Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi

ilustraciones, diagramas, fotografías, gráficas, tablas

Autores:
Barreto Pulido, Wanner Ernesto
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84346
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84346
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Biosíntesis
Microbial metabolites
Biosynthesis
Dianthus caryophyllus L.
Fusarium oxysporum f. sp. dianthi
Fosfito de potasio
Metabolómica no dirigida
Perfilado metabólico
NPR1
P5CR
SAR
Untargeted metabolomics
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9d0eeb568665660d637e1c6345caa3ff
oai_identifier_str oai:repositorio.unal.edu.co:unal/84346
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
dc.title.translated.eng.fl_str_mv Effect of the application of potassium phosphite on the biosynthesis of metabolites during the carnation (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
dc.title.translated.por.fl_str_mv Efeito da aplicação de fosfito de potássio na biossíntese de metabólitos durante o cravo (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianti
title Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
spellingShingle Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Biosíntesis
Microbial metabolites
Biosynthesis
Dianthus caryophyllus L.
Fusarium oxysporum f. sp. dianthi
Fosfito de potasio
Metabolómica no dirigida
Perfilado metabólico
NPR1
P5CR
SAR
Untargeted metabolomics
title_short Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
title_full Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
title_fullStr Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
title_full_unstemmed Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
title_sort Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi
dc.creator.fl_str_mv Barreto Pulido, Wanner Ernesto
dc.contributor.advisor.none.fl_str_mv Ardila Barrantes, Harold Duban
Coy Barrera, Ericsson David
dc.contributor.author.none.fl_str_mv Barreto Pulido, Wanner Ernesto
dc.contributor.researchgroup.spa.fl_str_mv Estudio de Actividades Metabolicas Vegetales
dc.contributor.orcid.spa.fl_str_mv Barreto Puldio, Wanner [0009-0004-1085-1041]
dc.contributor.cvlac.spa.fl_str_mv Barreto Pulido, Wanner [0001686629]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Metabolitos microbianos
Biosíntesis
Microbial metabolites
Biosynthesis
Dianthus caryophyllus L.
Fusarium oxysporum f. sp. dianthi
Fosfito de potasio
Metabolómica no dirigida
Perfilado metabólico
NPR1
P5CR
SAR
Untargeted metabolomics
dc.subject.lemb.spa.fl_str_mv Metabolitos microbianos
Biosíntesis
dc.subject.lemb.eng.fl_str_mv Microbial metabolites
Biosynthesis
dc.subject.proposal.other.fl_str_mv Dianthus caryophyllus L.
Fusarium oxysporum f. sp. dianthi
dc.subject.proposal.spa.fl_str_mv Fosfito de potasio
Metabolómica no dirigida
Perfilado metabólico
NPR1
P5CR
SAR
dc.subject.proposal.eng.fl_str_mv Untargeted metabolomics
description ilustraciones, diagramas, fotografías, gráficas, tablas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-28T12:54:05Z
dc.date.available.none.fl_str_mv 2023-07-28T12:54:05Z
dc.date.issued.none.fl_str_mv 2023-07-19
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84346
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84346
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abu-Nada, Y. et al. (2007) ‘Temporal dynamics of pathogenesis-related metabolites and their plausible pathways of induction in potato leaves following inoculation with Phytophthora infestans’, European Journal of Plant Pathology, 118(4), pp. 375–391. doi: 10.1007/s10658-007-9150-8.
Achary, V. M. M. et al. (2017) ‘Phosphite: a novel P fertilizer for weed management and pathogen control’, Plant Biotechnology Journal, 15(12), pp. 1493–1508. doi: 10.1111/pbi.12803
Agulló-Antón, M. ángeles et al. (2013) ‘Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.)’, Plant Science. Elsevier Ireland Ltd, 201–202(1), pp. 1–11. doi: 10.1016/j.plantsci.2012.11.006.
Aharoni, A. and Galili, G. (2011) ‘Metabolic engineering of the plant primary-secondary metabolism interface’, Current Opinion in Biotechnology. Elsevier Ltd, 22(2), pp. 239–244. doi: 10.1016/j.copbio.2010.11.004
Akashi, K., Miyake, C. and Yokota, A. (2001) ‘Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger’, FEBS Letters, 508(3), pp. 438–442. doi: 10.1016/S0014-5793(01)03123-4.
Amir, R., Hacham, Y. and Galili, G. (2002) ‘Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants’, Trends in Plant Science. Elsevier Current Trends, 7(4), pp. 153–156. doi: 10.1016/S1360-1385(02)02227-6
Arbeláez, G. (1993) ‘Las enfermedades vasculares del clavel en colombia y en el mundo’, Agronomía Colombiana, 10(1), pp. 12–18
Ardila, H. (2013) Contribución al estudio de algunos mecanismos bioquímicos y moleculares de la resistencia del clavel a Fusarium oxysporum f. sp. dianthi raza 2, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C.
Ardila, H. D. et al. (2014) ‘Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi’, Physiological and Molecular Plant Pathology. Academic Press, 85, pp. 42–52. doi: 10.1016/J.PMPP.2014.01.003
Ardila, H. D., Martínez, S. T. and Higuera, B. L. (2013) ‘Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi’, Acta Physiologiae Plantarum. Polish Academy of Sciences, Institute of Slavic Studies, 35(4), pp. 1233–1245. doi: 10.1007/S11738-012-1162-0/METRICS.
Arruda, P. and Barreto, P. (2020) ‘Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress’, Frontiers in Plant Science. Frontiers Media SA, 11. doi: 10.3389/FPLS.2020.00587.
Ashraf, M. and Harris, P. J. C. (2004) ‘Potential biochemical indicators of salinity tolerance in plants’, Plant Science, 166(1), pp. 3–16. doi: 10.1016/j.plantsci.2003.10.024.
Ávalos, A. and Elena, G. (1998) ‘Metabolismo secundario de plantas’, Hidrobiológica, 8(2), pp. 125–132.
Baenas, N., García-Viguera, C. and Moreno, D. A. (2014) ‘molecules Elicitation: A Tool for Enriching the Bioactive Composition of Foods’, Molecules, 19, pp. 13541–13563. doi: 10.3390/molecules190913541.
Belhadj, A. et al. (2006) ‘Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator’, Journal of Agricultural and Food Chemistry. American Chemical Society, 54(24), pp. 9119–9125. doi: 10.1021/jf0618022.
Bender, D. A. et al. (2023) ‘CAPÍTULO 20: La vía de la pentosa fosfato y otras vías del metabolismo de hexosas’, in Bioquímica ilustrada, pp. 1–12.
Bernsdorff, F. et al. (2016) ‘Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways’, Plant Cell, 28(1), pp. 102–129. doi: 10.1105/tpc.15.00496.
Bilska, K. et al. (2018) ‘Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. graminearum Sensu Stricto’, Toxins 2018, Vol. 10, Page 492. Multidisciplinary Digital Publishing Institute, 10(12), p. 492. doi: 10.3390/TOXINS10120492
Bolton, M. D. (2009) ‘Current review: Primary metabolism and plant defense-fuel for the fire’, Molecular Plant-Microbe Interactions, 22(5), pp. 487–497. doi: 10.1094/MPMI-22-5-0487.
Bönnighausen, J. et al. (2019) ‘Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility’, New Phytologist, 221(1), pp. 459–469. doi: 10.1111/nph.15377
Boubakri, H. (2020) Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms, Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Elsevier Inc. doi: 10.1016/b978-0-12-817892-8.00005-2.
Brodmann, D. et al. (2002) ‘Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae’, Molecular Plant-Microbe Interactions, 15(7), pp. 693–700. doi: 10.1094/MPMI.2002.15.7.693.
Castiblanco, N. F. (2023) EFECTO DE LA APLICACIÓN DE INDUCTORES DE RESISTENCIA EN EL CLAVEL (Dianthus caryophyllus L) SOBRE LA EXPRESIÓN in vivo DE GENES CODIFICANTES PARA CANDIDATOS A FACTORES DE VIRULENCIA DEL PATÓGENO Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.
Cerqueira, A. et al. (2017) ‘Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 114, pp. 88–99. doi: 10.1016/j.plaphy.2017.02.020.
Cevallos, J. F., González, D. and Arbelaez, G. (1990) ‘Determinación de las razas fisiológicas de fusarium oxysporum f.sp. dianthi en clavel en la sabana de bogotá’. Universidad Nacional de Colombia, Facultad de Agronomía, Centro Editorial, 7, pp. 40–46. Available at: https://repositorio.unal.edu.co/handle/unal/33839 (Accessed: 25 January 2023)
Chaturvedi, R. and Shah, J. (2007) ‘Salicylic acid in plant disease resistance’, Salicylic Acid: A Plant Hormone, (Figure 1), pp. 335–370. doi: 10.1007/1-4020-5184-0_12.
Chen, C. et al. (2021) ‘Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 168(June), pp. 188–201. doi: 10.1016/j.plaphy.2021.10.004.
Chen, L. et al. (2019) ‘Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance’, Plant Physiology, 180(4), pp. 2167–2181. doi: 10.1104/pp.19.00091.
Cho, S. M. et al. (2010) ‘Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis Thaliana’, Botany, 88(5), pp. 452–461. doi: 10.1139/B10-009.
Chroumpi, T. et al. (2021) ‘Revisiting a “simple” fungal metabolic pathway reveals redundancy, complexity and diversity’, Microbial Biotechnology. John Wiley and Sons Ltd, 14(6), pp. 2525–2537. doi: 10.1111/1751-7915.13790.
Corredor-Moreno, P. et al. (2021) ‘The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility’, Plant Cell, 33(5), pp. 1728–1747. doi: 10.1093/plcell/koab049.
Crawford, N. M. (2006) ‘Mechanisms for nitric oxide synthesis in plants’, Journal of Experimental Botany, 57(3), pp. 471–478. doi: 10.1093/jxb/erj050
Cuervo Plata, D. C. (2018) ‘Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi’, Tesis de Maestria, p. 192.
Dangl, J. L. and Jones, J. D. G. (2001) ‘Plant pathogens and integrated defence responses to infection’, Nature, 411(6839), pp. 826–833. doi: 10.1038/35081161.
