma cruzi: Una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomedica, 34(4), 631–641. https://doi.org/10.7705/biomedica.v34i4.2204Santos, S. S., de Araújo, R. V., Giarolla, J., Seoud, O. El, & Ferreira, E. I. (2020). Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. International Journal of Antimicrobial Agents, 55(4), 105906. https://doi.org/10.1016/J.IJANTIMICAG.2020.105906Shafaie, S., Hutter, V., Brown, M. B., Cook, M. T., & Chau, D. Y. S. (2017). Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates. PLOS ONE, 12(10), e0186799.Tapia, R. A., Salas, C. O., Vázquez, K., Espinosa-Bustos, C., Soto-Delgado, J., Varela, J., Birriel, E., Cerecetto, H., González, M., & Paulino, M. (2014). Synthesis and biological characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents. Bioorganic & Medicinal Chemistry Letters, 24(16), 3919–3922. https://doi.org/10.1016/J.BMCL.2014.06.044Veiga-Santos, P., Pelizzaro-Rocha, K. J., Santos, A. O., Ueda-Nakamura, T., Filho, B. P. D., Silva, S. O., Sudatti, D. B., Bianco, E. M., Pereira, R. C., & Nakamura, C. V. (2010). In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology, 137(11), 1661–1670. https://doi.org/10.1017/S003118201000034XVela, A., Coral-Almeida, M., Sereno, D., Costales, J. A., Barnabé, C., & Brenière, S. F. (2021). In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLOS Neglected Tropical Diseases, 15(3), e0009269. https://doi.org/10.1371/JOURNAL.PNTD.0009269Zingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009Público generalORIGINAL1010215217.2022.pdf1010215217.2022.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3339784https://repositorio.unal.edu.co/bitstream/unal/81783/3/1010215217.2022.pdf492af2005ec9181de2707960716d43e1MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81783/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1010215217.2022.pdf.jpg1010215217.2022.pdf.jpgGenerated Thumbnailimage/jpeg5914https://repositorio.unal.edu.co/bitstream/unal/81783/5/1010215217.2022.pdf.jpg209a55aec911a83ff36c34e2d5857c2bMD55unal/81783oai:repositorio.unal.edu.co:unal/817832024-08-07 23:10:52.778Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK