Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)

ilustraciones, diagramas, tablas

Autores:
Gómez López, Karen Daniela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81377
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81377
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Isoflavonoide
Elicitor
Actividad antioxidante
Isoflavonoid
Antioxidant activity
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9d9d439f5e67cd9c28a385c815423cb5
oai_identifier_str oai:repositorio.unal.edu.co:unal/81377
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
dc.title.translated.eng.fl_str_mv Synthesis of 1-oxo-indane-4-carboxylic acid derivatives and evaluation of their elicitor effect on bioactive isoflavonoids in soybean (Glycine max L)
title Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
spellingShingle Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
540 - Química y ciencias afines
Isoflavonoide
Elicitor
Actividad antioxidante
Isoflavonoid
Antioxidant activity
title_short Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
title_full Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
title_fullStr Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
title_full_unstemmed Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
title_sort Síntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)
dc.creator.fl_str_mv Gómez López, Karen Daniela
dc.contributor.advisor.none.fl_str_mv Gil Gonzalez, Jesús Humberto
Durango Restrepo, Diego Luis
dc.contributor.author.none.fl_str_mv Gómez López, Karen Daniela
dc.contributor.researchgroup.spa.fl_str_mv Química de Productos Naturales y de los Alimentos
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Isoflavonoide
Elicitor
Actividad antioxidante
Isoflavonoid
Antioxidant activity
dc.subject.proposal.spa.fl_str_mv Isoflavonoide
Elicitor
Actividad antioxidante
dc.subject.proposal.eng.fl_str_mv Isoflavonoid
Antioxidant activity
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-03-24T20:06:46Z
dc.date.available.none.fl_str_mv 2022-03-24T20:06:46Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81377
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81377
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akula, R & Ravisha, G. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11). pp 1720-1731.
Bektas, Y & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5. pp1-17.
Belchí , S., Almagro, L., Lijavetzky, D., Bru, R., & Pedreño, M. (2012). Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Reports, 3(1). pp 81-89.
Boughton, A., Hoover, K & Felton, G. (2006). Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis et Applicata, 120(3). pp 175-188.
Carrao, M., Berhow, M., Gontijo, J & Neves, M. (2009). Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesquisa Agropecuária Brasileira, 44(11). pp 1444-1451.
Chen, LR & Chen KH. (2021). Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview. International Journal of Molecular Sciences, 22(6). pp 1-23.
Chen, H., Jones, A. D & Howe, G. A. (2006). Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Letters, 580(11), pp 2540-2546.
Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10). pp 524-531.
Dajanta, K., Janpum, P & Leksing, W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). International Food Research Journal, 20(6). pp 3125-3132.
Dixon, RA. (2001). Natural products and plant disease resistance. Nature, 411.pp 843-847.
Duarte, H., de Morais, L., Rocha, S., de Souza, M., Deniz, N & de Mejía, E. (2011). Nutritional and bioactive compounds of soybean: Benefits on human health. Soybean and health. pp 465-488.
Durango, D., Murillo, J., Echeverri, F., Escobar, G & Quiñones, W. (2018). Isoflavonoid composition and biological activity of extracts from soybean seedlings treated by different elicitors. Anais da Academia Brasileira de Ciências, 90(2 sup1 1). pp 1955-1971.
Eswaranandam, S., Salyer, J., Chen, P & Lee, S. (2012). Effect of elicitor spray at different reproductive stages on saponin content of soybean. Journal of Food Science, 77(2). pp 81-86.
Faraj, A & Vasanthan, T. (2004). Soybean isoflavones: Effects of processing and health benefits. Food Reviews International, 20(1). pp 51-75.
Faurie, B., Cluzet, S & Mérillon, JM. (2009). Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Journal of Plant Physiology, 166(17). pp1863-1877.
Fonseca, S., Chico, J. M & Solano, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5). pp 539-547.
Geng, X., Jin, L., Shimada, M., Kim, M & Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 240(6). pp1149-1165.
Herde, M., Gartner, K., Kollner, T., Fode, B., Boland, W., Gershenzon, J., Gatz, C & Tholl, D. (2008). Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-Homoterpene TMTT. The Plant Cell, 20(4). pp 1152-1168.
Ho, T., Lee, J., Jeong, C., Paek, K & Park, S. (2018). Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Applied Microbiology and Biotechnology, 102(3). pp 199-209
Hu, Q., Boland, W & Liu, J. (2005). 6-Substituted indanoyl isoleucine conjugate induces tobacco plant responses in secondary metabolites. Zeitschrift für Naturforschung C, 60(1-2). pp 1-4.
Hu, Z., Islam, A., Chen, S., Hu, B., Shen, S., Wu, Y & Wang, Y. (2019). Effects of warming and reduced precipitation on soil respiration and N2O fluxes from winter wheat-soybean cropping systems. Geodema, 337(8). pp 956-964.
Isah, T., Umar, S., Mujib, A., Sharma, M., Rajasekharan, P., Zafar, N & Frukh, A. (2017). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult, 132. pp 1-27.
Isanga, J & G. Zhang. (2008). Soybean bioactive components and their implications to health—A review. Food Reviews International, 24(2). pp 252-276.
Kaku, H., Nishizawa, Y., Ishii, N., Akimoto, C., Dohmae,N., Takio, K., Minami, E & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceeding of the National Academy of Sciences,103(29). pp11086-11091.
Kalaiselvan, V., Kalaivani, M., Vijayakumar, A., Sureshkumar, K & Venkateskumar, K. (2010). Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacognosy Reviews, 4(8). pp 111-117.
Kallscheuer, N., Classen, T., Drepper, T., & Marienhagen, J. (2019). Production of plant metabolites with applications in the food industry using engineered microorganisms. Current Opinion in Biotechnology, 56. pp 7-17.
Kim, M., Jang, G., Ji, Y., Kim, K., Kim, H., Lee, J & Jeong, H. (2016). Isoflavone composition and estrogenic activity of germinated soybeans (Glycine max) according to variety. Journal of the Korean Society of Food Science and Nutrition, 45(10). pp 1430-1437.
Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6). pp 1076-1053.
Lee, S., Ahn, J, Khahn, T, Chun, S., Kim, S., Ro, H., Song, H & Chung, I. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grownunder two different light conditions. Journal of Agricutural and Food Chemistry, 55(23). pp 9415-9421.
Lee, C., Yang, L., Xu, J., Yeung, S., Huang, Y., & Chen, Z. (2005). Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90(4). pp 735-741.
Littleson, M., Russel, C., Frye, E., Ling, K., Jamieson, C & Watson, A. (2016). Synthetic approaches to coronafacic acid, coronamic acid, and coronatine. Synthesis, 48(20). pp 3429-3448.
Liu, H., Huang, C., Dong, W., Du, Y., Bai, X & Li, X. (2005). Biodegradation of xanthan by newly isolated Cellulomonas sp. LX, releasing elicitor-active xantho-oligosaccharides-induced phytoalexin synthesis in soybean cotyledons. Process Biochemistry, 40(12). pp 3701–3706.
Malencic, D., Maksimovic, Z., Popovic, M & Miladinovic, J. (2008). Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technology, 99(14). pp 6688-6691
Malencic, D., Popovic, M & Miladinovic, J. (2007). Phenolic content and antioxidant properties of Soybean (Glycine max (L.) Merr.) seeds. Molecules, 12. pp 576–581.
Masilamani, Madhan., Wei, J & Sampson, H. (2012). Regulation of the immune response by soybean isoflavones. Immunologic Research, 54(1-3). pp 95-110.
Mendoza, D., Roa, C & Ahumada, C. (2015). Efecto de las isoflavonas de la soja en la salud ósea de adultos y niños. Salud Uninorte, 31(1). pp 138-152.
Muresan, L., Clapa,D., Borsai, O., Rusu, T., Wang, T & Park, J. (2020). Potential impacts of soil tillage system on isoflavone concentration of soybean as functional food ingredients. Land, 9(10). pp 386-399.
Nakamura, Y., Paetz, C., Brandt, W., David, A. Rendón, M., Herrera, A., Mithöfer, A & Boland, W. (2014). Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ co-receptor complex of Lima Bean. Journal of Chemical Ecology,40(7). pp 687-699.
Namdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1(2007). pp 69-79.
Ng, T & colaboladores. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Applied Microbiology and Biotechnology, 90. pp 59-68.
Oksman, KM & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science, 9(9). pp 433-440.
Pabich, M & Materska, M. (2019). Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients, 11(7). pp 1-13.
Popa, D., & Rusu, M. (2017). Isoflavones: Vegetable sources, biological activity, and analytical methods for their assessment. Superfood and Functional Food-The development of superfoods and their roles as medicine, pp 133-152.
Pratap, A., Gupta, S., Kumar, J & Solanki, R. (2011). Soybean. Technological Innovations in Major World Oil Crops, 1. pp 293-321.
Purcell, LC., Montserrat, S & Ashlock, L. (2014). Soybean growth and development. Arkansas Soybean Production Handbook, 2.pp 1-8.
Ren, C., Chen, Y., Fang, F & Chao, C. (2012). Time and dosage effects of an endophytic fungal elicitor on the volatile oil production and physiology of Atractylodes lancea suspension cells. Journal of Medicinal Plants Research, 6(40). pp 5369-5376.
Rizzo, G & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. Nutrients, 10 (1). pp 43-92.
Schüler, G., Gorls, H & Boland, W. (2001). 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. European Journal of Organic Chemistry, 2001(9). pp 1663-1668.
Schüler, G., Mithofer, A., Baldwin, IT., Berger, S., Ebel, J., Santos, JG., Herrmann, G., Hölscher, D., Kramell, R., Kutchan, TM., Schneider, B., Stenzel, I., Wasternack, C & Boland, W. (2004). Coronalon: a powerful tool in plant stress physiology. FEBS Letters, 563(1-3). pp 17-22.
Serrano, M., Coluccia, F., Torres, M., L'Haridon, F & Métraux, JP. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5. pp 1-8.
Taiz, L & Zeiger, E. (2006). Fisiología vegetal. Castelló de la Plana: Publicaciones de la Universitat Jaume.
Taku, K., Melby, M., Kronenberg, F., Kurzer, M & Messina, M. (2012). Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-anzhaialysis of randomized controlled trials. Menopause: The journal of the North American Menopause Society, 19(7). pp 776-790.
Teekachunhatean, S., Hanprasertpong, N & Teekachunhatean, T. (2013). Factors affecting isoflavone content in soybean seeds grown in Thailand. International Journal of Agronomy, 2013(6). pp 1-11
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, SY., Howe, G & Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154), pp 661-665.
Umezawa, C & Shin, M. (1999). Antimicrobial compounds in plants. Natural Antimicrobial Systems. Encyclopedia of Food Microbiology. pp 1576-1582
Van Wees, SC., Van der Ent, S & Pieterse, CM. (2008). Plant immune responses triggered by beneficial microbes. Currento Opinion in Plant Biology, 11(4). pp 443-448.
Vicent, A & Fitzpatrick, L. (2000). Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings, 75(11). pp 1174-1184.
Wang, J & Wu, J. (2013). Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Advances in Biochemical. Engineering/Biotechnology, 134. pp 55-89.
Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T & Shibuyaa, N. (2000). Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. The Plant Cell, 12(5). pp 817-826.
Yamaguchi, Y & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 14(4). pp 351-357.
Yan, R., Li, S. L., Chung, H. S., Tam, Y. K., & Lin, G. (2005). Simultaneous quantification of 12 bioactive components of Ligusticum chuanxiong Hort. by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 37(1). pp 87-95.
Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4). pp 762-787.
Yousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Efect of methyl jasmonate on phenolic acids accumulation and the expression profle of their biosynthesis related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture, 142. 285-297.
Yu, SY., Yoo, SJ., Yang, L., Zapata, C., Srinivasan, A., Hay, BA & Baker, NE. (2002). A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development, 129(13). pp 3269-3278.
Yu, W., Yu, M., Zhao, R., Sheng, J., Li, Y & Shen, L. (2019). Ethylene perception is associated with methyl-jasmonate-mediated immune response against Botrytis cinerea in tomato fruit. Journal of Agricultural and Food Chemistry, 67(24), pp 6725-6735.
Zhai, Q., Yan, C., Li, L., Xie, D & Li, C. (2017). Jasmonates. Hormone Metabolism and Signaling in Plants, 243-272.
Zhao, YF., Jones, WT., Sutherland, P., Palmer, DA., Mitchell, RE., Reynolds, PH., Damicone, J & Bender, CL. (2001). Detection of the phytotoxin coronatine by ELISA and localization in infected plant tissue. Physiological and Molecular Plant Pathology, 58(6). pp 247-258.
Zheng, X., Spivey, N., Zeng, W., Liu, P., Fu, Z., Klessig, D., He, SY & Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11(6), pp 587-596.
Zimmermann, S., Nürnberger, T., Frachisse, J., Wirtz, W & Guern, J (1997). Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences, 94(6). pp 2751-2755.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 106 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81377/5/1117535160.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81377/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81377/7/1117535160.2021.pdf.jpg
bitstream.checksum.fl_str_mv 24ec5e901bf80e8a4106186dcc309635
8153f7789df02f0a4c9e079953658ab2
917fafb3c2d31fe2919a7645d2abfa14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886266102349824
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gil Gonzalez, Jesús Humbertof55194c9c7c861744d9c6d413d221f72600Durango Restrepo, Diego Luis1b4cbd36eb2a707cfb816d7c27dfe8e7600Gómez López, Karen Daniela42f76975c33f322336e90ce5f7f64a77Química de Productos Naturales y de los Alimentos2022-03-24T20:06:46Z2022-03-24T20:06:46Z2021-12https://repositorio.unal.edu.co/handle/unal/81377Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasIn this work, the production and accumulation of isoflavonoids present in soybeans (Glycine max L.) is synthesized by evaluating the application of derivatives obtained from 1-oxo-indane-4- carboxylic acid and 6-bromo-1-oxo-indane-4-carboxylic acid with permutation at the carboxylic position (amino acid coupling, esterification and nucleophilic substitution), reduction of the 1-oxo group and Suzuki-Miyaura coupling at position 6. Methodologically, the work included the identification and characterization of isoflavonoids and synthetic derivatives by different chromatographic techniques (TLC, CC and HPLC) and the confirmation of their structures by some spectroscopic and spectrometric methods (1H and 13C NMR 1D 2D, UV, LC-MS, IR). Additionally, a liquid chromatography method was developed to detect and quantify these metabolites. Once the analysis methods were established, the accumulation of isoflavonoids was evaluated in soybean seedlings in response to the synthesized derivatives. The analyzes carried out involved the determination of isoflavonoids in different plant tissues (cotyledons and stem/root), in the course of time, dose-response effect due to the application of MeJA, exogenous application of synthetic derivatives and finally the evaluation of the antioxidant activity. The results revealed that the accumulation of isoflavonoids for the proposed conditions presents different distribution depending on the growth phase (VC), plant tissue, incubation time (maximum accumulation at 24 h), elicitor dose (0.16 mM) and type of elicitor (1-oxo-indanoyl-isoleucine methyl ester induced the highest contents). Finally, it was possible to find antioxidant activity in the extracts evaluated. These results provide valuable information on the improvement processes in obtaining secondary metabolites with biological activity from soybeans.En el presente trabajo se sintetiza la producción y acumulación de isoflavonoides presentes en soya (Glycine max L.) evaluando la aplicación de derivados obtenidos de los ácido 1-oxo-indano-4-carboxílico y ácido 6-bromo-1-oxo-indano-4-carboxílico con permutación en la posición carboxílica (acoplamiento de aminoácidos, esterificación y sustitución nucleofílica), reducción del grupo 1-oxo y acoplamientos tipo Suzuki-Miyaura en la posición 6. Metodológicamente, el trabajo abarcó la identificación y caracterización de isoflavonoides y derivados sintéticos por diferentes técnicas cromatográficas (CCF, CC y CLAE) y la confirmación de sus estructuras por algunos métodos espectroscópicos y espectrométricos (1H y 13C RMN 1D 2D, UV, LC-MS, IR). Adicionalmente, se desarrolló un método por cromatografía líquida para detectar y cuantificar dichos metabolitos. Establecidos los métodos de análisis, la acumulación de los isoflavonoides fue evaluada en plántulas se soya como respuesta a los derivados sintetizado. Los análisis ejecutados involucraron la determinación de isoflavonoides en diferentes tejidos de la planta (cotiledones y tallo/raíz), en el curso del tiempo, efecto dosis-respuesta por la aplicación de MeJA, aplicación exógena derivados sintéticos y finalmente la evaluación de la actividad antioxidante. Los resultados revelaron que la acumulación de isoflavonoides para las condiciones planteadas presenta distribución diferente dependiendo de la fase de crecimiento (VC), tejido de la planta, tiempo de incubación (máxima acumulación a las 24 h), dosis de elicitor (0.16 mM) y tipo de elicitor (1-oxo-indanoil-isoleucina metil éster indujo los mayores contenidos). Por último fue posible encontrar actividad antioxidante en los extractos evaluados. Estos resultados aportan información valiosa sobre los procesos de mejora en la obtención de metabolitos secundarios con actividad biológica a partir de soya. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - QuímicaQuímica de Productos NaturalesÁrea Curricular en Ciencias Naturalesxx, 106 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afinesIsoflavonoideElicitorActividad antioxidanteIsoflavonoidAntioxidant activitySíntesis de derivados del ácido 1-oxo-indano-4-carboxílico y evaluación de su efecto elicitor de isoflavonoides bioactivos en soya (Glycine max L)Synthesis of 1-oxo-indane-4-carboxylic acid derivatives and evaluation of their elicitor effect on bioactive isoflavonoids in soybean (Glycine max L)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionOtherhttp://purl.org/redcol/resource_type/TMAkula, R & Ravisha, G. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11). pp 1720-1731.Bektas, Y & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5. pp1-17.Belchí , S., Almagro, L., Lijavetzky, D., Bru, R., & Pedreño, M. (2012). Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Reports, 3(1). pp 81-89.Boughton, A., Hoover, K & Felton, G. (2006). Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis et Applicata, 120(3). pp 175-188.Carrao, M., Berhow, M., Gontijo, J & Neves, M. (2009). Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesquisa Agropecuária Brasileira, 44(11). pp 1444-1451.Chen, LR & Chen KH. (2021). Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview. International Journal of Molecular Sciences, 22(6). pp 1-23.Chen, H., Jones, A. D & Howe, G. A. (2006). Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Letters, 580(11), pp 2540-2546.Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10). pp 524-531.Dajanta, K., Janpum, P & Leksing, W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). International Food Research Journal, 20(6). pp 3125-3132.Dixon, RA. (2001). Natural products and plant disease resistance. Nature, 411.pp 843-847.Duarte, H., de Morais, L., Rocha, S., de Souza, M., Deniz, N & de Mejía, E. (2011). Nutritional and bioactive compounds of soybean: Benefits on human health. Soybean and health. pp 465-488.Durango, D., Murillo, J., Echeverri, F., Escobar, G & Quiñones, W. (2018). Isoflavonoid composition and biological activity of extracts from soybean seedlings treated by different elicitors. Anais da Academia Brasileira de Ciências, 90(2 sup1 1). pp 1955-1971.Eswaranandam, S., Salyer, J., Chen, P & Lee, S. (2012). Effect of elicitor spray at different reproductive stages on saponin content of soybean. Journal of Food Science, 77(2). pp 81-86.Faraj, A & Vasanthan, T. (2004). Soybean isoflavones: Effects of processing and health benefits. Food Reviews International, 20(1). pp 51-75.Faurie, B., Cluzet, S & Mérillon, JM. (2009). Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Journal of Plant Physiology, 166(17). pp1863-1877.Fonseca, S., Chico, J. M & Solano, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5). pp 539-547.Geng, X., Jin, L., Shimada, M., Kim, M & Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 240(6). pp1149-1165.Herde, M., Gartner, K., Kollner, T., Fode, B., Boland, W., Gershenzon, J., Gatz, C & Tholl, D. (2008). Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-Homoterpene TMTT. The Plant Cell, 20(4). pp 1152-1168.Ho, T., Lee, J., Jeong, C., Paek, K & Park, S. (2018). Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Applied Microbiology and Biotechnology, 102(3). pp 199-209Hu, Q., Boland, W & Liu, J. (2005). 6-Substituted indanoyl isoleucine conjugate induces tobacco plant responses in secondary metabolites. Zeitschrift für Naturforschung C, 60(1-2). pp 1-4.Hu, Z., Islam, A., Chen, S., Hu, B., Shen, S., Wu, Y & Wang, Y. (2019). Effects of warming and reduced precipitation on soil respiration and N2O fluxes from winter wheat-soybean cropping systems. Geodema, 337(8). pp 956-964.Isah, T., Umar, S., Mujib, A., Sharma, M., Rajasekharan, P., Zafar, N & Frukh, A. (2017). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult, 132. pp 1-27.Isanga, J & G. Zhang. (2008). Soybean bioactive components and their implications to health—A review. Food Reviews International, 24(2). pp 252-276.Kaku, H., Nishizawa, Y., Ishii, N., Akimoto, C., Dohmae,N., Takio, K., Minami, E & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceeding of the National Academy of Sciences,103(29). pp11086-11091.Kalaiselvan, V., Kalaivani, M., Vijayakumar, A., Sureshkumar, K & Venkateskumar, K. (2010). Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacognosy Reviews, 4(8). pp 111-117.Kallscheuer, N., Classen, T., Drepper, T., & Marienhagen, J. (2019). Production of plant metabolites with applications in the food industry using engineered microorganisms. Current Opinion in Biotechnology, 56. pp 7-17.Kim, M., Jang, G., Ji, Y., Kim, K., Kim, H., Lee, J & Jeong, H. (2016). Isoflavone composition and estrogenic activity of germinated soybeans (Glycine max) according to variety. Journal of the Korean Society of Food Science and Nutrition, 45(10). pp 1430-1437.Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6). pp 1076-1053.Lee, S., Ahn, J, Khahn, T, Chun, S., Kim, S., Ro, H., Song, H & Chung, I. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grownunder two different light conditions. Journal of Agricutural and Food Chemistry, 55(23). pp 9415-9421.Lee, C., Yang, L., Xu, J., Yeung, S., Huang, Y., & Chen, Z. (2005). Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90(4). pp 735-741.Littleson, M., Russel, C., Frye, E., Ling, K., Jamieson, C & Watson, A. (2016). Synthetic approaches to coronafacic acid, coronamic acid, and coronatine. Synthesis, 48(20). pp 3429-3448.Liu, H., Huang, C., Dong, W., Du, Y., Bai, X & Li, X. (2005). Biodegradation of xanthan by newly isolated Cellulomonas sp. LX, releasing elicitor-active xantho-oligosaccharides-induced phytoalexin synthesis in soybean cotyledons. Process Biochemistry, 40(12). pp 3701–3706.Malencic, D., Maksimovic, Z., Popovic, M & Miladinovic, J. (2008). Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technology, 99(14). pp 6688-6691Malencic, D., Popovic, M & Miladinovic, J. (2007). Phenolic content and antioxidant properties of Soybean (Glycine max (L.) Merr.) seeds. Molecules, 12. pp 576–581.Masilamani, Madhan., Wei, J & Sampson, H. (2012). Regulation of the immune response by soybean isoflavones. Immunologic Research, 54(1-3). pp 95-110.Mendoza, D., Roa, C & Ahumada, C. (2015). Efecto de las isoflavonas de la soja en la salud ósea de adultos y niños. Salud Uninorte, 31(1). pp 138-152.Muresan, L., Clapa,D., Borsai, O., Rusu, T., Wang, T & Park, J. (2020). Potential impacts of soil tillage system on isoflavone concentration of soybean as functional food ingredients. Land, 9(10). pp 386-399.Nakamura, Y., Paetz, C., Brandt, W., David, A. Rendón, M., Herrera, A., Mithöfer, A & Boland, W. (2014). Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ co-receptor complex of Lima Bean. Journal of Chemical Ecology,40(7). pp 687-699.Namdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1(2007). pp 69-79.Ng, T & colaboladores. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Applied Microbiology and Biotechnology, 90. pp 59-68.Oksman, KM & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science, 9(9). pp 433-440.Pabich, M & Materska, M. (2019). Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients, 11(7). pp 1-13.Popa, D., & Rusu, M. (2017). Isoflavones: Vegetable sources, biological activity, and analytical methods for their assessment. Superfood and Functional Food-The development of superfoods and their roles as medicine, pp 133-152.Pratap, A., Gupta, S., Kumar, J & Solanki, R. (2011). Soybean. Technological Innovations in Major World Oil Crops, 1. pp 293-321.Purcell, LC., Montserrat, S & Ashlock, L. (2014). Soybean growth and development. Arkansas Soybean Production Handbook, 2.pp 1-8.Ren, C., Chen, Y., Fang, F & Chao, C. (2012). Time and dosage effects of an endophytic fungal elicitor on the volatile oil production and physiology of Atractylodes lancea suspension cells. Journal of Medicinal Plants Research, 6(40). pp 5369-5376.Rizzo, G & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. Nutrients, 10 (1). pp 43-92.Schüler, G., Gorls, H & Boland, W. (2001). 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. European Journal of Organic Chemistry, 2001(9). pp 1663-1668.Schüler, G., Mithofer, A., Baldwin, IT., Berger, S., Ebel, J., Santos, JG., Herrmann, G., Hölscher, D., Kramell, R., Kutchan, TM., Schneider, B., Stenzel, I., Wasternack, C & Boland, W. (2004). Coronalon: a powerful tool in plant stress physiology. FEBS Letters, 563(1-3). pp 17-22.Serrano, M., Coluccia, F., Torres, M., L'Haridon, F & Métraux, JP. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5. pp 1-8.Taiz, L & Zeiger, E. (2006). Fisiología vegetal. Castelló de la Plana: Publicaciones de la Universitat Jaume.Taku, K., Melby, M., Kronenberg, F., Kurzer, M & Messina, M. (2012). Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-anzhaialysis of randomized controlled trials. Menopause: The journal of the North American Menopause Society, 19(7). pp 776-790.Teekachunhatean, S., Hanprasertpong, N & Teekachunhatean, T. (2013). Factors affecting isoflavone content in soybean seeds grown in Thailand. International Journal of Agronomy, 2013(6). pp 1-11Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, SY., Howe, G & Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154), pp 661-665.Umezawa, C & Shin, M. (1999). Antimicrobial compounds in plants. Natural Antimicrobial Systems. Encyclopedia of Food Microbiology. pp 1576-1582Van Wees, SC., Van der Ent, S & Pieterse, CM. (2008). Plant immune responses triggered by beneficial microbes. Currento Opinion in Plant Biology, 11(4). pp 443-448.Vicent, A & Fitzpatrick, L. (2000). Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings, 75(11). pp 1174-1184.Wang, J & Wu, J. (2013). Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Advances in Biochemical. Engineering/Biotechnology, 134. pp 55-89.Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T & Shibuyaa, N. (2000). Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. The Plant Cell, 12(5). pp 817-826.Yamaguchi, Y & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology, 14(4). pp 351-357.Yan, R., Li, S. L., Chung, H. S., Tam, Y. K., & Lin, G. (2005). Simultaneous quantification of 12 bioactive components of Ligusticum chuanxiong Hort. by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 37(1). pp 87-95.Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4). pp 762-787.Yousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Efect of methyl jasmonate on phenolic acids accumulation and the expression profle of their biosynthesis related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture, 142. 285-297.Yu, SY., Yoo, SJ., Yang, L., Zapata, C., Srinivasan, A., Hay, BA & Baker, NE. (2002). A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development, 129(13). pp 3269-3278.Yu, W., Yu, M., Zhao, R., Sheng, J., Li, Y & Shen, L. (2019). Ethylene perception is associated with methyl-jasmonate-mediated immune response against Botrytis cinerea in tomato fruit. Journal of Agricultural and Food Chemistry, 67(24), pp 6725-6735.Zhai, Q., Yan, C., Li, L., Xie, D & Li, C. (2017). Jasmonates. Hormone Metabolism and Signaling in Plants, 243-272.Zhao, YF., Jones, WT., Sutherland, P., Palmer, DA., Mitchell, RE., Reynolds, PH., Damicone, J & Bender, CL. (2001). Detection of the phytotoxin coronatine by ELISA and localization in infected plant tissue. Physiological and Molecular Plant Pathology, 58(6). pp 247-258.Zheng, X., Spivey, N., Zeng, W., Liu, P., Fu, Z., Klessig, D., He, SY & Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe, 11(6), pp 587-596.Zimmermann, S., Nürnberger, T., Frachisse, J., Wirtz, W & Guern, J (1997). Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences, 94(6). pp 2751-2755.InvestigadoresORIGINAL1117535160.2021.pdf1117535160.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf3012753https://repositorio.unal.edu.co/bitstream/unal/81377/5/1117535160.2021.pdf24ec5e901bf80e8a4106186dcc309635MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81377/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56THUMBNAIL1117535160.2021.pdf.jpg1117535160.2021.pdf.jpgGenerated Thumbnailimage/jpeg4845https://repositorio.unal.edu.co/bitstream/unal/81377/7/1117535160.2021.pdf.jpg917fafb3c2d31fe2919a7645d2abfa14MD57unal/81377oai:repositorio.unal.edu.co:unal/813772024-08-05 23:10:15.729Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK