Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning
ilustraciones, fotografías, diagramas
- Autores:
-
Quiroga Vergel, Ángela Viviana
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84497
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
COMPUESTOS POLIMERICOS
Polymeric composites
Electrospinning
Solution Blow Spinning
Ibuprofeno
Policaprolactona
Esterilización UV
Ibuprofen
Polycaprolactone
UV Sterilization
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_9d0ee1a236ce0595363f8a776a949bc5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84497 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
dc.title.translated.eng.fl_str_mv |
Fabrication and characterization of two polymeric scaffolds, loaded with potentially bioactive compound, using the electrospinning technique |
title |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
spellingShingle |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería COMPUESTOS POLIMERICOS Polymeric composites Electrospinning Solution Blow Spinning Ibuprofeno Policaprolactona Esterilización UV Ibuprofen Polycaprolactone UV Sterilization |
title_short |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
title_full |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
title_fullStr |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
title_full_unstemmed |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
title_sort |
Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning |
dc.creator.fl_str_mv |
Quiroga Vergel, Ángela Viviana |
dc.contributor.advisor.none.fl_str_mv |
Clavijo-Grimaldo, Dianney Lancheros, Ruth |
dc.contributor.author.none.fl_str_mv |
Quiroga Vergel, Ángela Viviana |
dc.contributor.orcid.spa.fl_str_mv |
Ángela Quiroga [0000000349127451] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería COMPUESTOS POLIMERICOS Polymeric composites Electrospinning Solution Blow Spinning Ibuprofeno Policaprolactona Esterilización UV Ibuprofen Polycaprolactone UV Sterilization |
dc.subject.lemb.spa.fl_str_mv |
COMPUESTOS POLIMERICOS |
dc.subject.lemb.eng.fl_str_mv |
Polymeric composites |
dc.subject.proposal.spa.fl_str_mv |
Electrospinning Solution Blow Spinning Ibuprofeno Policaprolactona Esterilización UV |
dc.subject.proposal.eng.fl_str_mv |
Ibuprofen Polycaprolactone UV Sterilization |
description |
ilustraciones, fotografías, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-08T20:05:04Z |
dc.date.available.none.fl_str_mv |
2023-08-08T20:05:04Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84497 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84497 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] J. Londoño et al., «Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años», Revista Colombiana de Reumatología, vol. 25, n.o 4, pp. 245-256, oct. 2018, doi: 10.1016/j.rcreu.2018.08.003. [2] «WHO | Chronic rheumatic conditions», WHO. http://www.who.int/chp/topics/rheumatic/en/ (accedido 10 de mayo de 2020). [3] D. G. Jones, «Articular Cartilage Degeneration: Etiologic Association With Obesity», Ochsner J, vol. 9, n.o 3, pp. 137-139, 2009. [4] «Osteoarthritis - Treatment and support», nhs.uk, 23 de octubre de 2017. https://www.nhs.uk/conditions/osteoarthritis/treatment/ (accedido 25 de noviembre de 2020). [5] A. J. Kompel, F. W. Roemer, A. M. Murakami, L. E. Diaz, M. D. Crema, y A. Guermazi, «Intra-articular Corticosteroid Injections in the Hip and Knee: Perhaps Not as Safe as We Thought?», Radiology, vol. 293, n.o 3, pp. 656-663, oct. 2019, doi: 10.1148/radiol.2019190341. [6] «Arthritis of the Knee - OrthoInfo - AAOS». https://www.orthoinfo.org/en/diseases--conditions/arthritis-of-the-knee/ (accedido 25 de noviembre de 2020). [7] S. Mahsa Khatami, K. Parivar, A. Naderi Sohi, M. Soleimani, y H. Hanaee-Ahvaz, «Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds», Tissue and Cell, p. 101363, abr. 2020, doi: 10.1016/j.tice.2020.101363. [8] S. Chen, R. Li, X. Li, y J. Xie, «Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine», Advanced Drug Delivery Reviews, vol. 132, pp. 188-213, jul. 2018, doi: 10.1016/j.addr.2018.05.001. [9] K. Andreas et al., «Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering», Acta Biomaterialia, vol. 7, n.o 4, pp. 1485-1495, abr. 2011, doi: 10.1016/j.actbio.2010.12.014. [10] «Articulación de la rodilla», Kenhub. https://www.kenhub.com/es/library/anatomia-es/articulacion-de-la-rodilla (accedido 27 de noviembre de 2022). [11] U. Welsch y J. Sobotta, Histología. Ed. Médica Panamericana, 2008. [12] Stanford Medicine Children’s Health, «Dolor y problemas de rodilla», Stanford Medicine Children’s Health. https://www.stanfordchildrens.org/es/topic/default?id=knee-pain-and-problems-85-P04020 (accedido 27 de noviembre de 2022). [13] M. Ross y W. Pawlina, Histología: Texto y atlas. Correlación con biología molecular y celular., 8a Edición. USA: Wolters Kluwer, 2020. [14] Elsevier, «Tipos de cartílago: características, localización y pericondrio», Elsevier Connect. https://www.elsevier.com/es-es/connect/medicina/edu-histologia-tipos-de-cartilago-caracteristicas-localizacion (accedido 26 de enero de 2023). [15] D. F. Rodríguez-Camacho, J. F. Correa-Mesa, D. F. Rodríguez-Camacho, y J. F. Correa-Mesa, «Biomecánica del cartílago articular y sus respuestas ante la aplicación de las fuerzas», Medicas UIS, vol. 31, n.o 3, pp. 47-56, dic. 2018, doi: 10.18273/revmed.v31n3-2018005. [16] J. Arnal, «Lesion del Cartílago de Rodilla: Tratamientos Sin Prótesis - Juan Arnal: Traumatologo en Madrid», 3 de noviembre de 2018. https://traumatologomadrid.es/lesion-cartilago-rodilla-tratamientos/ (accedido 26 de enero de 2023). [17] «Knee Cartilage Regrowth Options | Damaged Cartilage | GelrinC Implant». https://gelrinc.com/ (accedido 27 de noviembre de 2020). [18] Regentis Biomaterials, «A Prospective, Open-Label, Multicenter Pivotal Study to Evaluate the Safety and Efficacy of GelrinC® for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle: A Comparison to Historical Control Microfracture», clinicaltrials.gov, Clinical trial registration NCT03262909, mar. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT03262909 [19] Vericel Corporation, «A Prospective, Randomized, Open-label, Parallel-group, Multi-center Study to Demonstrate the Superiority of MACI® Versus Arthroscopic Microfracture for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle Including the Trochlea.», clinicaltrials.gov, Clinical trial registration results/NCT00719576, oct. 2019. Accedido: 24 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/results/NCT00719576 [20] «The MACI procedure, step-by-step». https://www.maci.com/healthcare-professionals/about-the-procedure/the-maci-procedure.html (accedido 27 de noviembre de 2020). [21] «MaioRegen». https://www.medandcare.pl/en/products/orthopedics/maioregen-membrane-for-osteochondral-regeneration (accedido 27 de noviembre de 2020). [22] D. C. Crawford, T. M. DeBerardino, y R. J. I. Williams, «NeoCart, an Autologous Cartilage Tissue Implant, Compared with Microfracture for Treatment of Distal Femoral Cartilage Lesions: An FDA Phase-II Prospective, Randomized Clinical Trial After Two Years», JBJS, vol. 94, n.o 11, pp. 979-989, jun. 2012, doi: 10.2106/JBJS.K.00533. [23] Histogenics Corporation, «A Randomized Comparison of NeoCart to Microfracture for the Repair of Articular Cartilage Injuries in the Knee», clinicaltrials.gov, Clinical trial registration NCT01066702, mar. 2019. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01066702 [24] «NOVOCART 3D». https://www.aesculapbiologics.com/en/patients/novocart-3d.html (accedido 27 de noviembre de 2020). [25] Tetec AG, «A Prospective Randomized Controlled Multicenter Phase-III Clinical Study to Evaluate the Safety and Effectiveness of NOVOCART® 3D Plus Compared to the Standard Procedure Microfracture in the Treatment of Articular Cartilage Defects of the Knee», clinicaltrials.gov, Clinical trial registration NCT01656902, ago. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01656902 [26] «Microfracture Technique». https://www.thesteadmanclinic.com/patient-education/knee/microfracture-technique (accedido 7 de diciembre de 2020). [27] «The Lens - Free & Open Patent and Scholarly Search», The Lens - Free & Open Patent and Scholarly Search. https://www.lens.org/lens (accedido 22 de junio de 2020). [28] K. To, B. Zhang, K. Romain, C. Mak, y W. Khan, «Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in vivo Studies», Front. Bioeng. Biotechnol., vol. 7, 2019, doi: 10.3389/fbioe.2019.00314. [29] R. Zhang, J. Ma, J. Han, W. Zhang, y J. Ma, «Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis», Am J Transl Res, vol. 11, n.o 10, pp. 6275-6289, oct. 2019. [30] K. Jain y P. Ravikumar, «Recent advances in treatments of cartilage regeneration for knee osteoarthritis», Journal of Drug Delivery Science and Technology, vol. 60, p. 102014, dic. 2020, doi: 10.1016/j.jddst.2020.102014. [31] A. R. Martín, J. M. Patel, H. M. Zlotnick, J. L. Carey, y R. L. Mauck, «Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations», npj Regen Med, vol. 4, n.o 1, Art. n.o 1, may 2019, doi: 10.1038/s41536-019-0074-7. [32] K.-S. Park et al., «Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis», Acta Biomaterialia, vol. 73, pp. 204-216, jun. 2018, doi: 10.1016/j.actbio.2018.04.022. [33] W. Chen et al., «Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration», Carbohydrate Polymers, vol. 229, p. 115544, feb. 2020, doi: 10.1016/j.carbpol.2019.115544. [34] T. J. Sill y H. A. von Recum, «Electrospun materials for affinity-based engineering and drug delivery», J. Phys.: Conf. Ser., vol. 646, n.o 1, p. 012060, sep. 2015, doi: 10.1088/1742-6596/646/1/012060. [35] B. Ding, X. Wang, y J. Yu, Electrospinning: nanofabrication and applications, 1st edition. Waltham, MA: Elsevier, 2018. [36] S. Thomas, Y. Grohens, y N. Ninan, Eds., Nanotechnology applications for tissue engineering. Oxford, England ; Waltham, Massachusetts: William Andrew, 2015. [37] K. Deshmukh, S. Sankaran, M. Basheer Ahamed, y S. K. Khadheer Pasha, «Biomedical Applications of Electrospun Polymer Composite Nanofibres», en Polymer Nanocomposites in Biomedical Engineering, K. K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, y M. A. S. A. Al-Maadeed, Eds. Cham: Springer International Publishing, 2019, pp. 111-165. doi: 10.1007/978-3-030-04741-2_5. [38] H. A. Strobel, E. I. Qendro, E. Alsberg, y M. W. Rolle, «Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering», Front. Pharmacol., vol. 9, 2018, doi: 10.3389/fphar.2018.01329. [39] G. C. Dadol et al., «Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications», Materials Today Communications, vol. 25, p. 101656, dic. 2020, doi: 10.1016/j.mtcomm.2020.101656. [40] R. Atif et al., «Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results», Polymers, vol. 12, n.o 5, Art. n.o 5, may 2020, doi: 10.3390/polym12051140. [41] K. Czarnecka, M. Wojasiński, T. Ciach, y P. Sajkiewicz, «Solution Blow Spinning of Polycaprolactone—Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment», Materials, vol. 14, n.o 6, p. 1463, mar. 2021, doi: 10.3390/ma14061463. [42] M. A. Lorente, A. Corral, y J. González‐Benito, «PCL /collagen blends prepared by solution blow spinning as potential materials for skin regeneration», J Appl Polym Sci, vol. 138, n.o 21, p. 50493, jun. 2021, doi: 10.1002/app.50493. [43] E. Tomecka, M. Wojasinski, E. Jastrzebska, M. Chudy, T. Ciach, y Z. Brzozka, «Poly( l -lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture», Materials Science and Engineering: C, vol. 75, pp. 305-316, jun. 2017, doi: 10.1016/j.msec.2017.02.055. [44] R. Li et al., «Polycaprolactone/poly(L-lactic acid) composite micro/nanofibrous membrane prepared through solution blow spinning for oil adsorption», Materials Chemistry and Physics, vol. 241, p. 122338, feb. 2020, doi: 10.1016/j.matchemphys.2019.122338. [45] E. N. Yilmaz y D. I. Zeugolis, «Electrospun Polymers in Cartilage Engineering—State of Play», Front. Bioeng. Biotechnol., vol. 8, 2020, doi: 10.3389/fbioe.2020.00077. [46] E. Venugopal, K. S. Sahanand, A. Bhattacharyya, y S. Rajendran, «Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering», Nanomedicine: Nanotechnology, Biology and Medicine, vol. 21, p. 102044, oct. 2019, doi: 10.1016/j.nano.2019.102044. [47] J. C. Silva et al., «Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering», Materials Science and Engineering: C, vol. 107, p. 110291, feb. 2020, doi: 10.1016/j.msec.2019.110291. [48] M. Rafiei, E. Jooybar, M. J. Abdekhodaie, y M. Alvi, «Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery», Materials Science and Engineering: C, vol. 113, p. 110913, ago. 2020, doi: 10.1016/j.msec.2020.110913. [49] T. Jiang et al., «Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway», Biomaterials, vol. 178, pp. 281-292, sep. 2018, doi: 10.1016/j.biomaterials.2018.06.023. [50] Â. Semitela et al., «Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications», J Biomater Appl, vol. 35, n.o 4-5, pp. 471-484, oct. 2020, doi: 10.1177/0885328220940194. [51] O. Urbanek, P. Sajkiewicz, y F. Pierini, «The effect of polarity in the electrospinning process on PCL/chitosan nanofibres’ structure, properties and efficiency of surface modification», Polymer, vol. 124, pp. 168-175, ago. 2017, doi: 10.1016/j.polymer.2017.07.064. [52] Y. Li et al., «Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model», Acta Biomaterialia, vol. 113, pp. 196-209, sep. 2020, doi: 10.1016/j.actbio.2020.06.017. [53] I. R. Calori, G. Braga, P. da C. C. de Jesus, H. Bi, y A. C. Tedesco, «Polymer scaffolds as drug delivery systems», European Polymer Journal, vol. 129, p. 109621, abr. 2020, doi: 10.1016/j.eurpolymj.2020.109621. [54] R. M. Jeuken et al., «Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects», Polymers, vol. 8, n.o 6, Art. n.o 6, jun. 2016, doi: 10.3390/polym8060219. [55] D. Puppi, F. Chiellini, A. M. Piras, y E. Chiellini, «Polymeric materials for bone and cartilage repair», Progress in Polymer Science, vol. 35, n.o 4, pp. 403-440, abr. 2010, doi: 10.1016/j.progpolymsci.2010.01.006. [56] J. M. Patel, K. S. Saleh, J. A. Burdick, y R. L. Mauck, «Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity», Acta Biomaterialia, vol. 93, pp. 222-238, jul. 2019, doi: 10.1016/j.actbio.2019.01.061. [57] H. Li, C. Hu, H. Yu, y C. Chen, «Chitosan composite scaffolds for articular cartilage defect repair: a review», RSC Adv., vol. 8, n.o 7, pp. 3736-3749, ene. 2018, doi: 10.1039/C7RA11593H. [58] F. Comblain, G. Rocasalbas, S. Gauthier, y Y. Henrotin, «Chitosan: A promising polymer for cartilage repair and viscosupplementation», BME, vol. 28, n.o s1, pp. S209-S215, mar. 2017, doi: 10.3233/BME-171643. [59] B. P. Sutherland, «Electrospinning Crosslinked Gelatin, Collagen, and Elastin Nanofibers for Tissue Engineering Applications», Master of Science, Drexel University, 2014. doi: 10.17918/etd-4498. [60] L. Chen, J. Liu, M. Guan, T. Zhou, X. Duan, y Z. Xiang, «Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering», IJN, vol. Volume 15, pp. 6097-6111, ago. 2020, doi: 10.2147/IJN.S249829. [61] D. S. Hungerford y L. C. Jones, «Glucosamine and chondroitin sulfate are effective inthe management of osteoarthritis», The Journal of Arthroplasty, vol. 18, n.o 3, Supplement 1, pp. 5-9, abr. 2003, doi: 10.1054/arth.2003.50067. [62] S. De Vrieze, P. Westbroek, T. Van Camp, y L. Van Langenhove, «Electrospinning of chitosan nanofibrous structures: feasibility study», J Mater Sci, vol. 42, n.o 19, pp. 8029-8034, oct. 2007, doi: 10.1007/s10853-006-1485-6. [63] X. Geng, O. Kwon, y J. Jang, «Electrospinning of chitosan dissolved in concentrated acetic acid solution», Biomaterials, vol. 26, n.o 27, pp. 5427-5432, sep. 2005, doi: 10.1016/j.biomaterials.2005.01.066. [64] H. Homayoni, S. A. H. Ravandi, y M. Valizadeh, «Electrospinning of chitosan nanofibers: Processing optimization», Carbohydrate Polymers, vol. 77, n.o 3, pp. 656-661, jul. 2009, doi: 10.1016/j.carbpol.2009.02.008. [65] P. Sangsanoh, O. Suwantong, A. Neamnark, P. Cheepsunthorn, P. Pavasant, y P. Supaphol, «In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells», European Polymer Journal, vol. 46, n.o 3, pp. 428-440, mar. 2010, doi: 10.1016/j.eurpolymj.2009.10.029. [66] S. Haider y S.-Y. Park, «Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution», Journal of Membrane Science, vol. 328, n.o 1, pp. 90-96, feb. 2009, doi: 10.1016/j.memsci.2008.11.046. [67] S. Surucu y H. Turkoglu Sasmazel, «Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds», International Journal of Biological Macromolecules, vol. 92, pp. 321-328, nov. 2016, doi: 10.1016/j.ijbiomac.2016.07.013. [68] P. Vaidya, T. Grove, K. J. Edgar, y A. S. Goldstein, «Surface grafting of chitosan shell, polycaprolactone core fiber meshes to confer bioactivity», Journal of Bioactive and Compatible Polymers, vol. 30, n.o 3, pp. 258-274, may 2015, doi: 10.1177/0883911515571147. [69] K. Kalwar, W.-X. Sun, D.-L. Li, X.-J. Zhang, y D. Shan, «Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity», Reactive and Functional Polymers, vol. 107, pp. 87-92, oct. 2016, doi: 10.1016/j.reactfunctpolym.2016.08.010. [70] P. Yousefi, G. Dini, B. Movahedi, S. Vaezifar, y M. Mehdikhani, «Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug», Polym. Bull., feb. 2021, doi: 10.1007/s00289-021-03566-4. [71] J. Li, A. He, J. Zheng, y C. C. Han, «Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions», Biomacromolecules, vol. 7, n.o 7, pp. 2243-2247, jul. 2006, doi: 10.1021/bm0603342. [72] A. Laha, C. S. Sharma, y S. Majumdar, «Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release», Materials Today: Proceedings, vol. 3, n.o 10, pp. 3484-3491, 2016, doi: 10.1016/j.matpr.2016.10.031. [73] «Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers», Food Hydrocolloids, vol. 39, pp. 19-26, ago. 2014, doi: 10.1016/j.foodhyd.2013.12.022. [74] Z.-M. Huang, Y. Z. Zhang, S. Ramakrishna, y C. T. Lim, «Electrospinning and mechanical characterization of gelatin nanofibers», Polymer, vol. 45, n.o 15, pp. 5361-5368, jul. 2004, doi: 10.1016/j.polymer.2004.04.005. [75] J. Ratanavaraporn, R. Rangkupan, H. Jeeratawatchai, S. Kanokpanont, y S. Damrongsakkul, «Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats», International Journal of Biological Macromolecules, vol. 47, n.o 4, pp. 431-438, nov. 2010, doi: 10.1016/j.ijbiomac.2010.06.008. [76] M. Lin et al., «Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane», International Journal of Molecular Sciences, vol. 23, n.o 3, Art. n.o 3, ene. 2022, doi: 10.3390/ijms23031895. [77] «Elaboration and Characterization of Coaxial Electrospun Poly(ε‐Caprolactone)/Gelatin Nanofibers for Biomedical Applications», doi: 10.1002/adv.21475. [78] D. Sridharan et al., «In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold», Materials Science and Engineering: C, vol. 118, p. 111354, ene. 2021, doi: 10.1016/j.msec.2020.111354. [79] A. Joshi, Z. Xu, Y. Ikegami, S. Yamane, M. Tsurashima, y H. Ijima, «Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling», International Journal of Biological Macromolecules, vol. 151, pp. 186-192, may 2020, doi: 10.1016/j.ijbiomac.2020.02.163. [80] «About ibuprofen for adults», nhs.uk, 14 de diciembre de 2021. https://www.nhs.uk/medicines/ibuprofen-for-adults/about-ibuprofen-for-adults/ (accedido 28 de enero de 2023). [81] «Ibuprofen Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD». https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details (accedido 28 de enero de 2023). [82] Y. Mao et al., «Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier», Materials Science and Engineering: C, vol. 118, p. 111451, ene. 2021, doi: 10.1016/j.msec.2020.111451. [83] F. Batool et al., «Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study», Materials, vol. 11, n.o 4, Art. n.o 4, abr. 2018, doi: 10.3390/ma11040580. [84] H. Jiang, D. Fang, B. Hsiao, B. Chu, y W. Chen, «Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes», Journal of Biomaterials Science, Polymer Edition, vol. 15, n.o 3, pp. 279-296, ene. 2004, doi: 10.1163/156856204322977184. [85] K. T. Shalumon et al., «Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation», Acta Biomaterialia, vol. 72, pp. 121-136, may 2018, doi: 10.1016/j.actbio.2018.03.044. [86] A. A. M. Shimojo, I. C. P. Rodrigues, A. G. M. Perez, E. M. B. Souto, L. P. Gabriel, y T. Webster, «Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization», en Racing for the Surface: Antimicrobial and Interface Tissue Engineering, B. Li, T. F. Moriarty, T. Webster, y M. Xing, Eds. Cham: Springer International Publishing, 2020, pp. 647-676. doi: 10.1007/978-3-030-34471-9_23. [87] M. P. Paarakh, P. A. Jose, C. Setty, y G. V. Peter, «RELEASE KINETICS – CONCEPTS AND APPLICATIONS». [88] M. L. Bruschi, Ed., «5 - Mathematical models of drug release», en Strategies to Modify the Drug Release from Pharmaceutical Systems, Woodhead Publishing, 2015, pp. 63-86. doi: https://doi.org/10.1016/B978-0-08-100092-2.00005-9. [89] Z. Dai, J. Ronholm, Y. Tian, B. Sethi, y X. Cao, «Sterilization techniques for biodegradable scaffolds in tissue engineering applications», J Tissue Eng, vol. 7, p. 2041731416648810, ene. 2016, doi: 10.1177/2041731416648810. [90] L. Preem et al., «Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems», International Journal of Pharmaceutics, vol. 567, p. 118450, ago. 2019, doi: 10.1016/j.ijpharm.2019.118450. [91] S. Tort, F. T. Demiröz, S. Yıldız, y F. Acartürk, «Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization», J Pharm Innov, vol. 15, n.o 3, pp. 325-332, sep. 2020, doi: 10.1007/s12247-019-09383-7. [92] Y. S. Tapia-Guerrero et al., «Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications», Materials, vol. 13, n.o 5, Art. n.o 5, ene. 2020, doi: 10.3390/ma13051090. [93] R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, y S. Bhaduri, «Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery», Pharmaceutics, vol. 11, n.o 1, Art. n.o 1, ene. 2019, doi: 10.3390/pharmaceutics11010005. [94] A. Yin, R. Luo, J. Li, X. Mo, Y. Wang, y X. Zhang, «Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties», Colloids and Surfaces B: Biointerfaces, vol. 152, pp. 432-439, abr. 2017, doi: 10.1016/j.colsurfb.2017.01.045. [95] B. Zaarour, L. Zhu, y X. Jin, «Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters», Mater. Res. Express, vol. 7, n.o 1, p. 015008, dic. 2019, doi: 10.1088/2053-1591/ab582d. [96] J. Zhang, H. Kitayama, y Y. Gotoh, «High strength ultrafine cellulose fibers generated by solution blow spinning», European Polymer Journal, vol. 125, p. 109513, feb. 2020, doi: 10.1016/j.eurpolymj.2020.109513. [97] Quiroga-Vergel Angela, Clavijo-Grimaldo Dianney, y Casadiego-Torrado Ciro, «Characterization and Evaluation of Solvent Retention in Polycaprolactone Nano/Microfibers Obtained by Electrospinning and Solution Blow Spinning», Chemical Engineering Transactions, vol. 93, pp. 115-120, jul. 2022, doi: 10.3303/CET2293020. [98] R. Wright y M. Blitshteyn, «Method and apparatus for measuring contact angles of liquid droplets on substrate surfaces», US5268733A, 7 de diciembre de 1993 Accedido: 2 de enero de 2023. [En línea]. Disponible en: https://patents.google.com/patent/US5268733A/en?oq=5268733 [99] Thermo Fisher Scientific, «Spectrophotometric Analysis of Ibuprofen According to USP and EP Monographs», 2020. [100] «PBS (Phosphate Buffered Saline) (1X, pH 7.4) Preparation and Recipe | AAT Bioquest». https://www.aatbio.com/resources/buffer-preparations-and-recipes/pbs-phosphate-buffered-saline (accedido 3 de enero de 2023). [101] «Phosphate-buffered saline (PBS)», Cold Spring Harb Protoc, vol. 2006, n.o 1, p. pdb.rec8247, ene. 2006, doi: 10.1101/pdb.rec8247. [102] «Phosphate buffered saline powder, pH 7.4, for preparing 1 L solutions | Sigma-Aldrich». https://www.sigmaaldrich.com/catalog/product/sigma/p3813?lang=es®ion=CO (accedido 7 de diciembre de 2020). [103] I. Cantón et al., «Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration», Biotechnol Bioeng, vol. 105, n.o 2, pp. 396-408, feb. 2010, doi: 10.1002/bit.22530. [104] M. Audumbar, J. Santosh, y T. Ashpak, «Development and Validation of UV Spectrophotometric Estimation of Ibuprofen in Bulk and Tablet Dosage Form Using Area under Curve Method», vol. 2015, n.o 2, 2015. [105] A. Heimowska, M. Morawska, y A. Bocho-Janiszewska, «Biodegradation of poly(ε-caprolactone) in natural water environments», Polish Journal of Chemical Technology, vol. 19, n.o 1, pp. 120-126, mar. 2017, doi: 10.1515/pjct-2017-0017. [106] N. B. Erdal, G. A. Lando, A. Yadav, R. K. Srivastava, y M. Hakkarainen, «Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating», Polymers, vol. 12, n.o 8, Art. n.o 8, ago. 2020, doi: 10.3390/polym12081849. [107] A. Guarnieri et al., «Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens», Sci Rep, vol. 12, n.o 1, Art. n.o 1, may 2022, doi: 10.1038/s41598-022-12150-3. [108] K. Sun y Z. H. Li, «Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning», Express Polym. Lett., vol. 5, n.o 4, pp. 342-361, 2011, doi: 10.3144/expresspolymlett.2011.34. [109] «Q3C — Tables and List Guidance for Industry». [110] S. R. Gomes et al., «In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study», Materials Science and Engineering: C, vol. 46, pp. 348-358, ene. 2015, doi: 10.1016/j.msec.2014.10.051. [111] E. Saatcioglu et al., «Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration», European Polymer Journal, vol. 148, p. 110357, abr. 2021, doi: 10.1016/j.eurpolymj.2021.110357. [112] L. Cao, F. Zhang, Q. Wang, y X. Wu, «Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering», Materials Science and Engineering: C, vol. 79, pp. 697-701, oct. 2017, doi: 10.1016/j.msec.2017.05.056. [113] John Wiley & Sons, «SpectraBase Compound ID=DReJiCKiDTF SpectraBase Spectrum ID=FdPg9tn4xup», https://spectrabase.com/spectrum/FdPg9tn4xup, 23 de enero de 2022. https://spectrabase.com/spectrum/FdPg9tn4xup (accedido 23 de enero de 2022). [114] «Gelatine - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/FXP6FivXBOY (accedido 10 de enero de 2023). [115] M. Gong et al., «Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum», Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 201-209, oct. 2018, doi: 10.1016/j.colsurfb.2018.06.012. [116] J. W. Drexler y H. M. Powell, «Regulation of electrospun scaffold stiffness via coaxial core diameter», Acta Biomaterialia, vol. 7, n.o 3, pp. 1133-1139, mar. 2011, doi: 10.1016/j.actbio.2010.10.025. [117] Sigma Aldrich, «Product Information Gelatin», 2020. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/333/625/g9382pis.pdf (accedido 12 de enero de 2023). [118] S. Gautam, A. K. Dinda, y N. C. Mishra, «Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method», Materials Science and Engineering: C, vol. 33, n.o 3, pp. 1228-1235, abr. 2013, doi: 10.1016/j.msec.2012.12.015. [119] M. Adeli-Sardou, M. M. Yaghoobi, M. Torkzadeh-Mahani, y M. Dodel, «Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration», International Journal of Biological Macromolecules, vol. 124, pp. 478-491, mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.237. [120] H. Alissa Alam, A. D. Dalgic, A. Tezcaner, C. Ozen, y D. Keskin, «A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering», International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 69, n.o 6, pp. 339-350, abr. 2020, doi: 10.1080/00914037.2019.1581198. [121] R. Vasireddi et al., «Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle», Sci Rep, vol. 9, n.o 1, Art. n.o 1, oct. 2019, doi: 10.1038/s41598-019-50477-6. [122] D. Clavijo-Grimaldo, C. A. Casadiego-Torrado, J. Villalobos-Elías, A. Ocampo-Páramo, y M. Torres-Parada, «Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used», Membranes, vol. 12, n.o 6, Art. n.o 6, jun. 2022, doi: 10.3390/membranes12060563. [123] W. Tutak, G. Gelven, C. Markle, y X.-L. Palmer, «Rapid polymer fiber airbrushing: Impact of a device design on the fiber fabrication and matrix quality», J. Appl. Polym. Sci., vol. 132, n.o 47, p. n/a-n/a, dic. 2015, doi: 10.1002/app.42813. [124] Clavijo-Grimaldo Dianney, Ponce-Zapata Nubia, y Casadiego-Torrado Ciro, «Control of Bacterial Proliferation and Formation of Biofilm in Membranes for Food Packaging Manufactured by Electrospinning», Chemical Engineering Transactions, vol. 75, pp. 241-246, jun. 2019, doi: 10.3303/CET1975041. [125] A. A. Rakina et al., «Ibuprofen controlled release from E-beam treated polycaprolactone electrospun scaffolds», J. Phys.: Conf. Ser., vol. 1115, p. 032051, nov. 2018, doi: 10.1088/1742-6596/1115/3/032051. [126] J. Horakova et al., «Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone», ACS Omega, vol. 5, n.o 15, pp. 8885-8892, abr. 2020, doi: 10.1021/acsomega.0c00503. [127] COBLENTZ SOCIETY, «Trichloromethane», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022). [128] COBLENTZ SOCIETY, «Isopropyl Alcohol», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022). [129] «Ibuprofen - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/AYjMTFKYSNo (accedido 13 de enero de 2023). [130] M. Bartnikowski, T. R. Dargaville, S. Ivanovski, y D. W. Hutmacher, «Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment», Progress in Polymer Science, vol. 96, pp. 1-20, sep. 2019, doi: 10.1016/j.progpolymsci.2019.05.004. [131] «Polymers | Free Full-Text | Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating». https://www.mdpi.com/2073-4360/12/8/1849 (accedido 13 de enero de 2023). [132] L. A. Can-Herrera, A. I. Oliva, M. a. A. Dzul-Cervantes, O. F. Pacheco-Salazar, y J. M. Cervantes-Uc, «Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage», Polymers, vol. 13, n.o 4, Art. n.o 4, ene. 2021, doi: 10.3390/polym13040662. [133] Y. Shi, Z. Wei, H. Zhao, T. Liu, A. Dong, y J. Zhang, «Electrospinning of Ibuprofen-Loaded Composite Nanofibers for Improving the Performances of Transdermal Patches», j nanosci nanotechnol, vol. 13, n.o 6, pp. 3855-3863, jun. 2013, doi: 10.1166/jnn.2013.7157. [134] D. Yixiang, T. Yong, S. Liao, C. K. Chan, y S. Ramakrishna, «Degradation of Electrospun Nanofiber Scaffold by Short Wave Length Ultraviolet Radiation Treatment and Its Potential Applications in Tissue Engineering», https://home.liebertpub.com/tea, 4 de agosto de 2008. https://www.liebertpub.com/doi/10.1089/ten.tea.2007.0395 (accedido 14 de enero de 2023). [135] Y. Bai et al., «Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites», Polymer Testing, vol. 93, p. 106872, ene. 2021, doi: 10.1016/j.polymertesting.2020.106872. [136] P. A. Christensen, T. A. Egerton, S. M. Martins-Franchetti, C. Jin, y J. R. White, «Photodegradation of polycaprolactone/poly(vinyl chloride) blend», Polymer Degradation and Stability, vol. 93, n.o 1, pp. 305-309, ene. 2008, doi: 10.1016/j.polymdegradstab.2007.08.008. [137] M. M. Machado-Paula et al., «A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization», Materials Science and Engineering: C, vol. 111, p. 110706, jun. 2020, doi: 10.1016/j.msec.2020.110706. [138] T. Riaz, N. Gull, A. Islam, M. R. Dilshad, L. I. Atanase, y C. Delaite, «Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen», Chem. Pap., ene. 2023, doi: 10.1007/s11696-022-02655-6. [139] T. Riaz, N. Khenoussi, D. M. Rata, L. I. Atanase, D. C. Adolphe, y C. Delaite, «Blend Electrospinning of Poly(Ɛ-Caprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings», Autex Research Journal, vol. {"content-type":"ahead-of-print","content":0}, n.o 0, sep. 2021, doi: 10.2478/aut-2021-0017. [140] J. R. Dias, A. Sousa, A. Augusto, P. J. Bártolo, y P. L. Granja, «Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study», Polymers, vol. 14, n.o 16, Art. n.o 16, ene. 2022, doi: 10.3390/polym14163397. [141] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, y S. Ramakrishna, «A review on polymer nanofibers by electrospinning and their applications in nanocomposites», Composites Science and Technology, vol. 63, n.o 15, pp. 2223-2253, nov. 2003, doi: 10.1016/S0266-3538(03)00178-7. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 114 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84497/2/Tesis%20de%20Maestria%20-%20%c3%81ngela%20Quiroga%20-%201032466395.pdf https://repositorio.unal.edu.co/bitstream/unal/84497/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84497/3/Tesis%20de%20Maestria%20-%20%c3%81ngela%20Quiroga%20-%201032466395.pdf.jpg |
bitstream.checksum.fl_str_mv |
f2205ef541b828144b5189e4d5806697 eb34b1cf90b7e1103fc9dfd26be24b4a 7b0a0feaad8ab798fdbd0e86dc40c128 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089589694922752 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo-Grimaldo, Dianney57bf7d1e03e2a7e3c2ac8a45df1a68f0Lancheros, Ruth156ee63f628309463773b9f2910f4538Quiroga Vergel, Ángela Vivianaffd8d83d197420d1a0a6abbe984c4808Ángela Quiroga [0000000349127451]2023-08-08T20:05:04Z2023-08-08T20:05:04Z2023https://repositorio.unal.edu.co/handle/unal/84497Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramasAntiinflamatorios no esteroideos como el ibuprofeno (IBU), suelen ser administrados por vía oral para tratar enfermedades articulares. Sin embargo, presentan efectos secundarios a largo plazo como riesgo de infarto, accidente cerebrovascular, insuficiencia renal, sangrado gastrointestinal, entre otros. En etapas avanzadas se presentan daños en el cartílago, por lo que las últimas investigaciones se han orientado a dispositivos (scaffold) que puedan reparar este tejido. Esta tesis pretende contribuir a estos nuevos métodos, con scaffolds que tengan el poder de coadyuvar en el tratamiento de estas enfermedades, disminuir el dolor y reducir los efectos segundarios. Para esto se elaboran dos scaffold de PCL cargados con 10% de IBU y se evalúa la influencia de la técnica de fabricación del scaffold, electrospinning (SE) y solution blow spinning (SBS). Se caracterizaron por microscopía SEM, FTIR, tensión, ángulo de contacto, isoterma-BET y DSC. También fue analizada la cinética de liberación de IBU, donde se obtuvo una liberación rápida del fármaco, debido al pequeño tamaño de la molécula a liberar y la porosidad interna de las fibras. Los resultados de la caracterización mostraron que, con la incorporación de IBU se obtienen fibras de menor diámetro y scaffold con mayor resistencia a la tensión y fragilidad. Por otro lado, el proceso de esterilización genera cambios morfológicos en las fibras, aumentando la cristalinidad y suprimiendo la hidrofobicidad de PCL, lo que favorecería la biocompatibilidad del scaffold. SBS se destacó por presentar una liberación más controlada y SE por producir fibras más homogéneas y con mejores propiedades mecánicas. (Texto tomado de la fuente)Non-steroidal anti-inflammatory drugs such as ibuprofen (IBU) are usually administered orally to treat joint diseases. However, they have long-term side effects such as the risk of heart attack, stroke, kidney failure, gastrointestinal bleeding, among others. In advanced stages, cartilage damage occurs, so the latest research has focused on devices (scaffolds) that can repair this tissue. This thesis aims to contribute to these new methods, with scaffolds that be able to assist in the treatment of these diseases, reduce pain and side effects. Hence, two PCL scaffolds loaded with 10% IBU are made and the influence of the scaffold manufacturing technique, electrospinning (SE) and solution blow spinning (SBS), is evaluated. They were characterized by SEM microscopy, FTIR, strain, contact angle, isotherm-BET, and DSC. The release kinetics of IBU was also analyzed, where a rapid release of the drug was obtained, due to the small size of the molecule to be released and the internal porosity of the fibers. The results of the characterization reveal that with the incorporation of IBU fibers of smaller diameter and scaffold with higher resistance to tension and brittleness are obtained. On the other hand, the sterilization process generates morphological changes in the fibers, increasing the crystallinity and suppressing the hydrophobicity of PCL, creasing the biocompatibility of the scaffold. SBS stands out for a more controlled release and SE for producing more homogeneous fibers with better mechanical properties.MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales Poliméricosxix, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCOMPUESTOS POLIMERICOSPolymeric compositesElectrospinningSolution Blow SpinningIbuprofenoPolicaprolactonaEsterilización UVIbuprofenPolycaprolactoneUV SterilizationObtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinningFabrication and characterization of two polymeric scaffolds, loaded with potentially bioactive compound, using the electrospinning techniqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] J. Londoño et al., «Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años», Revista Colombiana de Reumatología, vol. 25, n.o 4, pp. 245-256, oct. 2018, doi: 10.1016/j.rcreu.2018.08.003.[2] «WHO | Chronic rheumatic conditions», WHO. http://www.who.int/chp/topics/rheumatic/en/ (accedido 10 de mayo de 2020).[3] D. G. Jones, «Articular Cartilage Degeneration: Etiologic Association With Obesity», Ochsner J, vol. 9, n.o 3, pp. 137-139, 2009.[4] «Osteoarthritis - Treatment and support», nhs.uk, 23 de octubre de 2017. https://www.nhs.uk/conditions/osteoarthritis/treatment/ (accedido 25 de noviembre de 2020).[5] A. J. Kompel, F. W. Roemer, A. M. Murakami, L. E. Diaz, M. D. Crema, y A. Guermazi, «Intra-articular Corticosteroid Injections in the Hip and Knee: Perhaps Not as Safe as We Thought?», Radiology, vol. 293, n.o 3, pp. 656-663, oct. 2019, doi: 10.1148/radiol.2019190341.[6] «Arthritis of the Knee - OrthoInfo - AAOS». https://www.orthoinfo.org/en/diseases--conditions/arthritis-of-the-knee/ (accedido 25 de noviembre de 2020).[7] S. Mahsa Khatami, K. Parivar, A. Naderi Sohi, M. Soleimani, y H. Hanaee-Ahvaz, «Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds», Tissue and Cell, p. 101363, abr. 2020, doi: 10.1016/j.tice.2020.101363.[8] S. Chen, R. Li, X. Li, y J. Xie, «Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine», Advanced Drug Delivery Reviews, vol. 132, pp. 188-213, jul. 2018, doi: 10.1016/j.addr.2018.05.001.[9] K. Andreas et al., «Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering», Acta Biomaterialia, vol. 7, n.o 4, pp. 1485-1495, abr. 2011, doi: 10.1016/j.actbio.2010.12.014.[10] «Articulación de la rodilla», Kenhub. https://www.kenhub.com/es/library/anatomia-es/articulacion-de-la-rodilla (accedido 27 de noviembre de 2022).[11] U. Welsch y J. Sobotta, Histología. Ed. Médica Panamericana, 2008.[12] Stanford Medicine Children’s Health, «Dolor y problemas de rodilla», Stanford Medicine Children’s Health. https://www.stanfordchildrens.org/es/topic/default?id=knee-pain-and-problems-85-P04020 (accedido 27 de noviembre de 2022).[13] M. Ross y W. Pawlina, Histología: Texto y atlas. Correlación con biología molecular y celular., 8a Edición. USA: Wolters Kluwer, 2020.[14] Elsevier, «Tipos de cartílago: características, localización y pericondrio», Elsevier Connect. https://www.elsevier.com/es-es/connect/medicina/edu-histologia-tipos-de-cartilago-caracteristicas-localizacion (accedido 26 de enero de 2023).[15] D. F. Rodríguez-Camacho, J. F. Correa-Mesa, D. F. Rodríguez-Camacho, y J. F. Correa-Mesa, «Biomecánica del cartílago articular y sus respuestas ante la aplicación de las fuerzas», Medicas UIS, vol. 31, n.o 3, pp. 47-56, dic. 2018, doi: 10.18273/revmed.v31n3-2018005.[16] J. Arnal, «Lesion del Cartílago de Rodilla: Tratamientos Sin Prótesis - Juan Arnal: Traumatologo en Madrid», 3 de noviembre de 2018. https://traumatologomadrid.es/lesion-cartilago-rodilla-tratamientos/ (accedido 26 de enero de 2023).[17] «Knee Cartilage Regrowth Options | Damaged Cartilage | GelrinC Implant». https://gelrinc.com/ (accedido 27 de noviembre de 2020).[18] Regentis Biomaterials, «A Prospective, Open-Label, Multicenter Pivotal Study to Evaluate the Safety and Efficacy of GelrinC® for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle: A Comparison to Historical Control Microfracture», clinicaltrials.gov, Clinical trial registration NCT03262909, mar. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT03262909[19] Vericel Corporation, «A Prospective, Randomized, Open-label, Parallel-group, Multi-center Study to Demonstrate the Superiority of MACI® Versus Arthroscopic Microfracture for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle Including the Trochlea.», clinicaltrials.gov, Clinical trial registration results/NCT00719576, oct. 2019. Accedido: 24 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/results/NCT00719576[20] «The MACI procedure, step-by-step». https://www.maci.com/healthcare-professionals/about-the-procedure/the-maci-procedure.html (accedido 27 de noviembre de 2020).[21] «MaioRegen». https://www.medandcare.pl/en/products/orthopedics/maioregen-membrane-for-osteochondral-regeneration (accedido 27 de noviembre de 2020).[22] D. C. Crawford, T. M. DeBerardino, y R. J. I. Williams, «NeoCart, an Autologous Cartilage Tissue Implant, Compared with Microfracture for Treatment of Distal Femoral Cartilage Lesions: An FDA Phase-II Prospective, Randomized Clinical Trial After Two Years», JBJS, vol. 94, n.o 11, pp. 979-989, jun. 2012, doi: 10.2106/JBJS.K.00533.[23] Histogenics Corporation, «A Randomized Comparison of NeoCart to Microfracture for the Repair of Articular Cartilage Injuries in the Knee», clinicaltrials.gov, Clinical trial registration NCT01066702, mar. 2019. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01066702[24] «NOVOCART 3D». https://www.aesculapbiologics.com/en/patients/novocart-3d.html (accedido 27 de noviembre de 2020).