Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos

ilustraciones, gráficas, tablas

Autores:
Chaparro Amaya, Edna Johanna
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83049
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83049
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis de contenido
Análisis de correlaciones
Analítica del aprendizaje
Métodos mixtos
Programación de computadores
Learning analytics
Mixed methods
Computer programming
Correlation analysis
Content analysis
Análisis de datos
Programación informática
Evaluación de la educación
Data analysis
Computer programming
Educational evaluation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_9de2454ae835247b24289f661701ce65
oai_identifier_str oai:repositorio.unal.edu.co:unal/83049
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
dc.title.translated.eng.fl_str_mv Learning analytics in Computer Programming: a mixed-methods investigation
title Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
spellingShingle Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis de contenido
Análisis de correlaciones
Analítica del aprendizaje
Métodos mixtos
Programación de computadores
Learning analytics
Mixed methods
Computer programming
Correlation analysis
Content analysis
Análisis de datos
Programación informática
Evaluación de la educación
Data analysis
Computer programming
Educational evaluation
title_short Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
title_full Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
title_fullStr Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
title_full_unstemmed Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
title_sort Analítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtos
dc.creator.fl_str_mv Chaparro Amaya, Edna Johanna
dc.contributor.advisor.spa.fl_str_mv Restrepo Calle, Felipe
dc.contributor.author.spa.fl_str_mv Chaparro Amaya, Edna Johanna
dc.contributor.researchgroup.spa.fl_str_mv Plas Programming languages And Systems
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis de contenido
Análisis de correlaciones
Analítica del aprendizaje
Métodos mixtos
Programación de computadores
Learning analytics
Mixed methods
Computer programming
Correlation analysis
Content analysis
Análisis de datos
Programación informática
Evaluación de la educación
Data analysis
Computer programming
Educational evaluation
dc.subject.proposal.spa.fl_str_mv Análisis de contenido
Análisis de correlaciones
Analítica del aprendizaje
Métodos mixtos
Programación de computadores
dc.subject.proposal.eng.fl_str_mv Learning analytics
Mixed methods
Computer programming
Correlation analysis
Content analysis
dc.subject.unesco.spa.fl_str_mv Análisis de datos
Programación informática
Evaluación de la educación
dc.subject.unesco.eng.fl_str_mv Data analysis
Computer programming
Educational evaluation
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-20T17:55:21Z
dc.date.available.none.fl_str_mv 2023-01-20T17:55:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83049
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83049
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M. & Aslam, M. A. (2019). An integrated framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679-690.
Andergassen, M., Mödritscher, F. & Neumann, G. (2014). Practice and Repetition during Exam Preparation in Blended Learning Courses: Correlations with Learning Results. Journal of Learning Analytics, 1(1), 48-74.
Ang, K. L.-M., Ge, F. L. & Seng, K. P. (2020). Big Educational Data amp; Analytics: Survey, Architecture and Challenges. IEEE Access, 8, 116392-116414. https://doi.org/10.1109/ACCESS.2020. 2994561
Argyris, C. & Schon, D. A. (1974). Theory in practice: Increasing professional effectiveness. Jossey-Bass.
Arnold, K. E. & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase Student Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 267-270.
Azcona, D., Hsiao, I.-H. & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Modeling and User- Adapted Interaction, 29, 759-788.
Baker, R. S. & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics: From Research to Practice (pp. 61-75). Springer New York.
Barber, R. & Sharkey, M. (2012). Course Correction: Using Analytics to Predict Course Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 259-262. https: //doi.org/10.1145/2330601.2330664
Berelson, B. (1952). Content analysis in communication research. Glencoe (Ill.) : Free Press.
Berland, M., Davis, D. & Smith, C. P. (2015). AMOEBA: Designing for collaboration in computer science classrooms through live learning analytics. International Journal of Computer-Supported Collaborative Learning, 10, 425-4447.
Blikstein, P. (2011). Using Learning Analytics to Assess Students’ Behavior in Open-Ended Programming Tasks. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 110-116.
Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S. & Koller, D. (2014). Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming. Journal of the Learning Sciences, 23(4), 561-599.
Bryman, A. (2015). Mixed methods research: combining quantitative and qualitative research. Social Research Methods. Oxford University Press.
Cao, L. (2017). Data Science: A Comprehensive Overview. ACM Comput. Surv., 50(3).
Carter, A., Hundhausen, C. & Olivares, D. (2019). Leveraging the Integrated Development Environment for Learning Analytics. University Press.
Chaparro, E., Restrepo-Calle, F. & Ramírez-Echeverry, J. J. (2021). Learning analytics in computer programming courses [October 19–21, 2021, Arequipa, Perú]. Proceedings of the IV Latin American Conference on Learning Analytics, 78-87. http://ceur-ws.org/Vol-3059/paper8.pdf
Charlton, P., Mavrikis, M. & Katsifli, D. (2013). The Potential of Learning Analytics and Big Data. Ariadne. http://www.ariadne.ac.uk/issue/71/charlton-et-al/
Clow, D. (2012). The Learning Analytics Cycle: Closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12, 134-138.
Coffrin, C., Corrin, L., de Barba, P. & Kennedy, G. (2014). Visualizing Patterns of Student Engagement and Performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 83-92.
Corbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593
Creswell, J. W. (2014). Chapter 1: The Selection of a Research Approach. Research Design Qualitative, Quantitative, And Mixed Methods Approaches (4th). SAGE Publications.
Dascalu, M.-I., Bodea, C.-N., Mogos, R. I., Purnus, A. & Tesila, B. (2018). A Survey on Social Learning Analytics: Applications, Challenges and Importance. En G. C. Silaghi, R. A. Buchmann y C. Boja (Eds.), Informatics in Economy (pp. 70-83). Springer International Publishing.
Dhakal, K. (2022). NVivo. Journal of the Medical Library Association : JMLA, 110(2), 270-272.
Dietze, S., Siemens, G., Taibi, D. & Drachsler, H. (2016). Editorial: Datasets for Learning Analytics. Journal of Learning Analytics, 3(2), 307-311.
Drachsler, H. & Greller, W. (2016). Privacy and Analytics: It’s a DELICATE Issue a Checklist for Trusted Learning Analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98.
Elia, G., Solazzo, G., Lorenzo, G. & Passiante, G. (2019). Assessing learners’ satisfaction in collaborative online courses through a big data approach. Computers in Human Behavior, 92, 589-599.
Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.
Gasevic, D., Mirriahi, N., Long, P. & Dawson, S. (2014). Editorial: Inaugural Issue of the Journal of Learning Analytics. Journal of Learning Analytics, 1(1).
Gašević, D., Mirriahi, N. & Dawson, S. (2014). Analytics of the Effects of Video Use and Instruction to Support Reflective Learning. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 123-132.
Gergen, K. J., Josselson, R. & Freeman, M. (2015). The promises of qualitative inquiry. American Psychologist, 70(1), 1-9.
Guo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education. Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579-584. https://doi.org/10.1145/2445196.2445368
Hernández-Sampieri, R., Fernández-Collado, C. & Baptista-Lucio, P. (2014). Proceso de la investigación cualitativa. Metodología de la Investigación. McGraw-Hill.
Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P. J., Broos, T., Whitelock-Wainwright, A. & Pérez-Sanagustín, M. (2020). Identifying needs for learning analytics adoption in Latin American universities: A mixed-methods approach. The Internet and Higher Education, 45, 100726.
Hsiao, I.-H. & Lin, Y.-L. (2017). Enriching programming content semantics: An evaluation of visual analytics approach. Computers in Human Behavior, 72, 771-782.
Hu, Q. & Huang, Y. (2018). A Framework for Analysis Learning Pattern Toward Online Forum in Programming Course. En L. Deng, W. W. K. Ma y C. W. R. Fong (Eds.), New Media for Educational Change (pp. 71-80). Springer Singapore.
Ifenthaler, D. (2017). Are Higher Education Institutions Prepared for Learning Analytics? TechTrends, 61(4), 366-371.
Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C. & Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming: Literature Review and Case Studies. ITICSE-WGR ’15: Proceedings of the 2015 ITiCSE on Working Group Reports., 41-63.
Kizilcec, R. F., Pérez-Sanagustín, M. & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers and Education, 104, 18-33.
Klašnja-Milićević, A., Vesin, B., Ivanović, M. & Budimac, Z. (2011). E-Learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education, 56(3), 885-899.
Kolb, D. A. (1984). Experiential learning: experience as thesource of learning and development. Prentice Hall.
Kop, R., Fournier, H. & Durand, G. (2017). A Critical Perspective on Learning Analytics and Educational Data Mining. En C. Lang, G. Siemens, A. F. Wise y D. Gaševic (Eds.), The Handbook of Learning Analytics (1.a ed., pp. 319-326). Society for Learning Analytics Research (SoLAR).
Kumar, V. S., Kinshuk, Somasundaram, T. S., Boulanger, D., Seanosky, J. & Vilela, M. F. (2015). Big Data Learning Analytics: A New Perpsective. Ubiquitous Learning Environments and Technologies (pp. 139-158). Springer Berlin Heidelberg.
Kurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour and Information Technology, 38(4), 410-421.
Lagus, J., Longi, K., Klami, A. & Hellas, A. (2018). Transfer-Learning Methods in Programming Course Outcome Prediction. ACM Trans. Comput. Educ., 18(4).
Laurillard, D. (2002). Rethinking University Teaching: A conversational framework for the effective use of learning technologies. Routledge.
Leony, D., Muñoz-Merino, P. J., Pardo, A. & Delgado Kloos, C. (2013). Provision of awareness of learners’ emotions through visualizations in a computer interaction-based environment. Expert Systems with Applications, 40(13), 5093-5100.
Lockyer, L. & Dawson, S. (2011). Learning Designs and Learning Analytics. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 153-156.
Long, P. & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 31-40.
Lonn, S., Aguilar, S. J. & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97.
Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q. & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234.
Macfadyen, L. P. & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588-599.
Mangaroska, K. & Giannakos, M. (2017). Learning Analytics for Learning Design: Towards Evidence- Driven Decisions to Enhance Learning. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 428-433). Springer International Publishing.
Martin, F. & Whitmer, J. C. (2016). Applying Learning Analytics to Investigate Timed Release in Online Learning. Technology, Knowledge and Learning, 21, 59-74.
Monllaó Olivé, D., Huynh, D. Q., Reynolds, M., Dougiamas, M. & Wiese, D. (2020). A supervised learning framework: using assessment to identify students at risk of dropping out of a MOOC. Journal of Computing in Higher Education, 32, 9-26.
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagc, E. (2016). Deep Learning Techniques in Big Data Analytics. Big Data Technologies and Applications (pp. 133-156). Springer International Publishing. https://doi.org/10.1007/978-3-319-44550-2\_5
Pardo, A. & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450.
Pistilli, M. D., Willis, J. E. & Campbell, J. P. (2014). Analytics Through an Institutional Lens: Definition, Theory, Design, and Impact. Learning Analytics: From Research to Practice (pp. 79-102). Springer New York.
Ramírez-Echeverry, J. J., Restrepo-Calle, F. & González, F. A. (2022). A case study in technologyenhanced learning in an introductory computer programming course. Global Journal of Engineering Education, 24(1).
Restrepo-Calle, F., Ramírez-Echeverry, J. & Gonzalez, F. (2018). UNCODE: INTERACTIVE SYSTEM FOR LEARNING AND AUTOMATIC EVALUATION OF COMPUTER PROGRAMMING SKILLS. EDULEARN18 Proceedings, 6888-6898. https://doi.org/10.21125/edulearn.2018.1632
Restrepo-Calle, F., Ramírez Echeverry, J. J. & González, F. A. (2019). Continuous assessment in a computer programming course supported by a software tool. Computer Applications in Engineering Education, 27(1), 80-89. https://doi.org/10.1002/cae.22058
Restrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2020). Using an Interactive Software Tool for the Formative and Summative Evaluation in a Computer Programming Course: an Experience Report. Global Journal of Engineering Education, 22(3), 174-185.
Rienties, B. & Toetenel, L. (2016). The Impact of 151 Learning Designs on Student Satisfaction and Performance: Social Learning (Analytics) Matters. Proceedings of the Sixth International Conference on Learning Analytics and Knowledge, 339-343.
Robinson, C., Yeomans, M., Reich, J., Hulleman, C. & Gehlbach, H. (2016). Forecasting Student Achievement in MOOCs with Natural Language Processing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 383-387.
Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D. & Kloos, C. D. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139-148.
Scheffel, M., Niemann, K., Leony, D., Pardo, A., Schmitz, H.-C., Wolpers, M. & Delgado Kloos, C. (2012). Key Action Extraction for Learning Analytics. En A. Ravenscroft, S. Lindstaedt, C. D. Kloos y D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (pp. 320-333). Springer Berlin Heidelberg.
Schmitz, M., van Limbeek, E., Greller, W., Sloep, P. & Drachsler, H. (2017). Opportunities and Challenges in Using Learning Analytics in Learning Design. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 209-223). Springer International Publishing.
Schön, D. A. (1983). The Reflective Practitioner: How professionals think in action. Temple Smith.
Schön, D. A. (1991). The Reflective Turn: Case studies in and on educational practice. Teachers College Press.
Selwyn, N. (2020). Re-imagining ‘Learning Analytics’ … a case for starting again? The Internet and Higher Education, 46, 100745.
Seufert, S. & Meier, C. (2018). Big Data in Education: Supporting Learners in Their Role as Reflective Practitioners. Frontiers of Cyberlearning: Emerging Technologies for Teaching and Learning (pp. 103-123). Springer Singapore.
Shen, H., Liang, L., Law, N., Hemberg, E. & O’Reilly, U.-M. (2020). Understanding Learner Behavior Through Learning Design Informed Learning Analytics. Proceedings of the Seventh ACM Conference on Learning @ Scale, 135-145.
Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400.
Society for Learning Analytics Research, S. (2022). What is Learning Analytics? https://www.solaresearch. org/about/what-is-learning-analytic
Stemler, S. (2000). An overview of content analysis. Practical assessment, research, and evaluation, 7(1),17.
Tabuenca, B., Kalz, M., Drachsler, H. & Specht, M. (2015). Time will tell: The role of mobile learning analytics in self-regulated learning. Computers and Education, 89, 53-74.
Tam, V., Lam, E. Y., Huang, Y., Liu, K., Tam, V. & Tse, P. (2016). Developing the Petal E-Learning Platform for Facial Analytics and Personalized Learning. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-17). Springer International Publishing.
Tempelaar, D. T., Rienties, B. & Giesbers, B. (2016). Verifying the Stability and Sensitivity of Learning Analytics Based Prediction Models: An Extended Case Study. En S. Zvacek, M. T. Restivo, J. Uhomoibhi y M. Helfert (Eds.), Computer Supported Education (pp. 256-273). Springer International Publishing.
Trætteberg, H., Mavroudi, A., Sharma, K. & Giannakos, M. (2017). Utilizing Real-Time Descriptive Learning Analytics to Enhance Learning Programming. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-22). Springer International Publishing.
Vahdat, M., Oneto, L., Anguita, D., Funk, M. & Rauterberg, M. (2015). A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. En G. Conole, T. Klobučar, C. Rensing, J. Konert y E. Lavoué (Eds.), Design for Teaching and Learning in a Networked World (pp. 352-366). Springer International Publishing.
Wong, B. T.-m. & Li, K. C. (2020). A review of learning analytics intervention in higher education (2011–2018). Journal of Computers in Education, 7, 7-28.
Wu, Y. & Wu, W. (2018). A Learning Analytics System for Cognition Analysis in Online Learning Community. En L. H. U y H. Xie (Eds.), Web and Big Data (pp. 243-258). Springer International Publishing.
Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44-53.
Zikopoulos, P., Eaton, C. & IBM. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (1st). McGraw-Hill Osborne Media.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 139 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83049/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83049/2/1032456294.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83049/3/1032456294.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
374a2c741387cd47e54d0cdcedddff43
91888618e9b2959e9167a9c5d1155960
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090240905707520
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Restrepo Calle, Felipe82117c6c71f31211f86863049b600db3Chaparro Amaya, Edna Johanna45b9d71ae23ad4e183423268506dc47a600Plas Programming languages And Systems2023-01-20T17:55:21Z2023-01-20T17:55:21Z2022https://repositorio.unal.edu.co/handle/unal/83049Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl reciente crecimiento de nuevas formas de datos educativos, ha hecho que la analítica del aprendizaje surja como una solución para identificar información relevante en la toma de decisiones educativas. Un grupo de investigaciones en analítica del aprendizaje se concentra en identificar variables del proceso de aprendizaje relacionadas con el desempeño académico de los estudiantes. Sin embargo, pocas investigaciones consideran el uso de metodologías mixtas o cualitativas, lo que limita el entendimiento sobre los comportamientos de los alumnos. El objetivo general de este trabajo es determinar las relaciones existentes entre las medidas y métricas derivadas del proceso de aprendizaje y el rendimiento académico de los estudiantes en la asignatura Programación de Computadores de la Facultad de Ingeniería en la Universidad Nacional de Colombia durante 2019 y 2020. Este trabajo propone un diseño metodológico con enfoque mixto, no experimental, donde la fase cualitativa de la metodología está enfocada hacia el análisis de contenido. Los resultados evidencian que existe una correlación positiva entre la cantidad de intentos de solución realizados por el alumno y su desempeño académico, lo que posiblemente se puede asociar a las percepciones de los estudiantes sobre la plataforma educativa utilizada en el curso como un ambiente que promueve la práctica constante debido a su disponibilidad en línea. Los errores/veredictos de las soluciones enviadas (respuesta correctas e incorrecta, límite de memoria excedido, errores de compilación y límite de tiempo excedido) también tienen correlaciones positivas, las cuales son corroboradas con las referencias de los estudiantes sobre retroalimentación formativa, consejos orientativos y casos de prueba. Métricas de software como el conteo de tokens y las líneas de código de los programas diseñados por los estudiantes tienen una correlación positiva significativa con la calificación final del alumno, lo cual se puede vincular con las referencias sobre ejercicios estimulantes y motivantes dentro de la plataforma educativa. Por otra parte, el índice de mantenibilidad tiene una correlación negativa, lo que se puede relacionar con las opiniones que resaltan la obtención de habilidades de programación. En contraste, se observan correlaciones negativas entre el uso de las herramientas de la plataforma educativa utilizada en el curso (p. ej. pruebas personalizadas, visualización de la ejecución del código y verificación de buenas prácticas de programación) con el rendimiento académico, las cuales son refutadas con las referencias de los estudiantes a estas herramientas como elementos positivos de la plataforma. En conclusión, se evidencia como el uso de métodos mixtos permite que los hallazgos de la fase cuantitativa sean corroborados, complementados o refutados por medio de las observaciones de los datos cualitativos. (Texto tomado de la fuente).The recent growth of new forms of educational data has led to the emergence of learning analytics as a solution to identify relevant information for educational decision making. A body of research in learning analytics focuses on identifying learning process variables related to students’ academic performance. However, little research considers the use of mixed or qualitative methodologies, which limits the understanding of student behaviors. The general objective of this work is to determine the existing relationships between measures and metrics derived from the learning process and the academic performance of students in the Computer Programming courses of the Faculty of Engineering at the National University of Colombia during 2019 and 2020. This work proposes a methodological design with a mixed, non-experimental approach, where the qualitative phase of the methodology is focused on content analysis. The results show that there is a positive correlation between the number of solution attempts made by the student and their academic performance, which can possibly be associated with the students’ perceptions of the educational platform used in the course as an environment that promotes constant practice due to its online availability. Errors/verdicts of submitted solutions (correct and incorrect answer, memory limit exceeded, compilation errors, and time limit exceeded) also have positive correlations, which are corroborated with students’ references to formative feedback, guiding hints, and test cases. Software metrics such as token count and lines of code of student-designed programs have a significant positive correlation with the student’s final grade, which can be linked to references about stimulating and motivating exercises within the educational platform. On the other hand, the maintainability index has a negative correlation, which can be linked to opinions highlighting the attainment of programming skills. In contrast, negative correlations are observed between the use of the educational platform tools used in the course (e.g., custom input tests, visualization of code execution and verification of good programming practices) with academic performance, which are refuted by the students’ references to these tools as positive elements of the platform. In conclusion, it is evident how the use of mixed methods allows the findings of the quantitative phase to be corroborated, complemented or refuted by the observations of the qualitative data.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación aplicada - educación en ingenieríaxvii, 139 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAnálisis de contenidoAnálisis de correlacionesAnalítica del aprendizajeMétodos mixtosProgramación de computadoresLearning analyticsMixed methodsComputer programmingCorrelation analysisContent analysisAnálisis de datosProgramación informáticaEvaluación de la educaciónData analysisComputer programmingEducational evaluationAnalítica de aprendizaje en la asignatura Programación de Computadores: una investigación basada en métodos mixtosLearning analytics in Computer Programming: a mixed-methods investigationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M. & Aslam, M. A. (2019). An integrated framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679-690.Andergassen, M., Mödritscher, F. & Neumann, G. (2014). Practice and Repetition during Exam Preparation in Blended Learning Courses: Correlations with Learning Results. Journal of Learning Analytics, 1(1), 48-74.Ang, K. L.-M., Ge, F. L. & Seng, K. P. (2020). Big Educational Data amp; Analytics: Survey, Architecture and Challenges. IEEE Access, 8, 116392-116414. https://doi.org/10.1109/ACCESS.2020. 2994561Argyris, C. & Schon, D. A. (1974). Theory in practice: Increasing professional effectiveness. Jossey-Bass.Arnold, K. E. & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase Student Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 267-270.Azcona, D., Hsiao, I.-H. & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Modeling and User- Adapted Interaction, 29, 759-788.Baker, R. S. & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics: From Research to Practice (pp. 61-75). Springer New York.Barber, R. & Sharkey, M. (2012). Course Correction: Using Analytics to Predict Course Success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 259-262. https: //doi.org/10.1145/2330601.2330664Berelson, B. (1952). Content analysis in communication research. Glencoe (Ill.) : Free Press.Berland, M., Davis, D. & Smith, C. P. (2015). AMOEBA: Designing for collaboration in computer science classrooms through live learning analytics. International Journal of Computer-Supported Collaborative Learning, 10, 425-4447.Blikstein, P. (2011). Using Learning Analytics to Assess Students’ Behavior in Open-Ended Programming Tasks. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 110-116.Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S. & Koller, D. (2014). Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming. Journal of the Learning Sciences, 23(4), 561-599.Bryman, A. (2015). Mixed methods research: combining quantitative and qualitative research. Social Research Methods. Oxford University Press.Cao, L. (2017). Data Science: A Comprehensive Overview. ACM Comput. Surv., 50(3).Carter, A., Hundhausen, C. & Olivares, D. (2019). Leveraging the Integrated Development Environment for Learning Analytics. University Press.Chaparro, E., Restrepo-Calle, F. & Ramírez-Echeverry, J. J. (2021). Learning analytics in computer programming courses [October 19–21, 2021, Arequipa, Perú]. Proceedings of the IV Latin American Conference on Learning Analytics, 78-87. http://ceur-ws.org/Vol-3059/paper8.pdfCharlton, P., Mavrikis, M. & Katsifli, D. (2013). The Potential of Learning Analytics and Big Data. Ariadne. http://www.ariadne.ac.uk/issue/71/charlton-et-al/Clow, D. (2012). The Learning Analytics Cycle: Closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12, 134-138.Coffrin, C., Corrin, L., de Barba, P. & Kennedy, G. (2014). Visualizing Patterns of Student Engagement and Performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 83-92.Corbin, J. M. & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593Creswell, J. W. (2014). Chapter 1: The Selection of a Research Approach. Research Design Qualitative, Quantitative, And Mixed Methods Approaches (4th). SAGE Publications.Dascalu, M.-I., Bodea, C.-N., Mogos, R. I., Purnus, A. & Tesila, B. (2018). A Survey on Social Learning Analytics: Applications, Challenges and Importance. En G. C. Silaghi, R. A. Buchmann y C. Boja (Eds.), Informatics in Economy (pp. 70-83). Springer International Publishing.Dhakal, K. (2022). NVivo. Journal of the Medical Library Association : JMLA, 110(2), 270-272.Dietze, S., Siemens, G., Taibi, D. & Drachsler, H. (2016). Editorial: Datasets for Learning Analytics. Journal of Learning Analytics, 3(2), 307-311.Drachsler, H. & Greller, W. (2016). Privacy and Analytics: It’s a DELICATE Issue a Checklist for Trusted Learning Analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98.Elia, G., Solazzo, G., Lorenzo, G. & Passiante, G. (2019). Assessing learners’ satisfaction in collaborative online courses through a big data approach. Computers in Human Behavior, 92, 589-599.Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.Gasevic, D., Mirriahi, N., Long, P. & Dawson, S. (2014). Editorial: Inaugural Issue of the Journal of Learning Analytics. Journal of Learning Analytics, 1(1).Gašević, D., Mirriahi, N. & Dawson, S. (2014). Analytics of the Effects of Video Use and Instruction to Support Reflective Learning. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 123-132.Gergen, K. J., Josselson, R. & Freeman, M. (2015). The promises of qualitative inquiry. American Psychologist, 70(1), 1-9.Guo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education. Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579-584. https://doi.org/10.1145/2445196.2445368Hernández-Sampieri, R., Fernández-Collado, C. & Baptista-Lucio, P. (2014). Proceso de la investigación cualitativa. Metodología de la Investigación. McGraw-Hill.Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P. J., Broos, T., Whitelock-Wainwright, A. & Pérez-Sanagustín, M. (2020). Identifying needs for learning analytics adoption in Latin American universities: A mixed-methods approach. The Internet and Higher Education, 45, 100726.Hsiao, I.-H. & Lin, Y.-L. (2017). Enriching programming content semantics: An evaluation of visual analytics approach. Computers in Human Behavior, 72, 771-782.Hu, Q. & Huang, Y. (2018). A Framework for Analysis Learning Pattern Toward Online Forum in Programming Course. En L. Deng, W. W. K. Ma y C. W. R. Fong (Eds.), New Media for Educational Change (pp. 71-80). Springer Singapore.Ifenthaler, D. (2017). Are Higher Education Institutions Prepared for Learning Analytics? TechTrends, 61(4), 366-371.Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C. & Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming: Literature Review and Case Studies. ITICSE-WGR ’15: Proceedings of the 2015 ITiCSE on Working Group Reports., 41-63.Kizilcec, R. F., Pérez-Sanagustín, M. & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers and Education, 104, 18-33.Klašnja-Milićević, A., Vesin, B., Ivanović, M. & Budimac, Z. (2011). E-Learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education, 56(3), 885-899.Kolb, D. A. (1984). Experiential learning: experience as thesource of learning and development. Prentice Hall.Kop, R., Fournier, H. & Durand, G. (2017). A Critical Perspective on Learning Analytics and Educational Data Mining. En C. Lang, G. Siemens, A. F. Wise y D. Gaševic (Eds.), The Handbook of Learning Analytics (1.a ed., pp. 319-326). Society for Learning Analytics Research (SoLAR).Kumar, V. S., Kinshuk, Somasundaram, T. S., Boulanger, D., Seanosky, J. & Vilela, M. F. (2015). Big Data Learning Analytics: A New Perpsective. Ubiquitous Learning Environments and Technologies (pp. 139-158). Springer Berlin Heidelberg.Kurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour and Information Technology, 38(4), 410-421.Lagus, J., Longi, K., Klami, A. & Hellas, A. (2018). Transfer-Learning Methods in Programming Course Outcome Prediction. ACM Trans. Comput. Educ., 18(4).Laurillard, D. (2002). Rethinking University Teaching: A conversational framework for the effective use of learning technologies. Routledge.Leony, D., Muñoz-Merino, P. J., Pardo, A. & Delgado Kloos, C. (2013). Provision of awareness of learners’ emotions through visualizations in a computer interaction-based environment. Expert Systems with Applications, 40(13), 5093-5100.Lockyer, L. & Dawson, S. (2011). Learning Designs and Learning Analytics. Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 153-156.Long, P. & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 31-40.Lonn, S., Aguilar, S. J. & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97.Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q. & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234.Macfadyen, L. P. & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588-599.Mangaroska, K. & Giannakos, M. (2017). Learning Analytics for Learning Design: Towards Evidence- Driven Decisions to Enhance Learning. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 428-433). Springer International Publishing.Martin, F. & Whitmer, J. C. (2016). Applying Learning Analytics to Investigate Timed Release in Online Learning. Technology, Knowledge and Learning, 21, 59-74.Monllaó Olivé, D., Huynh, D. Q., Reynolds, M., Dougiamas, M. & Wiese, D. (2020). A supervised learning framework: using assessment to identify students at risk of dropping out of a MOOC. Journal of Computing in Higher Education, 32, 9-26.Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagc, E. (2016). Deep Learning Techniques in Big Data Analytics. Big Data Technologies and Applications (pp. 133-156). Springer International Publishing. https://doi.org/10.1007/978-3-319-44550-2\_5Pardo, A. & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450.Pistilli, M. D., Willis, J. E. & Campbell, J. P. (2014). Analytics Through an Institutional Lens: Definition, Theory, Design, and Impact. Learning Analytics: From Research to Practice (pp. 79-102). Springer New York.Ramírez-Echeverry, J. J., Restrepo-Calle, F. & González, F. A. (2022). A case study in technologyenhanced learning in an introductory computer programming course. Global Journal of Engineering Education, 24(1).Restrepo-Calle, F., Ramírez-Echeverry, J. & Gonzalez, F. (2018). UNCODE: INTERACTIVE SYSTEM FOR LEARNING AND AUTOMATIC EVALUATION OF COMPUTER PROGRAMMING SKILLS. EDULEARN18 Proceedings, 6888-6898. https://doi.org/10.21125/edulearn.2018.1632Restrepo-Calle, F., Ramírez Echeverry, J. J. & González, F. A. (2019). Continuous assessment in a computer programming course supported by a software tool. Computer Applications in Engineering Education, 27(1), 80-89. https://doi.org/10.1002/cae.22058Restrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2020). Using an Interactive Software Tool for the Formative and Summative Evaluation in a Computer Programming Course: an Experience Report. Global Journal of Engineering Education, 22(3), 174-185.Rienties, B. & Toetenel, L. (2016). The Impact of 151 Learning Designs on Student Satisfaction and Performance: Social Learning (Analytics) Matters. Proceedings of the Sixth International Conference on Learning Analytics and Knowledge, 339-343.Robinson, C., Yeomans, M., Reich, J., Hulleman, C. & Gehlbach, H. (2016). Forecasting Student Achievement in MOOCs with Natural Language Processing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 383-387.Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D. & Kloos, C. D. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139-148.Scheffel, M., Niemann, K., Leony, D., Pardo, A., Schmitz, H.-C., Wolpers, M. & Delgado Kloos, C. (2012). Key Action Extraction for Learning Analytics. En A. Ravenscroft, S. Lindstaedt, C. D. Kloos y D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills (pp. 320-333). Springer Berlin Heidelberg.Schmitz, M., van Limbeek, E., Greller, W., Sloep, P. & Drachsler, H. (2017). Opportunities and Challenges in Using Learning Analytics in Learning Design. En É. Lavoué, H. Drachsler, K. Verbert, J. Broisin y M. Pérez-Sanagustín (Eds.), Data Driven Approaches in Digital Education (pp. 209-223). Springer International Publishing.Schön, D. A. (1983). The Reflective Practitioner: How professionals think in action. Temple Smith.Schön, D. A. (1991). The Reflective Turn: Case studies in and on educational practice. Teachers College Press.Selwyn, N. (2020). Re-imagining ‘Learning Analytics’ … a case for starting again? The Internet and Higher Education, 46, 100745.Seufert, S. & Meier, C. (2018). Big Data in Education: Supporting Learners in Their Role as Reflective Practitioners. Frontiers of Cyberlearning: Emerging Technologies for Teaching and Learning (pp. 103-123). Springer Singapore.Shen, H., Liang, L., Law, N., Hemberg, E. & O’Reilly, U.-M. (2020). Understanding Learner Behavior Through Learning Design Informed Learning Analytics. Proceedings of the Seventh ACM Conference on Learning @ Scale, 135-145.Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400.Society for Learning Analytics Research, S. (2022). What is Learning Analytics? https://www.solaresearch. org/about/what-is-learning-analyticStemler, S. (2000). An overview of content analysis. Practical assessment, research, and evaluation, 7(1),17.Tabuenca, B., Kalz, M., Drachsler, H. & Specht, M. (2015). Time will tell: The role of mobile learning analytics in self-regulated learning. Computers and Education, 89, 53-74.Tam, V., Lam, E. Y., Huang, Y., Liu, K., Tam, V. & Tse, P. (2016). Developing the Petal E-Learning Platform for Facial Analytics and Personalized Learning. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-17). Springer International Publishing.Tempelaar, D. T., Rienties, B. & Giesbers, B. (2016). Verifying the Stability and Sensitivity of Learning Analytics Based Prediction Models: An Extended Case Study. En S. Zvacek, M. T. Restivo, J. Uhomoibhi y M. Helfert (Eds.), Computer Supported Education (pp. 256-273). Springer International Publishing.Trætteberg, H., Mavroudi, A., Sharma, K. & Giannakos, M. (2017). Utilizing Real-Time Descriptive Learning Analytics to Enhance Learning Programming. Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy (pp. 1-22). Springer International Publishing.Vahdat, M., Oneto, L., Anguita, D., Funk, M. & Rauterberg, M. (2015). A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. En G. Conole, T. Klobučar, C. Rensing, J. Konert y E. Lavoué (Eds.), Design for Teaching and Learning in a Networked World (pp. 352-366). Springer International Publishing.Wong, B. T.-m. & Li, K. C. (2020). A review of learning analytics intervention in higher education (2011–2018). Journal of Computers in Education, 7, 7-28.Wu, Y. & Wu, W. (2018). A Learning Analytics System for Cognition Analysis in Online Learning Community. En L. H. U y H. Xie (Eds.), Web and Big Data (pp. 243-258). Springer International Publishing.Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27, 44-53.Zikopoulos, P., Eaton, C. & IBM. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (1st). McGraw-Hill Osborne Media.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83049/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032456294.2022.pdf1032456294.2022.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf2866113https://repositorio.unal.edu.co/bitstream/unal/83049/2/1032456294.2022.pdf374a2c741387cd47e54d0cdcedddff43MD52THUMBNAIL1032456294.2022.pdf.jpg1032456294.2022.pdf.jpgGenerated Thumbnailimage/jpeg4832https://repositorio.unal.edu.co/bitstream/unal/83049/3/1032456294.2022.pdf.jpg91888618e9b2959e9167a9c5d1155960MD53unal/83049oai:repositorio.unal.edu.co:unal/830492023-08-13 23:05:28.258Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=