Daniel, R. and Guest, D. (2006) ‘Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana’, Physiological and Molecular Plant Pathology, 67(3–5), pp. 194–201. doi: 10.1016/j.pmpp.2006.01.003.
Demers, J. (2020) ‘The Biology of Dianthus caryophyllus L . ( Carnation )’, (February).
Dempsey, D. A. et al. (2011) ‘Salicylic Acid Biosynthesis and Metabolism’, The Arabidopsis Book, 9(9), p. e0156. doi: 10.1199/tab.0156.
Dong, X. (2004) ‘NPR1, all things considered’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(5), pp. 547–552. doi: 10.1016/J.PBI.2004.07.005.
Van Den Dool, H. and Kratz, P. (1963) ‘A GENERALIZATION OF THE RETENTION INDEX SYSTEM INCLUDING LINEAR TEMPERATURE PROGRAMMED GAS-LIQUID PARTITION CHROMATOGRAPHY’, Journal of Chromatography, pp. 463–471. doi: 10.1007/978-3-319-70262-9_7.
Drew, S. W. and Demain, A. L. (1977) ‘Effect of primary metabolites on secondary metabolism.’, Annual review of microbiology, 31, pp. 343–356. doi: 10.1146/annurev.mi.31.100177.002015.
Edel-Hermann, V. and Lecomte, C. (2019) ‘Current status of fusarium oxysporum formae speciales and races’, Phytopathology. American Phytopathological Society, 109(4), pp. 512–530. doi: 10.1094/PHYTO-08-18-0320-RVW/ASSET/IMAGES/LARGE/PHYTO-08-18-0320-RVW_T3.JPEG
Elmer, W. H. and Pignatello, J. J. (2011) ‘Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils’, Plant Disease, 95(8), pp. 960–966. doi: 10.1094/PDIS-10-10-0741.
Eshraghi, L. et al. (2011) ‘Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi’, Plant Pathology, 60(6), pp. 1086–1095. doi: 10.1111/j.1365-3059.2011.02471.x.
Estrada-Ortiz, E. et al. (2012) ‘Phosphite on growth and fruit quality in strawberry’, Acta Horticulturae, 947, pp. 277–282. doi: 10.17660/ActaHortic.2012.947.35
Estrada Rudas, C. (2022) Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. Available at: https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000-empleos-y-son-exportadas-a-mas-de-100-paises-3425195
Fabro, G. et al. (2004) ‘Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis’, Molecular Plant-Microbe Interactions, 17(4), pp. 343–350. doi: 10.1094/MPMI.2004.17.4.343.
Fiehn, O. (2002) ‘Metabolomics - The link between genotypes and phenotypes’, Plant Molecular Biology, 48(1–2), pp. 155–171. doi: 10.1023/A:1013713905833.
Flor, H. H. (1971) ‘Current status of the gene-for-gene concept’, pp. 275–296.
Förster, H. et al. (1998) ‘Effect of Phosphite on Tomato and Pepper Plants and on Susceptibility of Pepper to Phytophthora Root and Crown Rot in Hydroponic Culture’, (D).
Galili, G. et al. (2001) ‘Lysine catabolism: A stress and development super-regulated metabolic pathway’, Current Opinion in Plant Biology, 4(3), pp. 261–266. doi: 10.1016/S1369-5266(00)00170-9.
Gao, X. et al. (2018) ‘Metabolomics Profile of Potato Tubers after Phosphite Treatment’, American Journal of Plant Sciences, 09(04), pp. 845–864. doi: 10.4236/ajps.2018.94065.
Gashaw, G., Alemu, T. and Tesfaye, K. (2014) ‘Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyricularia grisea isolates using biological antagonists and fungicides in vitro condition .’, Journal of Applied Biosciences, 73, pp. 5883–5901.
Gerszten, R. E. and Wang, T. J. (2008) ‘The search for new cardiovascular biomarkers’, Nature, 451(7181), pp. 949–952. doi: 10.1038/nature06802.
Gilardi, G. et al. (2020) ‘Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system’, Scientia Horticulturae, 265(December 2019). doi: 10.1016/j.scienta.2020.109207.
Gillaspy, G. . (2011) ‘The cellular language of myo-inositol signaling’, New Phytologist, 192(4), pp. 823–839. doi: https://doi.org/10.1111/j.1469-8137.2011.03939.x.
Gómez-Merino, F. C. and Trejo-Téllez, L. I. (2015) ‘Biostimulant activity of phosphite in horticulture’, Scientia Horticulturae, 196, pp. 82–90. doi: 10.1016/j.scienta.2015.09.035.
Gómez, S. et al. (2010) ‘Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato’, New Phytologist, 188(3), pp. 835–844. doi: 10.1111/j.1469-8137.2010.03414.x.
González, E. (2015) ‘Agentes bióticos y abióticos como inductores de resistencia a enfermedades en el cultivo de papa’, Universidad Autónoma Agraria Antonio Narro, (3), pp. 373–379.
Gordon, T. R. and Martyn, R. D. (1997) ‘The evolutionary biology of Fusarium oxysporum’, Annual Review of Phytopathology, 35(August), pp. 111–128. doi: 10.1146/annurev.phyto.35.1.111.
Gunning, T. K. et al. (2013) ‘Profiling of secondary metabolites in blue lupin inoculated with Phytophthora cinnamomi following phosphite treatment’, Functional Plant Biology, 40(11), pp. 1089–1097. doi: 10.1071/FP13023.
Halket, J. M. and Zaikin, V. G. (2003) ‘Derivatization in mass spectrometry - 1. Silylation’, European Journal of Mass Spectrometry, 9(1), pp. 1–21. doi: 10.1255/ejms.527
Han, D. J., Lee, B. H. and Yoo, S. H. (2021) ‘Physicochemical properties of turanose and its potential applications as a sucrose substitute’, Food Science and Biotechnology. The Korean Society of Food Science and Technology, 30(3), pp. 433–441. doi: 10.1007/S10068-021-00876-1/METRICS
Han, X. et al. (2021) ‘Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum’, Ecotoxicology and Environmental Safety, 210, p. 111873. doi: 10.1016/j.ecoenv.2020.111873.
Hartmann, M. and Zeier, J. (2018) ‘l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants’, Plant Journal, 96(1), pp. 5–21. doi: 10.1111/tpj.14037.
Hayat, Q. et al. (2010) ‘Effect of exogenous salicylic acid under changing environment: A review’, Environmental and Experimental Botany, pp. 14–25. doi: 10.1016/j.envexpbot.2009.08.005.
Henry, E. et al. (2015) ‘Beyond Glycolysis: GAPDHs Are Multi-functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses’, PLoS Genetics, 11(4), pp. 1–27. doi: 10.1371/journal.pgen.1005199.
Higuera, B. L. (2001) ‘Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L Fusarium oxysporum f. sp. dianthi.’, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C., p. 2001.
Horning, M. G., Moss, A. M. and Horning, E. C. (1968) ‘Formation and gas-liquid chromatographic behavior of isometric steroid ketone methoxime derivatives’, Analytical Biochemistry. Academic Press, 22(2), pp. 284–294. doi: 10.1016/0003-2697(68)90318-7.
Hwang, I. S., An, S. H. and Hwang, B. K. (2011) ‘Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens’, Plant Journal, 67(5), pp. 749–762. doi: 10.1111/j.1365-313X.2011.04622.x
Iturriaga, G., Suárez, R. and Nova-Franco, B. (2009) ‘Trehalose metabolism: From osmoprotection to signaling’, International Journal of Molecular Sciences, 10(9), pp. 3793–3810. doi: 10.3390/ijms10093793.
Iula, G. et al. (2022) ‘The Complex Metabolomics Crosstalk Triggered by Four Molecular Elicitors in Tomato’, Plants, 11(5). doi: 10.3390/plants11050678.
Jackson, T. J. et al. (2000) ‘Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi’, Plant Pathology, 49(1), pp. 147–154. doi: 10.1046/j.1365-3059.2000.00422.x.
Janeczko, A. et al. (2013) ‘Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P . fluorescens’, Biologia plantarum. Biologia plantarum, 57(1), pp. 169–173. doi: 10.1007/s10535-012-0142-y.
Jangir, P. et al. (2021) ‘Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum’, Frontiers in Plant Science, 12(April), pp. 1–17. doi: 10.3389/fpls.2021.628611.
Jones, J.D.G., D. J. L. (2006) ‘The plant immune system’, Nature, 444, pp. 323–329.
Joshi, V. et al. (2010) ‘Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress’, Amino Acids, 39(4), pp. 933–947. doi: 10.1007/s00726-010-0505-7.
Joshi, V. and Fernie, A. R. (2017) ‘Citrulline metabolism in plants’, Amino Acids. Springer Vienna, 49(9), pp. 1543–1559. doi: 10.1007/s00726-017-2468-4.
Kale, S. D. et al. (2010) ‘External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells’, Cell. Elsevier Inc., 142(2), pp. 284–295. doi: 10.1016/j.cell.2010.06.008.
Kruger, N. J. and Von Schaewen, A. (2003) ‘The oxidative pentose phosphate pathway: Structure and organisation’, Current Opinion in Plant Biology, 6(3), pp. 236–246. doi: 10.1016/S1369-5266(03)00039-6
Kumar, S. et al. (2022) ‘Structural basis of NPR1 in activating plant immunity’, Nature. Springer US, 605(7910), pp. 561–566. doi: 10.1038/s41586-022-04699-w.
Kumar, Y. et al. (2015) ‘Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways’, Phytochemistry. Elsevier Ltd, 116(1), pp. 120–129. doi: 10.1016/j.phytochem.2015.04.001
Landscape Management (2016) Step by Step: Apply a soil drench to trees : Landscape Management. Available at: https://www.landscapemanagement.net/step-by-step-apply-a-soil-drench-to-trees/ (Accessed: 3 February 2023)
Lefevere, H., Bauters, L. and Gheysen, G. (2020) ‘Salicylic Acid Biosynthesis in Plants’, Frontiers in Plant Science, 11(April), pp. 1–7. doi: 10.3389/fpls.2020.00338
Li, H. et al. (2022) ‘The Role of Plant Progesterone in Regulating Growth , Development , and Biotic / Abiotic Stress Responses’.
Lim, S. (2012) Analysis of Changes in the Potato Leaf Proteome Triggered by Phosphite Reveals Functions Associated with Induced Resistance Against Phytophthora infestans. Dalhousie University. Available at: https://dalspace.library.dal.ca//handle/10222/15859 (Accessed: 26 January 2023)
Lim, S. et al. (2013) Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans, Journal of Proteomics. Elsevier B.V. doi: 10.1016/j.jprot.2013.03.010.
Lindemann, P. and Luckner, M. (1997) ‘Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata’, Phytochemistry. Pergamon, 46(3), pp. 507–513. doi: 10.1016/S0031-9422(97)00315-4.
Liu, Y. et al. (2020) ‘Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity’, The Plant Cell. Oxford Academic, 32(12), pp. 4002–4016. doi: 10.1105/TPC.20.00499.
Livak, K. J. and Schmittgen, T. D. (2001) ‘Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method’, Methods, 25(4), pp. 402–408. doi: 10.1006/meth.2001.1262
Lobato, M. C. et al. (2008) ‘Phosphite compounds reduce disease severity in potato seed tubers and foliage’, European Journal of Plant Pathology, 122(3), pp. 349–358. doi: 10.1007/s10658-008-9299-9
López-Gresa, M. P. et al. (2019) ‘Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid’, Viruses 2019, Vol. 11, Page 437. Multidisciplinary Digital Publishing Institute, 11(5), p. 437. doi: 10.3390/V11050437.
Louis, J., Singh, V. and Shah, J. (2013) ‘Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids’, Frontiers in Plant Science, 4. doi: 10.1199/tab.0159
Lovatt, B. C. J. and Mikkelsen, R. L. (2006) ‘Phosphite Fertilizers: What Are They? Can You Use Them? What Can They Do?’, Better Crops, 90(4), pp. 11–13
Machinandiarena, M. F. et al. (2012) ‘Potassium phosphite primes defense responses in potato against Phytophthora infestans’, Journal of Plant Physiology, 169(14), pp. 1417–1424. doi: 10.1016/j.jplph.2012.05.005
MacIntyre, A. M. et al. (2022) Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease, PLoS ONE. doi: 10.1371/journal.pone.0266254.
Martínez, A. (2019) ‘Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi’. Available at: https://repositorio.unal.edu.co/handle/unal/77033 (Accessed: 26 January 2023)
Massoud, K. et al. (2012) ‘Dissecting Phosphite-induced priming in Arabidopsis infected with Hyaloperonospora Arabidopsidis’, Plant Physiology, 159(1), pp. 286–298. doi: 10.1104/pp.112.194647.
Meng, J. et al. (2022) ‘Xylitol production from plant biomass by Aspergillus niger through metabolic engineering’, Bioresource Technology. Elsevier, 344, p. 126199. doi: 10.1016/J.BIORTECH.2021.126199.
Mohammadi, M. A. et al. (2019) ‘Effects of potassium phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans’, APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 17(2), pp. 4499–4514. Available at: http://dx.doi.org/10.15666/aeer/1702_44994514.
Mohammadi, M. A. et al. (2021) ‘ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response’, Frontiers in Microbiology, 12(July), pp. 1–21. doi: 10.3389/fmicb.2021.631318
Monroy-Mena, S. (2019) EFECTO DE ELICITORES DE ORIGEN BIÓTICO EN LA TRANSCRIPCIÓN DE ALGUNOS GENES INVOLUCRADOS EN LOS MECANISMOS DE DEFENSA DEL CLAVEL Dianthus caryophyllus L. AL PATÓGENO Fusarium oxysporum f sp dianthi. Available at: https://repositorio.unal.edu.co/handle/unal/77930.
Monroy-Mena, S. et al. (2019) ‘Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi’, Revista Colombiana de Química. Universidad Nacional de Colombia, 48(2), pp. 5–14. doi: 10.15446/rev.colomb.quim.v48n2.72771.
Monteoliva, M. I. et al. (2014) ‘Context of action of Proline Dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis’, BMC Plant Biology. BioMed Central, 14(1), pp. 1–11. doi: 10.1186/1471-2229-14-21/FIGURES/4.
Naik, P. M. and Al-Khayri, J. M. (2016) ‘Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants’, Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. doi: 10.5772/61442.
Návarová, H. et al. (2013) ‘Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity’, Plant Cell, 24(12), pp. 5123–5141. doi: 10.1105/tpc.112.103564.
Nguyen, T. D. and O’Connor, S. E. (2020) ‘The Progesterone 5β-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants’, ACS Chemical Biology. American Chemical Society, 15(7), pp. 1780–1787. doi: 10.1021/ACSCHEMBIO.0C00220/ASSET/IMAGES/LARGE/CB0C00220_0003.JPEG
Olivieri, F. P. et al. (2012) ‘Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens’, Crop Protection. Elsevier Ltd, 32, pp. 1–6. doi: 10.1016/j.cropro.2011.08.025.
Osei, R. et al. (2021) ‘Role of Salicylic Acid in Plants Defense Mechanisms Against Pathogens’, 4(6).
Otero, D. M. et al. (2021) ‘Leaves of Olea europaea L. as a source of oleuropein: characteristics and biological aspects’, Research, Society and Development. Research, Society and Development, 10(13), pp. e185101321130–e185101321130. doi: 10.33448/RSD-V10I13.21130.
Pant, A. and Yang, Z. (2020) ‘Asparagine: An Achilles Heel of Virus Replication?’, ACS Infectious Diseases. American Chemical Society, 6(9), pp. 2301–2303. doi: 10.1021/ACSINFECDIS.0C00504/ASSET/IMAGES/LARGE/ID0C00504_0001.JPEG.
Paraschivu, M. et al. (2013) ‘The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat’, 45(1), pp. 193–201
Parisutham, V. et al. (2017) ‘Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries’, Bioresource Technology, 239, pp. 496–506. doi: 10.1016/j.biortech.2017.05.001.
Paul, M. J. et al. (2008) ‘Trehalose metabolism and signaling’, Annual Review of Plant Biology, 59, pp. 417–441. doi: 10.1146/annurev.arplant.59.032607.092945.
Paul, M., Pellny, T. and Goddijn, O. (2001) ‘Enhancing photosynthesis with sugar signals’, Trends in Plant Science. Elsevier, 6(5), pp. 197–200. doi: 10.1016/S1360-1385(01)01920-3.
Pérez Mora, W., Melgarejo, L. M. and Ardila, H. D. (2021) ‘Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi’, Archives of Phytopathology and Plant Protection. Taylor & Francis, 54(13–14), pp. 886–902. doi: 10.1080/03235408.2020.1868734
Pieterse, C. M. J. and Van Loon, L. C. (2004) ‘NPR1: the spider in the web of induced resistance signaling pathways’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(4), pp. 456–464. doi: 10.1016/J.PBI.2004.05.006.
Poli, A. et al. (2013) ‘Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi’, Journal of Plant Pathology, 95(2), pp. 255–263. doi: 10.4454/JPP.V95I2.024.
Qamar, A., Mysore, K. S. and Senthil-Kumar, M. (2015) ‘Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens’, Frontiers in Plant Science, 6(JULY), pp. 1–9. doi: 10.3389/fpls.2015.00503.
Qamar, A. and Senthil-Kumar, M. (2019) ‘Arabidopsis exhibits differential response in basal immunity and proline metabolism during defense against host and nonhost pathogen infection’, Plant Physiology Reports. Springer, 24(4), pp. 496–506. doi: 10.1007/S40502-019-00480-W/METRICS.
Quevedo Guerrero, J., Infante Noblecilla, J. C., & García Batista, R. M. (2018) ‘Efecto del uso predominante de fungicidas sistémicos para el control de Sigatoka negra (Mycosphaerella Fijiensis Morelet) en el área foliar del banano.’, Revista Científica Agroecosistemas, 6(1), pp. 128–136.
Ramezani, M., Rahmani, F. and Dehestani, A. (2017) ‘The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonospora cubensis’, Scientia Horticulturae, 225(July), pp. 366–372. doi: 10.1016/j.scienta.2017.07.022.
Ramirez, E. (2014) ‘Evaluacion de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interaccion con el clavel Dianthus caryophyllus L’, p. 174. Available at: http://www.bdigital.unal.edu.co/46176/
Ranf, S. (2017) ‘Sensing of molecular patterns through cell surface immune receptors’, Current Opinion in Plant Biology. Elsevier Ltd, 38, pp. 68–77. doi: 10.1016/j.pbi.2017.04.011.
Rani, P. U. and Jyothsna, Y. (2010) ‘Biochemical and enzymatic changes in rice plants as a mechanism of defense’, Acta Physiologiae Plantarum, 32(4), pp. 695–701. doi: 10.1007/s11738-009-0449-2.
Rebollar-Alviter, A. and Ellis, M. A. (2005) ‘ Efficacy of Azoxystrobin, Pyraclostrobin, Potassium Phosphite, and Mefenoxam for Control of Strawberry Leather Rot Caused by Phytophthora cactorum ’, Plant Health Progress, 6(1). doi: 10.1094/php-2005-0107-01-rs.
Recorbet, G. et al. (2003) ‘Wanted: Pathogenesis-related marker molecules for Fusarium oxysporum’, New Phytologist, 159(1), pp. 73–92. doi: 10.1046/j.1469-8137.2003.00795.x.
Riganti, C. et al. (2012) ‘The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate’, Free Radical Biology and Medicine. Elsevier, 53(3), pp. 421–436. doi: 10.1016/j.freeradbiomed.2012.05.006.
Rincón, A. E. R. (2020) Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi Ana, Universidad Nacional de Colombia.
Roberts, L. D. et al. (2012) ‘Targeted metabolomics’, Current Protocols in Molecular Biology, 1(SUPPL.98), pp. 1–24. doi: 10.1002/0471142727.mb3002s98.
Romero-Rincón, A. et al. (2021) ‘Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi’, Phytochemistry. Pergamon, 192, p. 112933. doi: 10.1016/J.PHYTOCHEM.2021.112933.
Roncero, M. I. et al. (2000) ‘Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum.’, Revista Iberoamericana de Micologia, 17(1), pp. S47-53. Available at: https://europepmc.org/article/med/15762782 (Accessed: 15 February 2023).
Ruszkowski, M. et al. (2015a) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science, 6(October), pp. 1–17. doi: 10.3389/fpls.2015.00869.
Ruszkowski, M. et al. (2015b) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science. Frontiers Research Foundation, 6(October), p. 869. doi: 10.3389/FPLS.2015.00869/BIBTEX.
Sami, F., Siddiqui, H. and Hayat, S. (2019) ‘Interaction of glucose and phytohormone signaling in plants’, Plant Physiology and Biochemistry. Elsevier Masson, 135, pp. 119–126. doi: 10.1016/J.PLAPHY.2018.11.005.
Santos-Rodríguez, J., Coy-Barrera, E. and Ardila, H. D. (2021) ‘Mycelium dispersion from fusarium oxysporum f. Sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (dianthus caryophyllus l.) roots’, Plants. doi: 10.3390/plants10071447
Santos, F. (2023) Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.). Universidad Nacional de Colombia.
dos Santos, T. B. and Vieira, L. G. E. (2020) ‘Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge’, Plant Gene. Elsevier, 24, p. 100258. doi: 10.1016/J.PLGENE.2020.100258.
Sauter, J. J. and van Cleve, B. (1992) ‘Seasonal variation of amino acids in the xylem sap of “Populus x canadensis” and its relation to protein body mobilization’, Trees. Springer-Verlag, 7(1), pp. 26–32. doi: 10.1007/BF00225228/METRICS.
Schultz, J. C. et al. (2013) ‘Flexible resource allocation during plant defense responses’, Frontiers in Plant Science, 4(AUG), pp. 1–11. doi: 10.3389/fpls.2013.00324.
Schymanski, E. L. et al. (2014) ‘Identifying small molecules via high resolution mass spectrometry: Communicating confidence’, Environmental Science and Technology, 48(4), pp. 2097–2098. doi: 10.1021/es5002105
Sharpe, P. (2018) Nutritional value of pasture plants for horses, Horse Pasture Management. Elsevier Inc. doi: 10.1016/B978-0-12-812919-7.00003-2.
Shepherd, T. et al. (2007) ‘Potato metabolomics by GC-MS: What are the limiting factors?’, Metabolomics, 3(4), pp. 475–488. doi: 10.1007/s11306-007-0058-2.
Siah, A. et al. (2018) Natural Agents Inducing Plant Resistance Against Pests and Diseases. doi: 10.1007/978-3-319-67045-4_6.
Silva, O. C. et al. (2011) ‘Potassium phosphite for control of downy mildew of soybean’, Crop Protection. Elsevier Ltd, 30(6), pp. 598–604. doi: 10.1016/j.cropro.2011.02.015.
Smillie, R. (1989) ‘The Mode of Action of Phosphite: Evidence for Both Direct and Indirect Modes of Action on Three Phytophthora spp. in Plants’, Phytopathology, 79(9), p. 921. doi: 10.1094/phyto-79-921
Snoeren, T. A. L. et al. (2010) ‘The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum’, Journal of Chemical Ecology, 36(5), pp. 479–489. doi: 10.1007/s10886-010-9787-1.
Srivastava, Suchi et al. (2016) ‘Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani’, Frontiers in Plant Science. Frontiers Media S.A., 7(MAY2016), p. 587. doi: 10.3389/FPLS.2016.00587/XML/NLM.
Sumner, L. W. et al. (2007) ‘Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)’, Metabolomics, 3(3), pp. 211–221. doi: 10.1007/s11306-007-0082-2.
Sun, L. X. et al. (2006) ‘Cytotoxic constituents from Solanum Lyratum’, Archives of Pharmacal Research, 29(2), pp. 135–139. doi: 10.1007/BF02974274.
Tavernier, V. et al. (2007) ‘The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity’, Journal of Experimental Botany, 58(12), pp. 3351–3360. doi: 10.1093/jxb/erm182.
Taylor, A. et al. (2016) ‘Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae’, Molecular plant pathology, 17(7), pp. 1032–1047. doi: 10.1111/mpp.12346.
Ton, J. and Jakab, G. (2007) ‘Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis’, The Plant Cell, 17(March 2005), pp. 987–999. doi: 10.1105/tpc.104.029728.2.
Trejo-Téllez, L. I. and Gómez-Merino, F. C. (2018) ‘Phosphite as an inductor of adaptive responses to stress and stimulator of better plant performance’, in Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Singapore, pp. 203–238. doi: 10.1007/978-981-10-9029-5_8.
Vanegas, L. (2019) APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi.
Vásquez Ramírez, L. M. and Castaño Zapata, J. (2017) ‘Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. Snyder & H.N. Hansen]: una revisión’, Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), pp. 363–374. doi: 10.31910/rudca.v20.n2.2017.394.
Verpoorte R. (2000) ‘Secondary metabolism’, Metabolic engineering of plant secondary metabolism, pp. 1–29.
Verslues, P. and Sharma, S. (2010) ‘Proline Metabolism and Its Implications for Plant-Environment Interaction’, The Arabidopsis Book, 27(4). doi: 10.1088/1674-1056/27/4/043101.
Vinas, M., Mendez, J. C. and Jiménez, V. M. (2020) ‘Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants’, Scientia Horticulturae, 265(November 2019). doi: 10.1016/j.scienta.2020.109200.
Vinod, K. and Sabah, A. (2018) ‘Plant defense against pathogens: The role of salicylic acid’, Research Journal of Biotechnology, 13(12), pp. 97–103.
Walz, C. et al. (2004) ‘Proteomics of curcurbit phloem exudate reveals a network of defence proteins’, Phytochemistry, 65(12), pp. 1795–1804. doi: 10.1016/j.phytochem.2004.04.006.
Wingler, A. et al. (2000) ‘Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis’, Plant Physiology, 124(1), pp. 105–114. doi: 10.1104/pp.124.1.105.
Winter, G. et al. (2015) ‘Physiological implications of arginine metabolism in plants’, Frontiers in Plant Science, 6(JULY), pp. 1–14. doi: 10.3389/fpls.2015.00534.
Winter, H. and Huber, S. C. (2000) ‘Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes’, Critical reviews in biochemistry and molecular biology. Crit Rev Biochem Mol Biol, 35(4), pp. 253–289. doi: 10.1080/10409230008984165
Wu, L. et al. (2019) ‘Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome’, Physiological and Molecular Plant Pathology, 106(December 2018), pp. 49–56. doi: 10.1016/j.pmpp.2018.12.001.
Wu, Q. et al. (2015) ‘Metabolite profiles of Populus in response to pathogen stress’, Biochemical and Biophysical Research Communications. Elsevier Ltd, 465(3), pp. 421–426. doi: 10.1016/j.bbrc.2015.08.025.
Yagi, M. et al. (2014) ‘Sequence analysis of the genome of carnation (Dianthus caryophyllus L.)’, DNA Research, 21(3), pp. 231–241. doi: 10.1093/dnares/dst053.
Yamaguchi, Y. and Huffaker, A. (2011) ‘Endogenous peptide elicitors in higher plants’, Current Opinion in Plant Biology, 14(4), pp. 351–357. doi: 10.1016/j.pbi.2011.05.001.
Yamaguchi, Y., Pearce, G. and Ryan, C. A. (2006) ‘The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells’, Proceedings of the National Academy of Sciences of the United States of America, 103(26), pp. 10104–10109. doi: 10.1073/pnas.0603729103.
Yáñez-Juárez, M. et al. (2017) ‘Phosphites as alternative for the management of phytopathological problems’, Revista Mexicana de Fitopatología, 36(1), pp. 79–94. doi: 10.18781/R.MEX.FIT.1710-7.
Zaynab, M. et al. (2019) ‘Role of primary metabolites in plant defense against pathogens’, Microbial Pathogenesis. Elsevier Ltd, 137(September), p. 103728. doi: 10.1016/j.micpath.2019.103728.
Zhang, A. et al. (2012) ‘Modern analytical techniques in metabolomics analysis’, Analyst, 137(2), pp. 293–300. doi: 10.1039/c1an15605e
Zubiri, A. (2018) ‘Análisis metabolómico no dirigido en dos líneas de conejos seleccionados de forma divergente para grasa intramuscular’, p. 74.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2023
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 123 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84346/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84346/2/1020796853.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84346/3/1020796853.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8c5360204fc87c4873a5016370b9d7e2
e7067648469099f5477f445094e76d56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089224919449600
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila Barrantes, Harold Duban3c0b4dc91cdf02792559faddcd37e2b3Coy Barrera, Ericsson David508c29a7d75f8c7bc49946bb300cabf3Barreto Pulido, Wanner Ernesto051b2fe4003d9fb688102b42f2cb239fEstudio de Actividades Metabolicas VegetalesBarreto Puldio, Wanner [0009-0004-1085-1041]Barreto Pulido, Wanner [0001686629]2023-07-28T12:54:05Z2023-07-28T12:54:05Z2023-07-19https://repositorio.unal.edu.co/handle/unal/84346Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, gráficas, tablasEn la presente investigación se estudió el efecto que tiene la aplicación de una disolución al 3% de fosfito de potasio en la bioquímica de raíces de clavel durante la inducción de resistencia al patógeno Fusarium oxysporum f. sp. dianthi. Si bien las disoluciones de fosfito de potasio han sido usadas como fertilizantes, fungicidas sistémicos o activadores de defensa natural, para el caso del cultivo del clavel, su uso ha sido limitado y existen solo algunos reportes recientes sobre su papel como inductor de resistencia. Es por ello que, con el fin de profundizar en los procesos involucrados en la acción de este inductor, en la presente investigación, aplicando herramientas de análisis metabolómico no dirigido, se estudiaron los metabolitos que se acumulan en raíces de la planta por acción de este inductor de resistencia y se estudió la expresión de genes asociados con algunos de los metabolitos de interés. Para ello, en una primera etapa se llevó a cabo un ensayo in vivo donde se seleccionó la estrategia para la aplicación de la disolución de fosfito en el suelo. Posteriormente, se realizó la obtención del perfil metabólico mediante GC-MS, con previa derivatización con agente sililante; en este punto se identificaron metabolitos diferenciables para los tratamientos estudiados, entre los cuales se destacan algunos aminoácidos, carbohidratos y ácidos orgánicos, entre otros. Estos resultados indicaron que mecanismos como el metabolismo de aminoácidos, transporte de nitrógeno, metabolismo de carbohidratos y señalización en plantas, son importantes en la inducción de resistencia. Finalmente, en una tercera etapa se estudiaron los niveles transcripcionales de los genes p5cr y npr1, los cuales participan en la biosíntesis de prolina y en la activación de RSA (Resistencia Sistémica Adquirida), respectivamente. Se encontró que la aplicación del inductor generó un aumento en los niveles transcripcionales de dichos genes en la variedad susceptible, confirmando a nivel molecular la activación de las rutas estudiadas en este fenómeno biológico. Los hallazgos encontrados en esta investigación permiten sugerir que el uso de fosfito de potasio, en su rol de inductor de resistencia, potencializa la síntesis de metabolitos asociados a defensa vegetal, muy probablemente asociada a la activación de RSA dependiente de ácido salicílico. (Texto tomado de la fuente)In the present study, the effect of 3% potassium phosphite solution on the carnation root biochemistry during the resistance induction to the pathogen Fusarium oxysporum f. sp. dianthi was evaluated. Although potassium phosphite solutions have been used as fertilizers, systemic fungicides, or natural defense activators, in the case of carnation cultivation, their use has been limited, and there are only a few recent reports on their role as a resistance inducer. Therefore, to deepen the processes involved in the action of this inducer, in the present investigation, applying untargeted metabolomics-based analysis tools, those metabolites differentially accumulated in plant roots due to the action of this resistance inducer, as well as the expression of genes associated with some of the top-ranked metabolites, were studied. In this regard, the first stage involved an in vivo test where the strategy for applying the phosphite solution in the soil was selected. Subsequently, the metabolic profile was obtained by GC-MS, with prior derivatization with a silylating agent. At this point, differentiable metabolites were identified for the studied treatments, among which some amino acids, carbohydrates, and organic acids, among others, were statistically recognized. These results indicated that mechanisms such as amino acid metabolism, nitrogen transport, carbohydrate metabolism, and plant signaling are relevant for resistance induction. Finally, the third stage comprised the evaluation of transcriptional levels of the p5cr and npr1 genes, which participate in proline biosynthesis and ASR (Acquired Systemic Resistance) activation, respectively. It was found that the inducer application generated a transcriptional level increase in the test genes for the susceptible carnation variety, confirming at the molecular level the activation of those pathways studied in this biological phenomenon. The findings in this research suggest that the use of potassium phosphite, in its role as a resistance inducer, potentiates the synthesis of metabolites associated with plant defense, most likely associated with salicylic acid-dependent ASR activation.Florval QFC. - Ente encargada de proveer los esquejes Universidad Militar Nueva Granada - Ente con los equipos analíticos usadosMaestríaMagíster en Ciencias - BioquímicaPerfilado metabólico mediante metabolómica no dirigida, usando GC-MS.Bioquímica de las interacciones Hospedero – Patógenoxxii, 123 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaMetabolitos microbianosBiosíntesisMicrobial metabolitesBiosynthesisDianthus caryophyllus L.Fusarium oxysporum f. sp. dianthiFosfito de potasioMetabolómica no dirigidaPerfilado metabólicoNPR1P5CRSARUntargeted metabolomicsEfecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthiEffect of the application of potassium phosphite on the biosynthesis of metabolites during the carnation (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthiEfeito da aplicação de fosfito de potássio na biossíntese de metabólitos durante o cravo (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. diantiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbu-Nada, Y. et al. (2007) ‘Temporal dynamics of pathogenesis-related metabolites and their plausible pathways of induction in potato leaves following inoculation with Phytophthora infestans’, European Journal of Plant Pathology, 118(4), pp. 375–391. doi: 10.1007/s10658-007-9150-8.Achary, V. M. M. et al. (2017) ‘Phosphite: a novel P fertilizer for weed management and pathogen control’, Plant Biotechnology Journal, 15(12), pp. 1493–1508. doi: 10.1111/pbi.12803Agulló-Antón, M. ángeles et al. (2013) ‘Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.)’, Plant Science. Elsevier Ireland Ltd, 201–202(1), pp. 1–11. doi: 10.1016/j.plantsci.2012.11.006.Aharoni, A. and Galili, G. (2011) ‘Metabolic engineering of the plant primary-secondary metabolism interface’, Current Opinion in Biotechnology. Elsevier Ltd, 22(2), pp. 239–244. doi: 10.1016/j.copbio.2010.11.004Akashi, K., Miyake, C. and Yokota, A. (2001) ‘Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger’, FEBS Letters, 508(3), pp. 438–442. doi: 10.1016/S0014-5793(01)03123-4.Amir, R., Hacham, Y. and Galili, G. (2002) ‘Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants’, Trends in Plant Science. Elsevier Current Trends, 7(4), pp. 153–156. doi: 10.1016/S1360-1385(02)02227-6Arbeláez, G. (1993) ‘Las enfermedades vasculares del clavel en colombia y en el mundo’, Agronomía Colombiana, 10(1), pp. 12–18Ardila, H. (2013) Contribución al estudio de algunos mecanismos bioquímicos y moleculares de la resistencia del clavel a Fusarium oxysporum f. sp. dianthi raza 2, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C.Ardila, H. D. et al. (2014) ‘Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi’, Physiological and Molecular Plant Pathology. Academic Press, 85, pp. 42–52. doi: 10.1016/J.PMPP.2014.01.003Ardila, H. D., Martínez, S. T. and Higuera, B. L. (2013) ‘Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi’, Acta Physiologiae Plantarum. Polish Academy of Sciences, Institute of Slavic Studies, 35(4), pp. 1233–1245. doi: 10.1007/S11738-012-1162-0/METRICS.Arruda, P. and Barreto, P. (2020) ‘Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress’, Frontiers in Plant Science. Frontiers Media SA, 11. doi: 10.3389/FPLS.2020.00587.Ashraf, M. and Harris, P. J. C. (2004) ‘Potential biochemical indicators of salinity tolerance in plants’, Plant Science, 166(1), pp. 3–16. doi: 10.1016/j.plantsci.2003.10.024.Ávalos, A. and Elena, G. (1998) ‘Metabolismo secundario de plantas’, Hidrobiológica, 8(2), pp. 125–132.Baenas, N., García-Viguera, C. and Moreno, D. A. (2014) ‘molecules Elicitation: A Tool for Enriching the Bioactive Composition of Foods’, Molecules, 19, pp. 13541–13563. doi: 10.3390/molecules190913541.Belhadj, A. et al. (2006) ‘Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator’, Journal of Agricultural and Food Chemistry. American Chemical Society, 54(24), pp. 9119–9125. doi: 10.1021/jf0618022.Bender, D. A. et al. (2023) ‘CAPÍTULO 20: La vía de la pentosa fosfato y otras vías del metabolismo de hexosas’, in Bioquímica ilustrada, pp. 1–12.Bernsdorff, F. et al. (2016) ‘Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways’, Plant Cell, 28(1), pp. 102–129. doi: 10.1105/tpc.15.00496.Bilska, K. et al. (2018) ‘Resistance-Related l-Pyroglutamic Acid Affects the Biosynthesis of Trichothecenes and Phenylpropanoids by F. graminearum Sensu Stricto’, Toxins 2018, Vol. 10, Page 492. Multidisciplinary Digital Publishing Institute, 10(12), p. 492. doi: 10.3390/TOXINS10120492Bolton, M. D. (2009) ‘Current review: Primary metabolism and plant defense-fuel for the fire’, Molecular Plant-Microbe Interactions, 22(5), pp. 487–497. doi: 10.1094/MPMI-22-5-0487.Bönnighausen, J. et al. (2019) ‘Metabolic profiling of wheat rachis node infection by Fusarium graminearum – decoding deoxynivalenol-dependent susceptibility’, New Phytologist, 221(1), pp. 459–469. doi: 10.1111/nph.15377Boubakri, H. (2020) Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms, Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Elsevier Inc. doi: 10.1016/b978-0-12-817892-8.00005-2.Brodmann, D. et al. (2002) ‘Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae’, Molecular Plant-Microbe Interactions, 15(7), pp. 693–700. doi: 10.1094/MPMI.2002.15.7.693.Castiblanco, N. F. (2023) EFECTO DE LA APLICACIÓN DE INDUCTORES DE RESISTENCIA EN EL CLAVEL (Dianthus caryophyllus L) SOBRE LA EXPRESIÓN in vivo DE GENES CODIFICANTES PARA CANDIDATOS A FACTORES DE VIRULENCIA DEL PATÓGENO Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.Cerqueira, A. et al. (2017) ‘Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 114, pp. 88–99. doi: 10.1016/j.plaphy.2017.02.020.Cevallos, J. F., González, D. and Arbelaez, G. (1990) ‘Determinación de las razas fisiológicas de fusarium oxysporum f.sp. dianthi en clavel en la sabana de bogotá’. Universidad Nacional de Colombia, Facultad de Agronomía, Centro Editorial, 7, pp. 40–46. Available at: https://repositorio.unal.edu.co/handle/unal/33839 (Accessed: 25 January 2023)Chaturvedi, R. and Shah, J. (2007) ‘Salicylic acid in plant disease resistance’, Salicylic Acid: A Plant Hormone, (Figure 1), pp. 335–370. doi: 10.1007/1-4020-5184-0_12.Chen, C. et al. (2021) ‘Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 168(June), pp. 188–201. doi: 10.1016/j.plaphy.2021.10.004.Chen, L. et al. (2019) ‘Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance’, Plant Physiology, 180(4), pp. 2167–2181. doi: 10.1104/pp.19.00091.Cho, S. M. et al. (2010) ‘Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis Thaliana’, Botany, 88(5), pp. 452–461. doi: 10.1139/B10-009.Chroumpi, T. et al. (2021) ‘Revisiting a “simple” fungal metabolic pathway reveals redundancy, complexity and diversity’, Microbial Biotechnology. John Wiley and Sons Ltd, 14(6), pp. 2525–2537. doi: 10.1111/1751-7915.13790.Corredor-Moreno, P. et al. (2021) ‘The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility’, Plant Cell, 33(5), pp. 1728–1747. doi: 10.1093/plcell/koab049.Crawford, N. M. (2006) ‘Mechanisms for nitric oxide synthesis in plants’, Journal of Experimental Botany, 57(3), pp. 471–478. doi: 10.1093/jxb/erj050Cuervo Plata, D. C. (2018) ‘Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi’, Tesis de Maestria, p. 192.Dangl, J. L. and Jones, J. D. G. (2001) ‘Plant pathogens and integrated defence responses to infection’, Nature, 411(6839), pp. 826–833. doi: 10.1038/35081161.Daniel, R. and Guest, D. (2006) ‘Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana’, Physiological and Molecular Plant Pathology, 67(3–5), pp. 194–201. doi: 10.1016/j.pmpp.2006.01.003.Demers, J. (2020) ‘The Biology of Dianthus caryophyllus L . ( Carnation )’, (February).Dempsey, D. A. et al. (2011) ‘Salicylic Acid Biosynthesis and Metabolism’, The Arabidopsis Book, 9(9), p. e0156. doi: 10.1199/tab.0156.Dong, X. (2004) ‘NPR1, all things considered’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(5), pp. 547–552. doi: 10.1016/J.PBI.2004.07.005.Van Den Dool, H. and Kratz, P. (1963) ‘A GENERALIZATION OF THE RETENTION INDEX SYSTEM INCLUDING LINEAR TEMPERATURE PROGRAMMED GAS-LIQUID PARTITION CHROMATOGRAPHY’, Journal of Chromatography, pp. 463–471. doi: 10.1007/978-3-319-70262-9_7.Drew, S. W. and Demain, A. L. (1977) ‘Effect of primary metabolites on secondary metabolism.’, Annual review of microbiology, 31, pp. 343–356. doi: 10.1146/annurev.mi.31.100177.002015.Edel-Hermann, V. and Lecomte, C. (2019) ‘Current status of fusarium oxysporum formae speciales and races’, Phytopathology. American Phytopathological Society, 109(4), pp. 512–530. doi: 10.1094/PHYTO-08-18-0320-RVW/ASSET/IMAGES/LARGE/PHYTO-08-18-0320-RVW_T3.JPEGElmer, W. H. and Pignatello, J. J. (2011) ‘Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils’, Plant Disease, 95(8), pp. 960–966. doi: 10.1094/PDIS-10-10-0741.Eshraghi, L. et al. (2011) ‘Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi’, Plant Pathology, 60(6), pp. 1086–1095. doi: 10.1111/j.1365-3059.2011.02471.x.Estrada-Ortiz, E. et al. (2012) ‘Phosphite on growth and fruit quality in strawberry’, Acta Horticulturae, 947, pp. 277–282. doi: 10.17660/ActaHortic.2012.947.35Estrada Rudas, C. (2022) Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. Available at: https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000-empleos-y-son-exportadas-a-mas-de-100-paises-3425195Fabro, G. et al. (2004) ‘Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis’, Molecular Plant-Microbe Interactions, 17(4), pp. 343–350. doi: 10.1094/MPMI.2004.17.4.343.Fiehn, O. (2002) ‘Metabolomics - The link between genotypes and phenotypes’, Plant Molecular Biology, 48(1–2), pp. 155–171. doi: 10.1023/A:1013713905833.Flor, H. H. (1971) ‘Current status of the gene-for-gene concept’, pp. 275–296.Förster, H. et al. (1998) ‘Effect of Phosphite on Tomato and Pepper Plants and on Susceptibility of Pepper to Phytophthora Root and Crown Rot in Hydroponic Culture’, (D).Galili, G. et al. (2001) ‘Lysine catabolism: A stress and development super-regulated metabolic pathway’, Current Opinion in Plant Biology, 4(3), pp. 261–266. doi: 10.1016/S1369-5266(00)00170-9.Gao, X. et al. (2018) ‘Metabolomics Profile of Potato Tubers after Phosphite Treatment’, American Journal of Plant Sciences, 09(04), pp. 845–864. doi: 10.4236/ajps.2018.94065.Gashaw, G., Alemu, T. and Tesfaye, K. (2014) ‘Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyricularia grisea isolates using biological antagonists and fungicides in vitro condition .’, Journal of Applied Biosciences, 73, pp. 5883–5901.Gerszten, R. E. and Wang, T. J. (2008) ‘The search for new cardiovascular biomarkers’, Nature, 451(7181), pp. 949–952. doi: 10.1038/nature06802.Gilardi, G. et al. (2020) ‘Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system’, Scientia Horticulturae, 265(December 2019). doi: 10.1016/j.scienta.2020.109207.Gillaspy, G. . (2011) ‘The cellular language of myo-inositol signaling’, New Phytologist, 192(4), pp. 823–839. doi: https://doi.org/10.1111/j.1469-8137.2011.03939.x.Gómez-Merino, F. C. and Trejo-Téllez, L. I. (2015) ‘Biostimulant activity of phosphite in horticulture’, Scientia Horticulturae, 196, pp. 82–90. doi: 10.1016/j.scienta.2015.09.035.Gómez, S. et al. (2010) ‘Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato’, New Phytologist, 188(3), pp. 835–844. doi: 10.1111/j.1469-8137.2010.03414.x.González, E. (2015) ‘Agentes bióticos y abióticos como inductores de resistencia a enfermedades en el cultivo de papa’, Universidad Autónoma Agraria Antonio Narro, (3), pp. 373–379.Gordon, T. R. and Martyn, R. D. (1997) ‘The evolutionary biology of Fusarium oxysporum’, Annual Review of Phytopathology, 35(August), pp. 111–128. doi: 10.1146/annurev.phyto.35.1.111.Gunning, T. K. et al. (2013) ‘Profiling of secondary metabolites in blue lupin inoculated with Phytophthora cinnamomi following phosphite treatment’, Functional Plant Biology, 40(11), pp. 1089–1097. doi: 10.1071/FP13023.Halket, J. M. and Zaikin, V. G. (2003) ‘Derivatization in mass spectrometry - 1. Silylation’, European Journal of Mass Spectrometry, 9(1), pp. 1–21. doi: 10.1255/ejms.527Han, D. J., Lee, B. H. and Yoo, S. H. (2021) ‘Physicochemical properties of turanose and its potential applications as a sucrose substitute’, Food Science and Biotechnology. The Korean Society of Food Science and Technology, 30(3), pp. 433–441. doi: 10.1007/S10068-021-00876-1/METRICSHan, X. et al. (2021) ‘Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum’, Ecotoxicology and Environmental Safety, 210, p. 111873. doi: 10.1016/j.ecoenv.2020.111873.Hartmann, M. and Zeier, J. (2018) ‘l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants’, Plant Journal, 96(1), pp. 5–21. doi: 10.1111/tpj.14037.Hayat, Q. et al. (2010) ‘Effect of exogenous salicylic acid under changing environment: A review’, Environmental and Experimental Botany, pp. 14–25. doi: 10.1016/j.envexpbot.2009.08.005.Henry, E. et al. (2015) ‘Beyond Glycolysis: GAPDHs Are Multi-functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses’, PLoS Genetics, 11(4), pp. 1–27. doi: 10.1371/journal.pgen.1005199.Higuera, B. L. (2001) ‘Contribución al estudio de la participación de los compuestos fenólicos en los mecanismos de la interacción Clavel Dianthus caryophyllus L Fusarium oxysporum f. sp. dianthi.’, Tesis doctoral. Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá D.C., p. 2001.Horning, M. G., Moss, A. M. and Horning, E. C. (1968) ‘Formation and gas-liquid chromatographic behavior of isometric steroid ketone methoxime derivatives’, Analytical Biochemistry. Academic Press, 22(2), pp. 284–294. doi: 10.1016/0003-2697(68)90318-7.Hwang, I. S., An, S. H. and Hwang, B. K. (2011) ‘Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens’, Plant Journal, 67(5), pp. 749–762. doi: 10.1111/j.1365-313X.2011.04622.xIturriaga, G., Suárez, R. and Nova-Franco, B. (2009) ‘Trehalose metabolism: From osmoprotection to signaling’, International Journal of Molecular Sciences, 10(9), pp. 3793–3810. doi: 10.3390/ijms10093793.Iula, G. et al. (2022) ‘The Complex Metabolomics Crosstalk Triggered by Four Molecular Elicitors in Tomato’, Plants, 11(5). doi: 10.3390/plants11050678.Jackson, T. J. et al. (2000) ‘Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi’, Plant Pathology, 49(1), pp. 147–154. doi: 10.1046/j.1365-3059.2000.00422.x.Janeczko, A. et al. (2013) ‘Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P . fluorescens’, Biologia plantarum. Biologia plantarum, 57(1), pp. 169–173. doi: 10.1007/s10535-012-0142-y.Jangir, P. et al. (2021) ‘Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum’, Frontiers in Plant Science, 12(April), pp. 1–17. doi: 10.3389/fpls.2021.628611.Jones, J.D.G., D. J. L. (2006) ‘The plant immune system’, Nature, 444, pp. 323–329.Joshi, V. et al. (2010) ‘Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress’, Amino Acids, 39(4), pp. 933–947. doi: 10.1007/s00726-010-0505-7.Joshi, V. and Fernie, A. R. (2017) ‘Citrulline metabolism in plants’, Amino Acids. Springer Vienna, 49(9), pp. 1543–1559. doi: 10.1007/s00726-017-2468-4.Kale, S. D. et al. (2010) ‘External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells’, Cell. Elsevier Inc., 142(2), pp. 284–295. doi: 10.1016/j.cell.2010.06.008.Kruger, N. J. and Von Schaewen, A. (2003) ‘The oxidative pentose phosphate pathway: Structure and organisation’, Current Opinion in Plant Biology, 6(3), pp. 236–246. doi: 10.1016/S1369-5266(03)00039-6Kumar, S. et al. (2022) ‘Structural basis of NPR1 in activating plant immunity’, Nature. Springer US, 605(7910), pp. 561–566. doi: 10.1038/s41586-022-04699-w.Kumar, Y. et al. (2015) ‘Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways’, Phytochemistry. Elsevier Ltd, 116(1), pp. 120–129. doi: 10.1016/j.phytochem.2015.04.001Landscape Management (2016) Step by Step: Apply a soil drench to trees : Landscape Management. Available at: https://www.landscapemanagement.net/step-by-step-apply-a-soil-drench-to-trees/ (Accessed: 3 February 2023)Lefevere, H., Bauters, L. and Gheysen, G. (2020) ‘Salicylic Acid Biosynthesis in Plants’, Frontiers in Plant Science, 11(April), pp. 1–7. doi: 10.3389/fpls.2020.00338Li, H. et al. (2022) ‘The Role of Plant Progesterone in Regulating Growth , Development , and Biotic / Abiotic Stress Responses’.Lim, S. (2012) Analysis of Changes in the Potato Leaf Proteome Triggered by Phosphite Reveals Functions Associated with Induced Resistance Against Phytophthora infestans. Dalhousie University. Available at: https://dalspace.library.dal.ca//handle/10222/15859 (Accessed: 26 January 2023)Lim, S. et al. (2013) Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans, Journal of Proteomics. Elsevier B.V. doi: 10.1016/j.jprot.2013.03.010.Lindemann, P. and Luckner, M. (1997) ‘Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata’, Phytochemistry. Pergamon, 46(3), pp. 507–513. doi: 10.1016/S0031-9422(97)00315-4.Liu, Y. et al. (2020) ‘Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity’, The Plant Cell. Oxford Academic, 32(12), pp. 4002–4016. doi: 10.1105/TPC.20.00499.Livak, K. J. and Schmittgen, T. D. (2001) ‘Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method’, Methods, 25(4), pp. 402–408. doi: 10.1006/meth.2001.1262Lobato, M. C. et al. (2008) ‘Phosphite compounds reduce disease severity in potato seed tubers and foliage’, European Journal of Plant Pathology, 122(3), pp. 349–358. doi: 10.1007/s10658-008-9299-9López-Gresa, M. P. et al. (2019) ‘Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid’, Viruses 2019, Vol. 11, Page 437. Multidisciplinary Digital Publishing Institute, 11(5), p. 437. doi: 10.3390/V11050437.Louis, J., Singh, V. and Shah, J. (2013) ‘Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids’, Frontiers in Plant Science, 4. doi: 10.1199/tab.0159Lovatt, B. C. J. and Mikkelsen, R. L. (2006) ‘Phosphite Fertilizers: What Are They? Can You Use Them? What Can They Do?’, Better Crops, 90(4), pp. 11–13Machinandiarena, M. F. et al. (2012) ‘Potassium phosphite primes defense responses in potato against Phytophthora infestans’, Journal of Plant Physiology, 169(14), pp. 1417–1424. doi: 10.1016/j.jplph.2012.05.005MacIntyre, A. M. et al. (2022) Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease, PLoS ONE. doi: 10.1371/journal.pone.0266254.Martínez, A. (2019) ‘Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi’. Available at: https://repositorio.unal.edu.co/handle/unal/77033 (Accessed: 26 January 2023)Massoud, K. et al. (2012) ‘Dissecting Phosphite-induced priming in Arabidopsis infected with Hyaloperonospora Arabidopsidis’, Plant Physiology, 159(1), pp. 286–298. doi: 10.1104/pp.112.194647.Meng, J. et al. (2022) ‘Xylitol production from plant biomass by Aspergillus niger through metabolic engineering’, Bioresource Technology. Elsevier, 344, p. 126199. doi: 10.1016/J.BIORTECH.2021.126199.Mohammadi, M. A. et al. (2019) ‘Effects of potassium phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans’, APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 17(2), pp. 4499–4514. Available at: http://dx.doi.org/10.15666/aeer/1702_44994514.Mohammadi, M. A. et al. (2021) ‘ROS and Oxidative Response Systems in Plants Under Biotic and Abiotic Stresses: Revisiting the Crucial Role of Phosphite Triggered Plants Defense Response’, Frontiers in Microbiology, 12(July), pp. 1–21. doi: 10.3389/fmicb.2021.631318Monroy-Mena, S. (2019) EFECTO DE ELICITORES DE ORIGEN BIÓTICO EN LA TRANSCRIPCIÓN DE ALGUNOS GENES INVOLUCRADOS EN LOS MECANISMOS DE DEFENSA DEL CLAVEL Dianthus caryophyllus L. AL PATÓGENO Fusarium oxysporum f sp dianthi. Available at: https://repositorio.unal.edu.co/handle/unal/77930.Monroy-Mena, S. et al. (2019) ‘Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi’, Revista Colombiana de Química. Universidad Nacional de Colombia, 48(2), pp. 5–14. doi: 10.15446/rev.colomb.quim.v48n2.72771.Monteoliva, M. I. et al. (2014) ‘Context of action of Proline Dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis’, BMC Plant Biology. BioMed Central, 14(1), pp. 1–11. doi: 10.1186/1471-2229-14-21/FIGURES/4.Naik, P. M. and Al-Khayri, J. M. (2016) ‘Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants’, Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. doi: 10.5772/61442.Návarová, H. et al. (2013) ‘Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity’, Plant Cell, 24(12), pp. 5123–5141. doi: 10.1105/tpc.112.103564.Nguyen, T. D. and O’Connor, S. E. (2020) ‘The Progesterone 5β-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants’, ACS Chemical Biology. American Chemical Society, 15(7), pp. 1780–1787. doi: 10.1021/ACSCHEMBIO.0C00220/ASSET/IMAGES/LARGE/CB0C00220_0003.JPEGOlivieri, F. P. et al. (2012) ‘Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens’, Crop Protection. Elsevier Ltd, 32, pp. 1–6. doi: 10.1016/j.cropro.2011.08.025.Osei, R. et al. (2021) ‘Role of Salicylic Acid in Plants Defense Mechanisms Against Pathogens’, 4(6).Otero, D. M. et al. (2021) ‘Leaves of Olea europaea L. as a source of oleuropein: characteristics and biological aspects’, Research, Society and Development. Research, Society and Development, 10(13), pp. e185101321130–e185101321130. doi: 10.33448/RSD-V10I13.21130.Pant, A. and Yang, Z. (2020) ‘Asparagine: An Achilles Heel of Virus Replication?’, ACS Infectious Diseases. American Chemical Society, 6(9), pp. 2301–2303. doi: 10.1021/ACSINFECDIS.0C00504/ASSET/IMAGES/LARGE/ID0C00504_0001.JPEG.Paraschivu, M. et al. (2013) ‘The use of the area under the disease progress curve (AUDPC) to assess the epidemics of septoria tritici in winter wheat’, 45(1), pp. 193–201Parisutham, V. et al. (2017) ‘Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries’, Bioresource Technology, 239, pp. 496–506. doi: 10.1016/j.biortech.2017.05.001.Paul, M. J. et al. (2008) ‘Trehalose metabolism and signaling’, Annual Review of Plant Biology, 59, pp. 417–441. doi: 10.1146/annurev.arplant.59.032607.092945.Paul, M., Pellny, T. and Goddijn, O. (2001) ‘Enhancing photosynthesis with sugar signals’, Trends in Plant Science. Elsevier, 6(5), pp. 197–200. doi: 10.1016/S1360-1385(01)01920-3.Pérez Mora, W., Melgarejo, L. M. and Ardila, H. D. (2021) ‘Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi’, Archives of Phytopathology and Plant Protection. Taylor & Francis, 54(13–14), pp. 886–902. doi: 10.1080/03235408.2020.1868734Pieterse, C. M. J. and Van Loon, L. C. (2004) ‘NPR1: the spider in the web of induced resistance signaling pathways’, Current Opinion in Plant Biology. Elsevier Current Trends, 7(4), pp. 456–464. doi: 10.1016/J.PBI.2004.05.006.Poli, A. et al. (2013) ‘Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi’, Journal of Plant Pathology, 95(2), pp. 255–263. doi: 10.4454/JPP.V95I2.024.Qamar, A., Mysore, K. S. and Senthil-Kumar, M. (2015) ‘Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens’, Frontiers in Plant Science, 6(JULY), pp. 1–9. doi: 10.3389/fpls.2015.00503.Qamar, A. and Senthil-Kumar, M. (2019) ‘Arabidopsis exhibits differential response in basal immunity and proline metabolism during defense against host and nonhost pathogen infection’, Plant Physiology Reports. Springer, 24(4), pp. 496–506. doi: 10.1007/S40502-019-00480-W/METRICS.Quevedo Guerrero, J., Infante Noblecilla, J. C., & García Batista, R. M. (2018) ‘Efecto del uso predominante de fungicidas sistémicos para el control de Sigatoka negra (Mycosphaerella Fijiensis Morelet) en el área foliar del banano.’, Revista Científica Agroecosistemas, 6(1), pp. 128–136.Ramezani, M., Rahmani, F. and Dehestani, A. (2017) ‘The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonospora cubensis’, Scientia Horticulturae, 225(July), pp. 366–372. doi: 10.1016/j.scienta.2017.07.022.Ramirez, E. (2014) ‘Evaluacion de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interaccion con el clavel Dianthus caryophyllus L’, p. 174. Available at: http://www.bdigital.unal.edu.co/46176/Ranf, S. (2017) ‘Sensing of molecular patterns through cell surface immune receptors’, Current Opinion in Plant Biology. Elsevier Ltd, 38, pp. 68–77. doi: 10.1016/j.pbi.2017.04.011.Rani, P. U. and Jyothsna, Y. (2010) ‘Biochemical and enzymatic changes in rice plants as a mechanism of defense’, Acta Physiologiae Plantarum, 32(4), pp. 695–701. doi: 10.1007/s11738-009-0449-2.Rebollar-Alviter, A. and Ellis, M. A. (2005) ‘ Efficacy of Azoxystrobin, Pyraclostrobin, Potassium Phosphite, and Mefenoxam for Control of Strawberry Leather Rot Caused by Phytophthora cactorum ’, Plant Health Progress, 6(1). doi: 10.1094/php-2005-0107-01-rs.Recorbet, G. et al. (2003) ‘Wanted: Pathogenesis-related marker molecules for Fusarium oxysporum’, New Phytologist, 159(1), pp. 73–92. doi: 10.1046/j.1469-8137.2003.00795.x.Riganti, C. et al. (2012) ‘The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate’, Free Radical Biology and Medicine. Elsevier, 53(3), pp. 421–436. doi: 10.1016/j.freeradbiomed.2012.05.006.Rincón, A. E. R. (2020) Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi Ana, Universidad Nacional de Colombia.Roberts, L. D. et al. (2012) ‘Targeted metabolomics’, Current Protocols in Molecular Biology, 1(SUPPL.98), pp. 1–24. doi: 10.1002/0471142727.mb3002s98.Romero-Rincón, A. et al. (2021) ‘Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi’, Phytochemistry. Pergamon, 192, p. 112933. doi: 10.1016/J.PHYTOCHEM.2021.112933.Roncero, M. I. et al. (2000) ‘Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum.’, Revista Iberoamericana de Micologia, 17(1), pp. S47-53. Available at: https://europepmc.org/article/med/15762782 (Accessed: 15 February 2023).Ruszkowski, M. et al. (2015a) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science, 6(October), pp. 1–17. doi: 10.3389/fpls.2015.00869.Ruszkowski, M. et al. (2015b) ‘The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants’, Frontiers in Plant Science. Frontiers Research Foundation, 6(October), p. 869. doi: 10.3389/FPLS.2015.00869/BIBTEX.Sami, F., Siddiqui, H. and Hayat, S. (2019) ‘Interaction of glucose and phytohormone signaling in plants’, Plant Physiology and Biochemistry. Elsevier Masson, 135, pp. 119–126. doi: 10.1016/J.PLAPHY.2018.11.005.Santos-Rodríguez, J., Coy-Barrera, E. and Ardila, H. D. (2021) ‘Mycelium dispersion from fusarium oxysporum f. Sp. dianthi elicits a reduction of wilt severity and influences phenolic profiles of carnation (dianthus caryophyllus l.) roots’, Plants. doi: 10.3390/plants10071447Santos, F. (2023) Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.). Universidad Nacional de Colombia.dos Santos, T. B. and Vieira, L. G. E. (2020) ‘Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge’, Plant Gene. Elsevier, 24, p. 100258. doi: 10.1016/J.PLGENE.2020.100258.Sauter, J. J. and van Cleve, B. (1992) ‘Seasonal variation of amino acids in the xylem sap of “Populus x canadensis” and its relation to protein body mobilization’, Trees. Springer-Verlag, 7(1), pp. 26–32. doi: 10.1007/BF00225228/METRICS.Schultz, J. C. et al. (2013) ‘Flexible resource allocation during plant defense responses’, Frontiers in Plant Science, 4(AUG), pp. 1–11. doi: 10.3389/fpls.2013.00324.Schymanski, E. L. et al. (2014) ‘Identifying small molecules via high resolution mass spectrometry: Communicating confidence’, Environmental Science and Technology, 48(4), pp. 2097–2098. doi: 10.1021/es5002105Sharpe, P. (2018) Nutritional value of pasture plants for horses, Horse Pasture Management. Elsevier Inc. doi: 10.1016/B978-0-12-812919-7.00003-2.Shepherd, T. et al. (2007) ‘Potato metabolomics by GC-MS: What are the limiting factors?’, Metabolomics, 3(4), pp. 475–488. doi: 10.1007/s11306-007-0058-2.Siah, A. et al. (2018) Natural Agents Inducing Plant Resistance Against Pests and Diseases. doi: 10.1007/978-3-319-67045-4_6.Silva, O. C. et al. (2011) ‘Potassium phosphite for control of downy mildew of soybean’, Crop Protection. Elsevier Ltd, 30(6), pp. 598–604. doi: 10.1016/j.cropro.2011.02.015.Smillie, R. (1989) ‘The Mode of Action of Phosphite: Evidence for Both Direct and Indirect Modes of Action on Three Phytophthora spp. in Plants’, Phytopathology, 79(9), p. 921. doi: 10.1094/phyto-79-921Snoeren, T. A. L. et al. (2010) ‘The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum’, Journal of Chemical Ecology, 36(5), pp. 479–489. doi: 10.1007/s10886-010-9787-1.Srivastava, Suchi et al. (2016) ‘Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani’, Frontiers in Plant Science. Frontiers Media S.A., 7(MAY2016), p. 587. doi: 10.3389/FPLS.2016.00587/XML/NLM.Sumner, L. W. et al. (2007) ‘Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)’, Metabolomics, 3(3), pp. 211–221. doi: 10.1007/s11306-007-0082-2.Sun, L. X. et al. (2006) ‘Cytotoxic constituents from Solanum Lyratum’, Archives of Pharmacal Research, 29(2), pp. 135–139. doi: 10.1007/BF02974274.Tavernier, V. et al. (2007) ‘The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity’, Journal of Experimental Botany, 58(12), pp. 3351–3360. doi: 10.1093/jxb/erm182.Taylor, A. et al. (2016) ‘Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae’, Molecular plant pathology, 17(7), pp. 1032–1047. doi: 10.1111/mpp.12346.Ton, J. and Jakab, G. (2007) ‘Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis’, The Plant Cell, 17(March 2005), pp. 987–999. doi: 10.1105/tpc.104.029728.2.Trejo-Téllez, L. I. and Gómez-Merino, F. C. (2018) ‘Phosphite as an inductor of adaptive responses to stress and stimulator of better plant performance’, in Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Singapore, pp. 203–238. doi: 10.1007/978-981-10-9029-5_8.Vanegas, L. (2019) APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi.Vásquez Ramírez, L. M. and Castaño Zapata, J. (2017) ‘Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. Snyder & H.N. Hansen]: una revisión’, Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), pp. 363–374. doi: 10.31910/rudca.v20.n2.2017.394.Verpoorte R. (2000) ‘Secondary metabolism’, Metabolic engineering of plant secondary metabolism, pp. 1–29.Verslues, P. and Sharma, S. (2010) ‘Proline Metabolism and Its Implications for Plant-Environment Interaction’, The Arabidopsis Book, 27(4). doi: 10.1088/1674-1056/27/4/043101.Vinas, M., Mendez, J. C. and Jiménez, V. M. (2020) ‘Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants’, Scientia Horticulturae, 265(November 2019). doi: 10.1016/j.scienta.2020.109200.Vinod, K. and Sabah, A. (2018) ‘Plant defense against pathogens: The role of salicylic acid’, Research Journal of Biotechnology, 13(12), pp. 97–103.Walz, C. et al. (2004) ‘Proteomics of curcurbit phloem exudate reveals a network of defence proteins’, Phytochemistry, 65(12), pp. 1795–1804. doi: 10.1016/j.phytochem.2004.04.006.Wingler, A. et al. (2000) ‘Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis’, Plant Physiology, 124(1), pp. 105–114. doi: 10.1104/pp.124.1.105.Winter, G. et al. (2015) ‘Physiological implications of arginine metabolism in plants’, Frontiers in Plant Science, 6(JULY), pp. 1–14. doi: 10.3389/fpls.2015.00534.Winter, H. and Huber, S. C. (2000) ‘Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes’, Critical reviews in biochemistry and molecular biology. Crit Rev Biochem Mol Biol, 35(4), pp. 253–289. doi: 10.1080/10409230008984165Wu, L. et al. (2019) ‘Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome’, Physiological and Molecular Plant Pathology, 106(December 2018), pp. 49–56. doi: 10.1016/j.pmpp.2018.12.001.Wu, Q. et al. (2015) ‘Metabolite profiles of Populus in response to pathogen stress’, Biochemical and Biophysical Research Communications. Elsevier Ltd, 465(3), pp. 421–426. doi: 10.1016/j.bbrc.2015.08.025.Yagi, M. et al. (2014) ‘Sequence analysis of the genome of carnation (Dianthus caryophyllus L.)’, DNA Research, 21(3), pp. 231–241. doi: 10.1093/dnares/dst053.Yamaguchi, Y. and Huffaker, A. (2011) ‘Endogenous peptide elicitors in higher plants’, Current Opinion in Plant Biology, 14(4), pp. 351–357. doi: 10.1016/j.pbi.2011.05.001.Yamaguchi, Y., Pearce, G. and Ryan, C. A. (2006) ‘The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells’, Proceedings of the National Academy of Sciences of the United States of America, 103(26), pp. 10104–10109. doi: 10.1073/pnas.0603729103.Yáñez-Juárez, M. et al. (2017) ‘Phosphites as alternative for the management of phytopathological problems’, Revista Mexicana de Fitopatología, 36(1), pp. 79–94. doi: 10.18781/R.MEX.FIT.1710-7.Zaynab, M. et al. (2019) ‘Role of primary metabolites in plant defense against pathogens’, Microbial Pathogenesis. Elsevier Ltd, 137(September), p. 103728. doi: 10.1016/j.micpath.2019.103728.Zhang, A. et al. (2012) ‘Modern analytical techniques in metabolomics analysis’, Analyst, 137(2), pp. 293–300. doi: 10.1039/c1an15605eZubiri, A. (2018) ‘Análisis metabolómico no dirigido en dos líneas de conejos seleccionados de forma divergente para grasa intramuscular’, p. 74.Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthiMincienciasEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84346/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020796853.2023.pdf1020796853.2023.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2796201https://repositorio.unal.edu.co/bitstream/unal/84346/2/1020796853.2023.pdf8c5360204fc87c4873a5016370b9d7e2MD52THUMBNAIL1020796853.2023.pdf.jpg1020796853.2023.pdf.jpgGenerated Thumbnailimage/jpeg5430https://repositorio.unal.edu.co/bitstream/unal/84346/3/1020796853.2023.pdf.jpge7067648469099f5477f445094e76d56MD53unal/84346oai:repositorio.unal.edu.co:unal/843462024-08-14 23:42:41.762Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=