[25] Tetec AG, «A Prospective Randomized Controlled Multicenter Phase-III Clinical Study to Evaluate the Safety and Effectiveness of NOVOCART® 3D Plus Compared to the Standard Procedure Microfracture in the Treatment of Articular Cartilage Defects of the Knee», clinicaltrials.gov, Clinical trial registration NCT01656902, ago. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01656902[26] «Microfracture Technique». https://www.thesteadmanclinic.com/patient-education/knee/microfracture-technique (accedido 7 de diciembre de 2020).[27] «The Lens - Free & Open Patent and Scholarly Search», The Lens - Free & Open Patent and Scholarly Search. https://www.lens.org/lens (accedido 22 de junio de 2020).[28] K. To, B. Zhang, K. Romain, C. Mak, y W. Khan, «Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in vivo Studies», Front. Bioeng. Biotechnol., vol. 7, 2019, doi: 10.3389/fbioe.2019.00314.[29] R. Zhang, J. Ma, J. Han, W. Zhang, y J. Ma, «Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis», Am J Transl Res, vol. 11, n.o 10, pp. 6275-6289, oct. 2019.[30] K. Jain y P. Ravikumar, «Recent advances in treatments of cartilage regeneration for knee osteoarthritis», Journal of Drug Delivery Science and Technology, vol. 60, p. 102014, dic. 2020, doi: 10.1016/j.jddst.2020.102014.[31] A. R. Martín, J. M. Patel, H. M. Zlotnick, J. L. Carey, y R. L. Mauck, «Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations», npj Regen Med, vol. 4, n.o 1, Art. n.o 1, may 2019, doi: 10.1038/s41536-019-0074-7.[32] K.-S. Park et al., «Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis», Acta Biomaterialia, vol. 73, pp. 204-216, jun. 2018, doi: 10.1016/j.actbio.2018.04.022.[33] W. Chen et al., «Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration», Carbohydrate Polymers, vol. 229, p. 115544, feb. 2020, doi: 10.1016/j.carbpol.2019.115544.[34] T. J. Sill y H. A. von Recum, «Electrospun materials for affinity-based engineering and drug delivery», J. Phys.: Conf. Ser., vol. 646, n.o 1, p. 012060, sep. 2015, doi: 10.1088/1742-6596/646/1/012060.[35] B. Ding, X. Wang, y J. Yu, Electrospinning: nanofabrication and applications, 1st edition. Waltham, MA: Elsevier, 2018.[36] S. Thomas, Y. Grohens, y N. Ninan, Eds., Nanotechnology applications for tissue engineering. Oxford, England ; Waltham, Massachusetts: William Andrew, 2015.[37] K. Deshmukh, S. Sankaran, M. Basheer Ahamed, y S. K. Khadheer Pasha, «Biomedical Applications of Electrospun Polymer Composite Nanofibres», en Polymer Nanocomposites in Biomedical Engineering, K. K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, y M. A. S. A. Al-Maadeed, Eds. Cham: Springer International Publishing, 2019, pp. 111-165. doi: 10.1007/978-3-030-04741-2_5.[38] H. A. Strobel, E. I. Qendro, E. Alsberg, y M. W. Rolle, «Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering», Front. Pharmacol., vol. 9, 2018, doi: 10.3389/fphar.2018.01329.[39] G. C. Dadol et al., «Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications», Materials Today Communications, vol. 25, p. 101656, dic. 2020, doi: 10.1016/j.mtcomm.2020.101656.[40] R. Atif et al., «Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results», Polymers, vol. 12, n.o 5, Art. n.o 5, may 2020, doi: 10.3390/polym12051140.[41] K. Czarnecka, M. Wojasiński, T. Ciach, y P. Sajkiewicz, «Solution Blow Spinning of Polycaprolactone—Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment», Materials, vol. 14, n.o 6, p. 1463, mar. 2021, doi: 10.3390/ma14061463.[42] M. A. Lorente, A. Corral, y J. González‐Benito, «PCL /collagen blends prepared by solution blow spinning as potential materials for skin regeneration», J Appl Polym Sci, vol. 138, n.o 21, p. 50493, jun. 2021, doi: 10.1002/app.50493.[43] E. Tomecka, M. Wojasinski, E. Jastrzebska, M. Chudy, T. Ciach, y Z. Brzozka, «Poly( l -lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture», Materials Science and Engineering: C, vol. 75, pp. 305-316, jun. 2017, doi: 10.1016/j.msec.2017.02.055.[44] R. Li et al., «Polycaprolactone/poly(L-lactic acid) composite micro/nanofibrous membrane prepared through solution blow spinning for oil adsorption», Materials Chemistry and Physics, vol. 241, p. 122338, feb. 2020, doi: 10.1016/j.matchemphys.2019.122338.[45] E. N. Yilmaz y D. I. Zeugolis, «Electrospun Polymers in Cartilage Engineering—State of Play», Front. Bioeng. Biotechnol., vol. 8, 2020, doi: 10.3389/fbioe.2020.00077.[46] E. Venugopal, K. S. Sahanand, A. Bhattacharyya, y S. Rajendran, «Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering», Nanomedicine: Nanotechnology, Biology and Medicine, vol. 21, p. 102044, oct. 2019, doi: 10.1016/j.nano.2019.102044.[47] J. C. Silva et al., «Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering», Materials Science and Engineering: C, vol. 107, p. 110291, feb. 2020, doi: 10.1016/j.msec.2019.110291.[48] M. Rafiei, E. Jooybar, M. J. Abdekhodaie, y M. Alvi, «Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery», Materials Science and Engineering: C, vol. 113, p. 110913, ago. 2020, doi: 10.1016/j.msec.2020.110913.[49] T. Jiang et al., «Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway», Biomaterials, vol. 178, pp. 281-292, sep. 2018, doi: 10.1016/j.biomaterials.2018.06.023.[50] Â. Semitela et al., «Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications», J Biomater Appl, vol. 35, n.o 4-5, pp. 471-484, oct. 2020, doi: 10.1177/0885328220940194.[51] O. Urbanek, P. Sajkiewicz, y F. Pierini, «The effect of polarity in the electrospinning process on PCL/chitosan nanofibres’ structure, properties and efficiency of surface modification», Polymer, vol. 124, pp. 168-175, ago. 2017, doi: 10.1016/j.polymer.2017.07.064.[52] Y. Li et al., «Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model», Acta Biomaterialia, vol. 113, pp. 196-209, sep. 2020, doi: 10.1016/j.actbio.2020.06.017.[53] I. R. Calori, G. Braga, P. da C. C. de Jesus, H. Bi, y A. C. Tedesco, «Polymer scaffolds as drug delivery systems», European Polymer Journal, vol. 129, p. 109621, abr. 2020, doi: 10.1016/j.eurpolymj.2020.109621.[54] R. M. Jeuken et al., «Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects», Polymers, vol. 8, n.o 6, Art. n.o 6, jun. 2016, doi: 10.3390/polym8060219.[55] D. Puppi, F. Chiellini, A. M. Piras, y E. Chiellini, «Polymeric materials for bone and cartilage repair», Progress in Polymer Science, vol. 35, n.o 4, pp. 403-440, abr. 2010, doi: 10.1016/j.progpolymsci.2010.01.006.[56] J. M. Patel, K. S. Saleh, J. A. Burdick, y R. L. Mauck, «Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity», Acta Biomaterialia, vol. 93, pp. 222-238, jul. 2019, doi: 10.1016/j.actbio.2019.01.061.[57] H. Li, C. Hu, H. Yu, y C. Chen, «Chitosan composite scaffolds for articular cartilage defect repair: a review», RSC Adv., vol. 8, n.o 7, pp. 3736-3749, ene. 2018, doi: 10.1039/C7RA11593H.[58] F. Comblain, G. Rocasalbas, S. Gauthier, y Y. Henrotin, «Chitosan: A promising polymer for cartilage repair and viscosupplementation», BME, vol. 28, n.o s1, pp. S209-S215, mar. 2017, doi: 10.3233/BME-171643.[59] B. P. Sutherland, «Electrospinning Crosslinked Gelatin, Collagen, and Elastin Nanofibers for Tissue Engineering Applications», Master of Science, Drexel University, 2014. doi: 10.17918/etd-4498.[60] L. Chen, J. Liu, M. Guan, T. Zhou, X. Duan, y Z. Xiang, «Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering», IJN, vol. Volume 15, pp. 6097-6111, ago. 2020, doi: 10.2147/IJN.S249829.[61] D. S. Hungerford y L. C. Jones, «Glucosamine and chondroitin sulfate are effective inthe management of osteoarthritis», The Journal of Arthroplasty, vol. 18, n.o 3, Supplement 1, pp. 5-9, abr. 2003, doi: 10.1054/arth.2003.50067.[62] S. De Vrieze, P. Westbroek, T. Van Camp, y L. Van Langenhove, «Electrospinning of chitosan nanofibrous structures: feasibility study», J Mater Sci, vol. 42, n.o 19, pp. 8029-8034, oct. 2007, doi: 10.1007/s10853-006-1485-6.[63] X. Geng, O. Kwon, y J. Jang, «Electrospinning of chitosan dissolved in concentrated acetic acid solution», Biomaterials, vol. 26, n.o 27, pp. 5427-5432, sep. 2005, doi: 10.1016/j.biomaterials.2005.01.066.[64] H. Homayoni, S. A. H. Ravandi, y M. Valizadeh, «Electrospinning of chitosan nanofibers: Processing optimization», Carbohydrate Polymers, vol. 77, n.o 3, pp. 656-661, jul. 2009, doi: 10.1016/j.carbpol.2009.02.008.[65] P. Sangsanoh, O. Suwantong, A. Neamnark, P. Cheepsunthorn, P. Pavasant, y P. Supaphol, «In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells», European Polymer Journal, vol. 46, n.o 3, pp. 428-440, mar. 2010, doi: 10.1016/j.eurpolymj.2009.10.029.[66] S. Haider y S.-Y. Park, «Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution», Journal of Membrane Science, vol. 328, n.o 1, pp. 90-96, feb. 2009, doi: 10.1016/j.memsci.2008.11.046.[67] S. Surucu y H. Turkoglu Sasmazel, «Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds», International Journal of Biological Macromolecules, vol. 92, pp. 321-328, nov. 2016, doi: 10.1016/j.ijbiomac.2016.07.013.[68] P. Vaidya, T. Grove, K. J. Edgar, y A. S. Goldstein, «Surface grafting of chitosan shell, polycaprolactone core fiber meshes to confer bioactivity», Journal of Bioactive and Compatible Polymers, vol. 30, n.o 3, pp. 258-274, may 2015, doi: 10.1177/0883911515571147.[69] K. Kalwar, W.-X. Sun, D.-L. Li, X.-J. Zhang, y D. Shan, «Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity», Reactive and Functional Polymers, vol. 107, pp. 87-92, oct. 2016, doi: 10.1016/j.reactfunctpolym.2016.08.010.[70] P. Yousefi, G. Dini, B. Movahedi, S. Vaezifar, y M. Mehdikhani, «Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug», Polym. Bull., feb. 2021, doi: 10.1007/s00289-021-03566-4.[71] J. Li, A. He, J. Zheng, y C. C. Han, «Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions», Biomacromolecules, vol. 7, n.o 7, pp. 2243-2247, jul. 2006, doi: 10.1021/bm0603342.[72] A. Laha, C. S. Sharma, y S. Majumdar, «Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release», Materials Today: Proceedings, vol. 3, n.o 10, pp. 3484-3491, 2016, doi: 10.1016/j.matpr.2016.10.031.[73] «Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers», Food Hydrocolloids, vol. 39, pp. 19-26, ago. 2014, doi: 10.1016/j.foodhyd.2013.12.022.[74] Z.-M. Huang, Y. Z. Zhang, S. Ramakrishna, y C. T. Lim, «Electrospinning and mechanical characterization of gelatin nanofibers», Polymer, vol. 45, n.o 15, pp. 5361-5368, jul. 2004, doi: 10.1016/j.polymer.2004.04.005.[75] J. Ratanavaraporn, R. Rangkupan, H. Jeeratawatchai, S. Kanokpanont, y S. Damrongsakkul, «Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats», International Journal of Biological Macromolecules, vol. 47, n.o 4, pp. 431-438, nov. 2010, doi: 10.1016/j.ijbiomac.2010.06.008.[76] M. Lin et al., «Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane», International Journal of Molecular Sciences, vol. 23, n.o 3, Art. n.o 3, ene. 2022, doi: 10.3390/ijms23031895.[77] «Elaboration and Characterization of Coaxial Electrospun Poly(ε‐Caprolactone)/Gelatin Nanofibers for Biomedical Applications», doi: 10.1002/adv.21475.[78] D. Sridharan et al., «In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold», Materials Science and Engineering: C, vol. 118, p. 111354, ene. 2021, doi: 10.1016/j.msec.2020.111354.[79] A. Joshi, Z. Xu, Y. Ikegami, S. Yamane, M. Tsurashima, y H. Ijima, «Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling», International Journal of Biological Macromolecules, vol. 151, pp. 186-192, may 2020, doi: 10.1016/j.ijbiomac.2020.02.163.[80] «About ibuprofen for adults», nhs.uk, 14 de diciembre de 2021. https://www.nhs.uk/medicines/ibuprofen-for-adults/about-ibuprofen-for-adults/ (accedido 28 de enero de 2023).[81] «Ibuprofen Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD». https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details (accedido 28 de enero de 2023).[82] Y. Mao et al., «Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier», Materials Science and Engineering: C, vol. 118, p. 111451, ene. 2021, doi: 10.1016/j.msec.2020.111451.[83] F. Batool et al., «Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study», Materials, vol. 11, n.o 4, Art. n.o 4, abr. 2018, doi: 10.3390/ma11040580.[84] H. Jiang, D. Fang, B. Hsiao, B. Chu, y W. Chen, «Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes», Journal of Biomaterials Science, Polymer Edition, vol. 15, n.o 3, pp. 279-296, ene. 2004, doi: 10.1163/156856204322977184.[85] K. T. Shalumon et al., «Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation», Acta Biomaterialia, vol. 72, pp. 121-136, may 2018, doi: 10.1016/j.actbio.2018.03.044.[86] A. A. M. Shimojo, I. C. P. Rodrigues, A. G. M. Perez, E. M. B. Souto, L. P. Gabriel, y T. Webster, «Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization», en Racing for the Surface: Antimicrobial and Interface Tissue Engineering, B. Li, T. F. Moriarty, T. Webster, y M. Xing, Eds. Cham: Springer International Publishing, 2020, pp. 647-676. doi: 10.1007/978-3-030-34471-9_23.[87] M. P. Paarakh, P. A. Jose, C. Setty, y G. V. Peter, «RELEASE KINETICS – CONCEPTS AND APPLICATIONS».[88] M. L. Bruschi, Ed., «5 - Mathematical models of drug release», en Strategies to Modify the Drug Release from Pharmaceutical Systems, Woodhead Publishing, 2015, pp. 63-86. doi: https://doi.org/10.1016/B978-0-08-100092-2.00005-9.[89] Z. Dai, J. Ronholm, Y. Tian, B. Sethi, y X. Cao, «Sterilization techniques for biodegradable scaffolds in tissue engineering applications», J Tissue Eng, vol. 7, p. 2041731416648810, ene. 2016, doi: 10.1177/2041731416648810.[90] L. Preem et al., «Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems», International Journal of Pharmaceutics, vol. 567, p. 118450, ago. 2019, doi: 10.1016/j.ijpharm.2019.118450.[91] S. Tort, F. T. Demiröz, S. Yıldız, y F. Acartürk, «Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization», J Pharm Innov, vol. 15, n.o 3, pp. 325-332, sep. 2020, doi: 10.1007/s12247-019-09383-7.[92] Y. S. Tapia-Guerrero et al., «Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications», Materials, vol. 13, n.o 5, Art. n.o 5, ene. 2020, doi: 10.3390/ma13051090.[93] R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, y S. Bhaduri, «Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery», Pharmaceutics, vol. 11, n.o 1, Art. n.o 1, ene. 2019, doi: 10.3390/pharmaceutics11010005.[94] A. Yin, R. Luo, J. Li, X. Mo, Y. Wang, y X. Zhang, «Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties», Colloids and Surfaces B: Biointerfaces, vol. 152, pp. 432-439, abr. 2017, doi: 10.1016/j.colsurfb.2017.01.045.[95] B. Zaarour, L. Zhu, y X. Jin, «Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters», Mater. Res. Express, vol. 7, n.o 1, p. 015008, dic. 2019, doi: 10.1088/2053-1591/ab582d.[96] J. Zhang, H. Kitayama, y Y. Gotoh, «High strength ultrafine cellulose fibers generated by solution blow spinning», European Polymer Journal, vol. 125, p. 109513, feb. 2020, doi: 10.1016/j.eurpolymj.2020.109513.[97] Quiroga-Vergel Angela, Clavijo-Grimaldo Dianney, y Casadiego-Torrado Ciro, «Characterization and Evaluation of Solvent Retention in Polycaprolactone Nano/Microfibers Obtained by Electrospinning and Solution Blow Spinning», Chemical Engineering Transactions, vol. 93, pp. 115-120, jul. 2022, doi: 10.3303/CET2293020.[98] R. Wright y M. Blitshteyn, «Method and apparatus for measuring contact angles of liquid droplets on substrate surfaces», US5268733A, 7 de diciembre de 1993 Accedido: 2 de enero de 2023. [En línea]. Disponible en: https://patents.google.com/patent/US5268733A/en?oq=5268733[99] Thermo Fisher Scientific, «Spectrophotometric Analysis of Ibuprofen According to USP and EP Monographs», 2020.[100] «PBS (Phosphate Buffered Saline) (1X, pH 7.4) Preparation and Recipe | AAT Bioquest». https://www.aatbio.com/resources/buffer-preparations-and-recipes/pbs-phosphate-buffered-saline (accedido 3 de enero de 2023).[101] «Phosphate-buffered saline (PBS)», Cold Spring Harb Protoc, vol. 2006, n.o 1, p. pdb.rec8247, ene. 2006, doi: 10.1101/pdb.rec8247.[102] «Phosphate buffered saline powder, pH 7.4, for preparing 1 L solutions | Sigma-Aldrich». https://www.sigmaaldrich.com/catalog/product/sigma/p3813?lang=es®ion=CO (accedido 7 de diciembre de 2020).[103] I. Cantón et al., «Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration», Biotechnol Bioeng, vol. 105, n.o 2, pp. 396-408, feb. 2010, doi: 10.1002/bit.22530.[104] M. Audumbar, J. Santosh, y T. Ashpak, «Development and Validation of UV Spectrophotometric Estimation of Ibuprofen in Bulk and Tablet Dosage Form Using Area under Curve Method», vol. 2015, n.o 2, 2015.[105] A. Heimowska, M. Morawska, y A. Bocho-Janiszewska, «Biodegradation of poly(ε-caprolactone) in natural water environments», Polish Journal of Chemical Technology, vol. 19, n.o 1, pp. 120-126, mar. 2017, doi: 10.1515/pjct-2017-0017.[106] N. B. Erdal, G. A. Lando, A. Yadav, R. K. Srivastava, y M. Hakkarainen, «Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating», Polymers, vol. 12, n.o 8, Art. n.o 8, ago. 2020, doi: 10.3390/polym12081849.[107] A. Guarnieri et al., «Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens», Sci Rep, vol. 12, n.o 1, Art. n.o 1, may 2022, doi: 10.1038/s41598-022-12150-3.[108] K. Sun y Z. H. Li, «Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning», Express Polym. Lett., vol. 5, n.o 4, pp. 342-361, 2011, doi: 10.3144/expresspolymlett.2011.34.[109] «Q3C — Tables and List Guidance for Industry».[110] S. R. Gomes et al., «In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study», Materials Science and Engineering: C, vol. 46, pp. 348-358, ene. 2015, doi: 10.1016/j.msec.2014.10.051.[111] E. Saatcioglu et al., «Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration», European Polymer Journal, vol. 148, p. 110357, abr. 2021, doi: 10.1016/j.eurpolymj.2021.110357.[112] L. Cao, F. Zhang, Q. Wang, y X. Wu, «Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering», Materials Science and Engineering: C, vol. 79, pp. 697-701, oct. 2017, doi: 10.1016/j.msec.2017.05.056.[113] John Wiley & Sons, «SpectraBase Compound ID=DReJiCKiDTF SpectraBase Spectrum ID=FdPg9tn4xup», https://spectrabase.com/spectrum/FdPg9tn4xup, 23 de enero de 2022. https://spectrabase.com/spectrum/FdPg9tn4xup (accedido 23 de enero de 2022).[114] «Gelatine - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/FXP6FivXBOY (accedido 10 de enero de 2023).[115] M. Gong et al., «Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum», Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 201-209, oct. 2018, doi: 10.1016/j.colsurfb.2018.06.012.[116] J. W. Drexler y H. M. Powell, «Regulation of electrospun scaffold stiffness via coaxial core diameter», Acta Biomaterialia, vol. 7, n.o 3, pp. 1133-1139, mar. 2011, doi: 10.1016/j.actbio.2010.10.025.[117] Sigma Aldrich, «Product Information Gelatin», 2020. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/333/625/g9382pis.pdf (accedido 12 de enero de 2023).[118] S. Gautam, A. K. Dinda, y N. C. Mishra, «Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method», Materials Science and Engineering: C, vol. 33, n.o 3, pp. 1228-1235, abr. 2013, doi: 10.1016/j.msec.2012.12.015.[119] M. Adeli-Sardou, M. M. Yaghoobi, M. Torkzadeh-Mahani, y M. Dodel, «Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration», International Journal of Biological Macromolecules, vol. 124, pp. 478-491, mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.237.[120] H. Alissa Alam, A. D. Dalgic, A. Tezcaner, C. Ozen, y D. Keskin, «A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering», International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 69, n.o 6, pp. 339-350, abr. 2020, doi: 10.1080/00914037.2019.1581198.[121] R. Vasireddi et al., «Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle», Sci Rep, vol. 9, n.o 1, Art. n.o 1, oct. 2019, doi: 10.1038/s41598-019-50477-6.[122] D. Clavijo-Grimaldo, C. A. Casadiego-Torrado, J. Villalobos-Elías, A. Ocampo-Páramo, y M. Torres-Parada, «Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used», Membranes, vol. 12, n.o 6, Art. n.o 6, jun. 2022, doi: 10.3390/membranes12060563.[123] W. Tutak, G. Gelven, C. Markle, y X.-L. Palmer, «Rapid polymer fiber airbrushing: Impact of a device design on the fiber fabrication and matrix quality», J. Appl. Polym. Sci., vol. 132, n.o 47, p. n/a-n/a, dic. 2015, doi: 10.1002/app.42813.[124] Clavijo-Grimaldo Dianney, Ponce-Zapata Nubia, y Casadiego-Torrado Ciro, «Control of Bacterial Proliferation and Formation of Biofilm in Membranes for Food Packaging Manufactured by Electrospinning», Chemical Engineering Transactions, vol. 75, pp. 241-246, jun. 2019, doi: 10.3303/CET1975041.[125] A. A. Rakina et al., «Ibuprofen controlled release from E-beam treated polycaprolactone electrospun scaffolds», J. Phys.: Conf. Ser., vol. 1115, p. 032051, nov. 2018, doi: 10.1088/1742-6596/1115/3/032051.[126] J. Horakova et al., «Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone», ACS Omega, vol. 5, n.o 15, pp. 8885-8892, abr. 2020, doi: 10.1021/acsomega.0c00503.[127] COBLENTZ SOCIETY, «Trichloromethane», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022).[128] COBLENTZ SOCIETY, «Isopropyl Alcohol», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022).[129] «Ibuprofen - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/AYjMTFKYSNo (accedido 13 de enero de 2023).[130] M. Bartnikowski, T. R. Dargaville, S. Ivanovski, y D. W. Hutmacher, «Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment», Progress in Polymer Science, vol. 96, pp. 1-20, sep. 2019, doi: 10.1016/j.progpolymsci.2019.05.004.[131] «Polymers | Free Full-Text | Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating». https://www.mdpi.com/2073-4360/12/8/1849 (accedido 13 de enero de 2023).[132] L. A. Can-Herrera, A. I. Oliva, M. a. A. Dzul-Cervantes, O. F. Pacheco-Salazar, y J. M. Cervantes-Uc, «Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage», Polymers, vol. 13, n.o 4, Art. n.o 4, ene. 2021, doi: 10.3390/polym13040662.[133] Y. Shi, Z. Wei, H. Zhao, T. Liu, A. Dong, y J. Zhang, «Electrospinning of Ibuprofen-Loaded Composite Nanofibers for Improving the Performances of Transdermal Patches», j nanosci nanotechnol, vol. 13, n.o 6, pp. 3855-3863, jun. 2013, doi: 10.1166/jnn.2013.7157.[134] D. Yixiang, T. Yong, S. Liao, C. K. Chan, y S. Ramakrishna, «Degradation of Electrospun Nanofiber Scaffold by Short Wave Length Ultraviolet Radiation Treatment and Its Potential Applications in Tissue Engineering», https://home.liebertpub.com/tea, 4 de agosto de 2008. https://www.liebertpub.com/doi/10.1089/ten.tea.2007.0395 (accedido 14 de enero de 2023).[135] Y. Bai et al., «Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites», Polymer Testing, vol. 93, p. 106872, ene. 2021, doi: 10.1016/j.polymertesting.2020.106872.[136] P. A. Christensen, T. A. Egerton, S. M. Martins-Franchetti, C. Jin, y J. R. White, «Photodegradation of polycaprolactone/poly(vinyl chloride) blend», Polymer Degradation and Stability, vol. 93, n.o 1, pp. 305-309, ene. 2008, doi: 10.1016/j.polymdegradstab.2007.08.008.[137] M. M. Machado-Paula et al., «A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization», Materials Science and Engineering: C, vol. 111, p. 110706, jun. 2020, doi: 10.1016/j.msec.2020.110706.[138] T. Riaz, N. Gull, A. Islam, M. R. Dilshad, L. I. Atanase, y C. Delaite, «Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen», Chem. Pap., ene. 2023, doi: 10.1007/s11696-022-02655-6.[139] T. Riaz, N. Khenoussi, D. M. Rata, L. I. Atanase, D. C. Adolphe, y C. Delaite, «Blend Electrospinning of Poly(Ɛ-Caprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings», Autex Research Journal, vol. {"content-type":"ahead-of-print","content":0}, n.o 0, sep. 2021, doi: 10.2478/aut-2021-0017.[140] J. R. Dias, A. Sousa, A. Augusto, P. J. Bártolo, y P. L. Granja, «Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study», Polymers, vol. 14, n.o 16, Art. n.o 16, ene. 2022, doi: 10.3390/polym14163397.[141] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, y S. Ramakrishna, «A review on polymer nanofibers by electrospinning and their applications in nanocomposites», Composites Science and Technology, vol. 63, n.o 15, pp. 2223-2253, nov. 2003, doi: 10.1016/S0266-3538(03)00178-7.InvestigadoresMaestrosPúblico generalORIGINALTesis de Maestria - Ángela Quiroga - 1032466395.pdfTesis de Maestria - Ángela Quiroga - 1032466395.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf5960254https://repositorio.unal.edu.co/bitstream/unal/84497/2/Tesis%20de%20Maestria%20-%20%c3%81ngela%20Quiroga%20-%201032466395.pdff2205ef541b828144b5189e4d5806697MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84497/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAILTesis de Maestria - Ángela Quiroga - 1032466395.pdf.jpgTesis de Maestria - Ángela Quiroga - 1032466395.pdf.jpgGenerated Thumbnailimage/jpeg5277https://repositorio.unal.edu.co/bitstream/unal/84497/3/Tesis%20de%20Maestria%20-%20%c3%81ngela%20Quiroga%20-%201032466395.pdf.jpg7b0a0feaad8ab798fdbd0e86dc40c128MD53unal/84497oai:repositorio.unal.edu.co:unal/844972023-08-16 23:04:38.044Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |