Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información

ilustraciones, gráficas, mapas, tablas

Autores:
Guio González, Roger Steven
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81478
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81478
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Water balance (hydrology)
Watersheds
Stream
Balance hídrico (Hidrología)
Cuencas hidrográficas
Corrientes de agua
H-LSS
MESH
Coello
Model
Sensitivity
Analysis
Orographic
Complexity
Data
Scarcity
River
Basin
Esquemas
SVAT
MESH
Análisis
Coello
Modelo
Sensibilidad
Complejidad
Orográfica
Escasez
Datos
Alto Magdalena
Cuenca
Río
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9c9906c3c41a2ba1b6c2ee81cf343204
oai_identifier_str oai:repositorio.unal.edu.co:unal/81478
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
dc.title.translated.eng.fl_str_mv Evaluation of the soil-atmosphere-vegetation MESH model in a Colombian tropical basin of complex relief with information limitations
title Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
spellingShingle Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Water balance (hydrology)
Watersheds
Stream
Balance hídrico (Hidrología)
Cuencas hidrográficas
Corrientes de agua
H-LSS
MESH
Coello
Model
Sensitivity
Analysis
Orographic
Complexity
Data
Scarcity
River
Basin
Esquemas
SVAT
MESH
Análisis
Coello
Modelo
Sensibilidad
Complejidad
Orográfica
Escasez
Datos
Alto Magdalena
Cuenca
Río
title_short Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
title_full Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
title_fullStr Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
title_full_unstemmed Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
title_sort Evaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de información
dc.creator.fl_str_mv Guio González, Roger Steven
dc.contributor.advisor.spa.fl_str_mv Rodríguez Sandoval, Erasmo Alfredo
dc.contributor.author.spa.fl_str_mv Guio González, Roger Steven
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Ingeniería de Recursos Hidrícos Gireh
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Water balance (hydrology)
Watersheds
Stream
Balance hídrico (Hidrología)
Cuencas hidrográficas
Corrientes de agua
H-LSS
MESH
Coello
Model
Sensitivity
Analysis
Orographic
Complexity
Data
Scarcity
River
Basin
Esquemas
SVAT
MESH
Análisis
Coello
Modelo
Sensibilidad
Complejidad
Orográfica
Escasez
Datos
Alto Magdalena
Cuenca
Río
dc.subject.lemb.eng.fl_str_mv Water balance (hydrology)
Watersheds
Stream
dc.subject.lemb.spa.fl_str_mv Balance hídrico (Hidrología)
Cuencas hidrográficas
Corrientes de agua
dc.subject.proposal.eng.fl_str_mv H-LSS
MESH
Coello
Model
Sensitivity
Analysis
Orographic
Complexity
Data
Scarcity
River
Basin
dc.subject.proposal.spa.fl_str_mv Esquemas
SVAT
MESH
Análisis
Coello
Modelo
Sensibilidad
Complejidad
Orográfica
Escasez
Datos
Alto Magdalena
Cuenca
Río
description ilustraciones, gráficas, mapas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-01T19:18:02Z
dc.date.available.none.fl_str_mv 2022-06-01T19:18:02Z
dc.date.issued.none.fl_str_mv 2022-06-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81478
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81478
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aires, F.: Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure, J. Hydrometeorol., 15(4), 1677–1691, doi:10.1175/jhm-d-13-0148.1, 2014.
Arboleda, P.: Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo- superficie e hidrológico MESH, Universidad Nacional de Colombia., 2018.
Bajracharya, A., Awoye, H., Stadnyk, T. y Asadzadeh, M.: Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures, Water, 12(4), 961, doi:10.3390/w12040961, 2020.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J. y Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21(12), 6201–6217, doi:10.5194/hess-21-6201-2017, 2017a.
Beck, H. E., Van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B. y De Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21(1), 589–615, doi:10.5194/hess-21-589-2017, 2017b.
Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J. y Karger, D. N.: Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments, J. Clim., 33(4), 1299–1315, doi:10.1175/jcli-d-19-0332.1, 2020.
Beven, K.: Rainfall-Runoff Modelling., 2012.
Bokulich, A. y Oreskes, N.: Models in the Geosciences, Springer Handb. Model. Sci., (Oreskes 2015), 891–911, 2017.
Budyko, M. I.: Climate and Life, 18a ed., Academic press, New York, New York., 1974.
Carmona, A. M., Poveda, G., Sivapalan, M., Vallejo-Bernal, S. M. y Bustamante, E.: A scaling approach to Budyko’s framework and the complementary relationship of evapotranspiration in humid environments: Case study of the Amazon River basin, Hydrol. Earth Syst. Sci., 20(2), 589–603, doi:10.5194/hess-20-589-2016, 2016.
Chavarría, S. B., Vargas, T. B., Fernando, J. y Villegas, S.: Decrease in total water storage in the Magdalena River basin in recent years inferred from GRACE data, EGU Gen. Assemly, 38(April), 1–2, doi:10.13140/RG.2.2.18751.41126/1, 2018.
Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, S., Yuan, W., da Conceição, A. C., O’Sullivan, M. y Ciais, P.: Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model, J. Adv. Model. Earth Syst., 12(1), 1–17, doi:10.1029/2018MS001565, 2020.
CORTOLIMA: CARACTERIZACIÓN CLIMATOLÓGICA DE LA SUBZONA HIDROGRÁFICA DEL RÍO COELLO., 2019a.
CORTOLIMA: CARACTERIZACIÓN HIDROLÓGICA DE LA SUBZONA HIDROGRÁFICA DEL RÍO COELLO., 2019b.
Davison, B., Pietroniro, A., Fortin, V., Leconte, R., Mamo, M. y Yau, M. K.: What is Missing from the Prescription of Hydrology for Land Surface Schemes?, J. Hydrometeorol., 17(7), 2013–2039, doi:10.1175/jhm-d-15-0172.1, 2016.
Devia, G. K., Ganasri, B. P. y Dwarakish, G. S.: A Review on Hydrological Models, Aquat. Procedia, 4(Icwrcoe), 1001–1007, doi:10.1016/j.aqpro.2015.02.126, 2015.
Dias, L. C. P., Macedo, M. N., Costa, M. H., Coe, M. T. y Neill, C.: Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil, J. Hydrol. Reg. Stud., 4(PB), 108–122, doi:10.1016/j.ejrh.2015.05.010, 2015.
Dickinson, E., Henderson-Sellers, A. y Kennedy, J.: Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model, NCAR Tech. Rep. NCAR/TN-3871STR, 72, doi:10.5065/D67W6959, 1993.
Duque, N.: Estimación de campos de precipitación en cuencas hidrográficas colombianas con escasez de datos, combinando datos teledetectados y de estaciones en tierra, utilizando funciones de Kernel, , 216, doi:10.13140/RG.2.2.35859.94247, 2019.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. y Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res. D Atmos., doi:10.1029/2002jd003296, 2003.
Elgamal, A., Reggiani, P. y Jonoski, A.: Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia, J. Hydrol. Reg. Stud., 9, 85–103, doi:10.1016/j.ejrh.2016.09.001, 2017.
Ferreira, P. M. de L., Paz, A. R. da y Bravo, J. M.: Objective functions used as performance metrics for hydrological models: state-of-the-art and critical analysis, Rbrh, 25, doi:10.1590/2318-0331.252020190155, 2020.
Fisher, R. A. y Koven, C. D.: Perspectives on the future of Land Surface Models and the challenges of representing complex terrestrial systems, J. Adv. Model. Earth Syst., doi:10.1029/2018ms001453, 2020.
Güiza-Villa, N.: Estimación de los cambios en los índices asociados a la oferta y la demanda del recurso hídrico en la cuenca del río Coello bajo escenarios de cambio climático [Thesis]., , 199, 2019.
Haghnegahdar, A. y Razavi, S.: Insights into sensitivity analysis of Earth and environmental systems models: On the impact of parameter perturbation scale, Environ. Model. Softw., 95, 115–131, doi:10.1016/j.envsoft.2017.03.031, 2017.
Haghnegahdar, A., Razavi, S., Yassin, F. y Wheater, H.: Multicriteria sensitivity analysis as a diagnostic tool for understanding model behaviour and characterizing model uncertainty, Hydrol. Process., 31(25), 4462–4476, doi:10.1002/hyp.11358, 2017.
Hargreaves, G. H. y Samani, Z. A.: Estimating potential evapotranspiration., J. Irrig. Drain. Div. - ASCE, 1982.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S. y Thépaut, J. N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146(730), 1999–2049, doi:10.1002/qj.3803, 2020.
Holtzman, N. M., Pavelsky, T. M., Cohen, J. S., Wrzesien, M. L. y Herman, J. D.: Tailoring WRF and Noah-MP to Improve Process Representation of Sierra Nevada Runoff: Diagnostic Evaluation and Applications, J. Adv. Model. Earth Syst., 12(3), 1–18, doi:10.1029/2019MS001832, 2020.
Honek, D., Caletka, M. y Šulc Michalková, M.: Retrospective analysis of published hydrological researches: Models, trends and geographical aspects over the last two decades of hydrological modelling, Geogr. Cas., doi:10.31577/geogrcas.2018.70.4.16, 2018.
Jarvis, A., Reuter, H. I., Nelson, A. y Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), disponible en http://srtm.csi.cgiar.org., , (September 2017), 2008.
Kaune, A., Werner, M., López López, P., Rodríguez, E., Karimi, P. y De Fraiture, C.: Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture?, Hydrol. Earth Syst. Sci., 23(5), 2351–2368, doi:10.5194/hess-23-2351-2019, 2019.
Kim, D., Kang, S. y Choi, M.: Land surface models evaluation for two different land-cover types: Cropland and forest, Terr. Atmos. Ocean. Sci., 27(1), 153–167, doi:10.3319/TAO.2015.09.14.02(Hy), 2016.
Kouwen, N.: WATFLOOD: a Micro-Computer Based Flood Forecasting System Based on Real-Time Weather Radar, Can. Water Resour. J., 13(1), 62–77, doi:10.4296/cwrj1301062, 1998.
Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J. y Harrington, R. A.: Grouped Response Units for Distributed Hydrologic Modeling, J. Water Resour. Plan. Manag., 119(3), 289–305, doi:10.1061/(asce)0733-9496(1993)119:3(289), 2006.
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W. S., Zipser, E., Smith, E. A., Wilheit, T. T., North, G., Krishnamurti, T. y Nakamura, K.: The status of the tropical rainfall measuring mission (TRMM) after two years in orbit, J. Appl. Meteorol., 39(12 PART 1), 1965–1982, doi:10.1175/1520-0450(2001)040<1965:tsottr>2.0.co;2, 2000.
Lindström, G., Johansson, B., Persson, M., Gardelin, M. y Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., doi:10.1016/S0022-1694(97)00041-3, 1997.
Luo, Y., Arnold, J., Allen, P. y Chen, X.: Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China, Hydrol. Earth Syst. Sci., 16(4), 1259–1267, doi:10.5194/hess-16-1259-2012, 2012.
Maccherone, B.: MODIS Web, MODIS Web, http://modis.gsfc.nasa.gov/data/dataprod/ [en línea] Available from: https://modis.gsfc.nasa.gov/data/dataprod/mod16.php (Consultado 24 mayo 2021), 2014.
MacDonald, M.: Welcome to the Standalone MESH Wiki. [en línea] Available from: https://wiki.usask.ca/pages/viewpage.action?pageId=220332269 (Consultado 27 mayo 2021), 2019.
MacDonald, M. K., Davison, B. J., Mekonnen, M. A. y Pietroniro, A.: Comparison of land surface scheme simulations with field observations versus atmospheric model output as forcing, Hydrol. Sci. J., 61(16), 2860–2871, doi:10.1080/02626667.2016.1177185, 2016.
Manabe, S.: Climate and the ocean circulation : I . The atmospheric circulation and the hydrology of the Earth ’ s surface . Mon Weather Rev EARTH ’ S, , 0493(JANUARY 1969), doi:10.1175/1520-0493(1969)09760, 1969.
Mancipe-Munoz, N. A., Buchberger, S. G., Suidan, M. T. y Lu, T.: Calibration of Rainfall-Runoff Model in Urban Watersheds for Stormwater Management Assessment, J. Water Resour. Plan. Manag., 140(6), 05014001, doi:10.1061/(asce)wr.1943-5452.0000382, 2014.
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A. y Verhoest, N. E. C.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10(5), 1903–1925, doi:10.5194/gmd-10-1903-2017, 2017.
Mianabadi, A., Coenders-gerrits, M., Shirazi, P., Ghahraman, B. y Alizadeh, A.: A global Budyko model to partition evaporation into interception and transpiration, , 4983–5000, 2019.
Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P. y Pan, M.: Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi basin and closure correction model, J. Geophys. Res., 119(21), 12,100-12,116, doi:10.1002/2014JD021953, 2014.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Clim. Data Store, 1–10, doi:10.24381/cds.e2161bac, 2019.
Nash, J. E. y Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., doi:10.1016/0022-1694(70)90255-6, 1970.
Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B. y Nearing, G.: Benchmarking of a physically based hydrologic model, J. Hydrometeorol., 18(8), 2215–2225, doi:10.1175/JHM-D-16-0284.1, 2017.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M. y Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res. Atmos., 116(12), 1–19, doi:10.1029/2010JD015139, 2011.
Noilhan, J. y Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989.
Paca, V. H. da M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D. M., Comair, G. F. y Bastiaanssen, W. G. M.: The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers, Ecol. Process., 8(1), doi:10.1186/s13717-019-0158-8, 2019.
Pan, M. y Wood, E. F.: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter, J. Hydrometeorol., 7(3), 534–547, doi:10.1175/JHM495.1, 2006.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J. y Wood, A. E. F.: Multisource estimation of long-term terrestrial water budget for major global river basins, J. Clim., 25(9), 3191–3206, doi:10.1175/JCLI-D-11-00300.1, 2012.
Pietroniro, A., Caldwell, R., Soulis, E. D., Fortin, V., Neal, C., Kouwen, N., Turcotte, R., Verseghy, D., Davison, B., Pietroniro, A., Pellerin, P. y Evora, N.: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrol. Earth Syst. Sci. Discuss., 11(4), 1279–1294, doi:10.5194/hessd-3-2473-2006, 2007.
Prem, M., Saavedra, S. y Vargas, J. F.: End-of-conflict deforestation: Evidence from Colombia’s peace agreement, World Dev., 129(May), 1–37, doi:10.1016/j.worlddev.2019.104852, 2020.
Razavi, S., Sheikholeslami, R., Gupta, H. V. y Haghnegahdar, A.: VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis, Environ. Model. Softw., 112(October 2018), 95–107, doi:10.1016/j.envsoft.2018.10.005, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. y Toll, D.: The Global Land Data Assimilation System, Bull. Am. Meteorol. Soc., 85(3), 381–394, doi:10.1175/BAMS-85-3-381, 2004.
Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C. y Burke, S.: Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia, Water Resour. Manag., doi:10.1007/s11269-019-02236-5, 2019.
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S. y Wu, Q.: Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices, Environ. Model. Softw., 114(January), 29–39, doi:10.1016/j.envsoft.2019.01.012, 2019.
Sánchez, I.: Evaluación del desempeño del esquema ISBA en la cuenca del río La Vieja-departamentos de Valle del Cauca, Risaralda y Quindío (Colombia), Universidad Nacional de Colombia., 2014.
Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J. y Randall, D. A.: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data, J. Clim., 9(4), 706–737, doi:10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2, 1996.
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B. y Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science (80-. )., 275(5299), 502–509, doi:10.1126/science.275.5299.502, 1997.
Sheikholeslami, R. y Razavi, S.: Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models, Environ. Model. Softw., 93, 109–126, doi:10.1016/j.envsoft.2017.03.010, 2017.
Soulis, E. D., Snelgrove, K. R., Kouwen, N., Seglenieks, F. y Verseghy, D. L.: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme class with the distributed hydrological model watflood, Atmos. - Ocean, 38(1), 251–269, doi:10.1080/07055900.2000.9649648, 2000.
Sposito, G.: Understanding the budyko equation, Water (Switzerland), 9(4), 1–14, doi:10.3390/w9040236, 2017.
Strauch, M., Kumar, R., Eisner, S., Mulligan, M., Reinhardt, J., Santini, W., Vetter, T. y Friesen, J.: Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds, Clim. Change, 141(3), 547–560, doi:10.1007/s10584-016-1706-1, 2017.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. Atmos., 106(D7), 7183–7192, doi:10.1029/2000JD900719, 2001.
Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., De Perez, E. C. y Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23(7), 3057–3080, doi:10.5194/hess-23-3057-2019, 2019.
Vallejo-bernal, S. M., Carmona, A. M. y Poveda, G.: Evaluating Diverse Potential Evapotranspiration Methodologies and Databases for the Amazon River Basin, , (May) [en línea] Available from: www.elespectador.com. (Consultado 26 mayo 2021), 2018.
Verseghy, D. L.: The Canadian land surface scheme (CLASS): Its history and future, Atmos. - Ocean, 38(1), 1–13, doi:10.1080/07055900.2000.9649637, 2000.
Verseghy, D. L.: CLASS (version 3.4)– Technical documentation, , (January), 2009.
Wong, J. S., Zhang, X., Gharari, S., Shrestha, R. R., Wheater, H. S. y Famiglietti, J. S.: Assessing Water Balance Closure Using Multiple Data Assimilation and Remote Sensing-Based Datasets for Canada, J. Hydrometeorol., 1569–1589, doi:10.1175/jhm-d-20-0131.1, 2021.
Zhao, W. y Li, A.: A Review on Land Surface Processes Modelling over Complex Terrain, Adv. Meteorol., 2015, doi:10.1155/2015/607181, 2015.
Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W. y Guyot, J. L.: A critical assessment of the JULES land surface model hydrology for humid tropical environments, Hydrol. Earth Syst. Sci., 17(3), 1113–1132, doi:10.5194/hess-17-1113-2013, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 117 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81478/3/1026584857.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81478/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81478/5/1026584857.2022.pdf.jpg
bitstream.checksum.fl_str_mv bae7a7d4d100c1abd135c1c425fd6351
8153f7789df02f0a4c9e079953658ab2
fbc1615f7b68ac9aa2ce4576f7b3a208
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090235127005184
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Sandoval, Erasmo Alfredof34c4efbf82b2be7c3f5e45064de6092Guio González, Roger Steven55cb9703de0ee74f9e6d8bb498bdc37fGrupo de Investigación en Ingeniería de Recursos Hidrícos Gireh2022-06-01T19:18:02Z2022-06-01T19:18:02Z2022-06-01https://repositorio.unal.edu.co/handle/unal/81478Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, mapas, tablasImplementaciones previas de esquemas de interacción suelo-vegetación-atmósfera (SVAT), han mostrado las limitaciones de estos modelos en la simulación de flujos horizontales, en zonas con complejidad orográfica, escasez de información y localizadas en zonas tropicales. Particularmente en el caso colombiano estas dificultades se han presentado en el Alto Magdalena. Entender las razones, por las cuales se han presentado estas limitaciones es de especial interés por la importancia de estos modelos en el análisis acoplado de variables climáticas e hidrológicas. Por este motivo, en el presente trabajo se continuó con el análisis iniciado por Arboleda (2018), quien implementó el modelo MESH - el cual contiene un esquema SVAT- en la cuenca del río Coello (CRC) y posteriormente en toda la Macrocuenca Magdalena-Cauca (MCMC). Mediante la implementación de MESH se logró una adecuada estimación de los caudales, en las zonas media y baja de la MCMC, pero con resultados deficientes en el Alto Magdalena. Con el objetivo de entender las causas de la deficiencia mencionada, proponer ajustes para resolverlas y utilizando el modelo de la CRC (Arboleda, 2018), se hizo una evaluación de las variables del balance hídrico (precipitación, evapotranspiración y caudales) utilizando información como productos de reanálisis (MSWEP, ERA5, GLDAS, GLEAM), teledetección (MODIS16) y datos observados (IDEAM). Posteriormente se implementó un análisis de sensibilidad, para optimizar el proceso de calibración del modelo. A partir del análisis de sensibilidad, la evaluación del balance hídrico, y otros análisis complementarios, se propuso e implementó una estrategia metodológica en cuatro subcuencas del Alto Magdalena. Los resultados muestran que la propuesta mejora la simulación de caudales de acuerdo con la métrica NSE y la curva de duración de caudales. No obstante, el modelo sigue teniendo dificultades, especialmente en las cuencas del costado sur oriental del Alto Magdalena, en donde de acuerdo con los análisis realizados, la causa podría ser un rezago de hasta cuatro meses entre la precipitación y los caudales observados en su régimen mensual. Este rezago debería ser evaluado en futuras investigaciones. (Texto tomado de la fuente).Previous soil-vegetation-atmosphere interaction schemes (SVAT) implementations have shown their limitations in streamflow simulations in zones with orographic complexity, data-scarce, and located in tropical zones. Particularly in the Colombian case, these limitations have been in the upstream basins of the Magdalena River (Alto Magdalena). Understanding the reasons why these limitations have occurred is of special interest due to the importance of these models in the coupled analysis of climatic and hydrological variables. For this reason, in the present work, the analysis initiated by Arboleda (2018) was continued, who implemented the MESH model, which contains an SVAT scheme in the Coello River Basin (CRC) and later in the entire Magdalena-Cauca Macro-basin (MCMC). Through the implementation of MESH an adequate estimation of the streamflows was achieved in downstream and midstream basins of the MCMC, but with poor results in their upstream. So, in order understand the causes of the mentioned deficiency, using the CRC model (Arboleda, 2018), and propose changes to solve them, a water balance variables evaluation (precipitation, evapotranspiration, and streamflows) was made using information such as reanalysis products (MSWEP, ERA5, GLDAS, GLEAM), remote sensing (MODIS16), and observed data (IDEAM). Subsequently, a sensitivity analysis was implemented to optimize the model calibration process. Based on this analysis, the water balance evaluation, and other complementary analyses a methodological strategy was proposed and implemented in four sub-basins of the (Alto Magdalena). The results showed that this strategy improves the streamflow simulation, according to the NSE metric, and its flow duration curve. However, the model continues to have difficulties, especially on the southeast side of the Alto Magdalena, where according to the analysis carried out, the cause could be a lag of up to four months between the precipitation and the flows observed in its monthly regime. This lag should be evaluated in future research.Incluye anexosMaestríaMagíster en Ingeniería - Recursos HidráulicosHidrología e Hidrometeorología117 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Recursos HidráulicosDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaWater balance (hydrology)WatershedsStreamBalance hídrico (Hidrología)Cuencas hidrográficasCorrientes de aguaH-LSSMESHCoelloModelSensitivityAnalysisOrographicComplexityDataScarcityRiverBasinEsquemasSVATMESHAnálisisCoelloModeloSensibilidadComplejidadOrográficaEscasezDatosAlto MagdalenaCuencaRíoEvaluación del modelo suelo-atmósfera-vegetación MESH en una cuenca tropical colombiana de relieve complejo con limitaciones de informaciónEvaluation of the soil-atmosphere-vegetation MESH model in a Colombian tropical basin of complex relief with information limitationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAires, F.: Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure, J. Hydrometeorol., 15(4), 1677–1691, doi:10.1175/jhm-d-13-0148.1, 2014.Arboleda, P.: Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo- superficie e hidrológico MESH, Universidad Nacional de Colombia., 2018.Bajracharya, A., Awoye, H., Stadnyk, T. y Asadzadeh, M.: Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures, Water, 12(4), 961, doi:10.3390/w12040961, 2020.Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J. y Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21(12), 6201–6217, doi:10.5194/hess-21-6201-2017, 2017a.Beck, H. E., Van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B. y De Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21(1), 589–615, doi:10.5194/hess-21-589-2017, 2017b.Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J. y Karger, D. N.: Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments, J. Clim., 33(4), 1299–1315, doi:10.1175/jcli-d-19-0332.1, 2020.Beven, K.: Rainfall-Runoff Modelling., 2012.Bokulich, A. y Oreskes, N.: Models in the Geosciences, Springer Handb. Model. Sci., (Oreskes 2015), 891–911, 2017.Budyko, M. I.: Climate and Life, 18a ed., Academic press, New York, New York., 1974.Carmona, A. M., Poveda, G., Sivapalan, M., Vallejo-Bernal, S. M. y Bustamante, E.: A scaling approach to Budyko’s framework and the complementary relationship of evapotranspiration in humid environments: Case study of the Amazon River basin, Hydrol. Earth Syst. Sci., 20(2), 589–603, doi:10.5194/hess-20-589-2016, 2016.Chavarría, S. B., Vargas, T. B., Fernando, J. y Villegas, S.: Decrease in total water storage in the Magdalena River basin in recent years inferred from GRACE data, EGU Gen. Assemly, 38(April), 1–2, doi:10.13140/RG.2.2.18751.41126/1, 2018.Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, S., Yuan, W., da Conceição, A. C., O’Sullivan, M. y Ciais, P.: Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model, J. Adv. Model. Earth Syst., 12(1), 1–17, doi:10.1029/2018MS001565, 2020.CORTOLIMA: CARACTERIZACIÓN CLIMATOLÓGICA DE LA SUBZONA HIDROGRÁFICA DEL RÍO COELLO., 2019a.CORTOLIMA: CARACTERIZACIÓN HIDROLÓGICA DE LA SUBZONA HIDROGRÁFICA DEL RÍO COELLO., 2019b.Davison, B., Pietroniro, A., Fortin, V., Leconte, R., Mamo, M. y Yau, M. K.: What is Missing from the Prescription of Hydrology for Land Surface Schemes?, J. Hydrometeorol., 17(7), 2013–2039, doi:10.1175/jhm-d-15-0172.1, 2016.Devia, G. K., Ganasri, B. P. y Dwarakish, G. S.: A Review on Hydrological Models, Aquat. Procedia, 4(Icwrcoe), 1001–1007, doi:10.1016/j.aqpro.2015.02.126, 2015.Dias, L. C. P., Macedo, M. N., Costa, M. H., Coe, M. T. y Neill, C.: Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil, J. Hydrol. Reg. Stud., 4(PB), 108–122, doi:10.1016/j.ejrh.2015.05.010, 2015.Dickinson, E., Henderson-Sellers, A. y Kennedy, J.: Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model, NCAR Tech. Rep. NCAR/TN-3871STR, 72, doi:10.5065/D67W6959, 1993.Duque, N.: Estimación de campos de precipitación en cuencas hidrográficas colombianas con escasez de datos, combinando datos teledetectados y de estaciones en tierra, utilizando funciones de Kernel, , 216, doi:10.13140/RG.2.2.35859.94247, 2019.Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. y Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res. D Atmos., doi:10.1029/2002jd003296, 2003.Elgamal, A., Reggiani, P. y Jonoski, A.: Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia, J. Hydrol. Reg. Stud., 9, 85–103, doi:10.1016/j.ejrh.2016.09.001, 2017.Ferreira, P. M. de L., Paz, A. R. da y Bravo, J. M.: Objective functions used as performance metrics for hydrological models: state-of-the-art and critical analysis, Rbrh, 25, doi:10.1590/2318-0331.252020190155, 2020.Fisher, R. A. y Koven, C. D.: Perspectives on the future of Land Surface Models and the challenges of representing complex terrestrial systems, J. Adv. Model. Earth Syst., doi:10.1029/2018ms001453, 2020.Güiza-Villa, N.: Estimación de los cambios en los índices asociados a la oferta y la demanda del recurso hídrico en la cuenca del río Coello bajo escenarios de cambio climático [Thesis]., , 199, 2019.Haghnegahdar, A. y Razavi, S.: Insights into sensitivity analysis of Earth and environmental systems models: On the impact of parameter perturbation scale, Environ. Model. Softw., 95, 115–131, doi:10.1016/j.envsoft.2017.03.031, 2017.Haghnegahdar, A., Razavi, S., Yassin, F. y Wheater, H.: Multicriteria sensitivity analysis as a diagnostic tool for understanding model behaviour and characterizing model uncertainty, Hydrol. Process., 31(25), 4462–4476, doi:10.1002/hyp.11358, 2017.Hargreaves, G. H. y Samani, Z. A.: Estimating potential evapotranspiration., J. Irrig. Drain. Div. - ASCE, 1982.Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S. y Thépaut, J. N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146(730), 1999–2049, doi:10.1002/qj.3803, 2020.Holtzman, N. M., Pavelsky, T. M., Cohen, J. S., Wrzesien, M. L. y Herman, J. D.: Tailoring WRF and Noah-MP to Improve Process Representation of Sierra Nevada Runoff: Diagnostic Evaluation and Applications, J. Adv. Model. Earth Syst., 12(3), 1–18, doi:10.1029/2019MS001832, 2020.Honek, D., Caletka, M. y Šulc Michalková, M.: Retrospective analysis of published hydrological researches: Models, trends and geographical aspects over the last two decades of hydrological modelling, Geogr. Cas., doi:10.31577/geogrcas.2018.70.4.16, 2018.Jarvis, A., Reuter, H. I., Nelson, A. y Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), disponible en http://srtm.csi.cgiar.org., , (September 2017), 2008.Kaune, A., Werner, M., López López, P., Rodríguez, E., Karimi, P. y De Fraiture, C.: Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture?, Hydrol. Earth Syst. Sci., 23(5), 2351–2368, doi:10.5194/hess-23-2351-2019, 2019.Kim, D., Kang, S. y Choi, M.: Land surface models evaluation for two different land-cover types: Cropland and forest, Terr. Atmos. Ocean. Sci., 27(1), 153–167, doi:10.3319/TAO.2015.09.14.02(Hy), 2016.Kouwen, N.: WATFLOOD: a Micro-Computer Based Flood Forecasting System Based on Real-Time Weather Radar, Can. Water Resour. J., 13(1), 62–77, doi:10.4296/cwrj1301062, 1998.Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J. y Harrington, R. A.: Grouped Response Units for Distributed Hydrologic Modeling, J. Water Resour. Plan. Manag., 119(3), 289–305, doi:10.1061/(asce)0733-9496(1993)119:3(289), 2006.Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W. S., Zipser, E., Smith, E. A., Wilheit, T. T., North, G., Krishnamurti, T. y Nakamura, K.: The status of the tropical rainfall measuring mission (TRMM) after two years in orbit, J. Appl. Meteorol., 39(12 PART 1), 1965–1982, doi:10.1175/1520-0450(2001)040<1965:tsottr>2.0.co;2, 2000.Lindström, G., Johansson, B., Persson, M., Gardelin, M. y Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., doi:10.1016/S0022-1694(97)00041-3, 1997.Luo, Y., Arnold, J., Allen, P. y Chen, X.: Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China, Hydrol. Earth Syst. Sci., 16(4), 1259–1267, doi:10.5194/hess-16-1259-2012, 2012.Maccherone, B.: MODIS Web, MODIS Web, http://modis.gsfc.nasa.gov/data/dataprod/ [en línea] Available from: https://modis.gsfc.nasa.gov/data/dataprod/mod16.php (Consultado 24 mayo 2021), 2014.MacDonald, M.: Welcome to the Standalone MESH Wiki. [en línea] Available from: https://wiki.usask.ca/pages/viewpage.action?pageId=220332269 (Consultado 27 mayo 2021), 2019.MacDonald, M. K., Davison, B. J., Mekonnen, M. A. y Pietroniro, A.: Comparison of land surface scheme simulations with field observations versus atmospheric model output as forcing, Hydrol. Sci. J., 61(16), 2860–2871, doi:10.1080/02626667.2016.1177185, 2016.Manabe, S.: Climate and the ocean circulation : I . The atmospheric circulation and the hydrology of the Earth ’ s surface . Mon Weather Rev EARTH ’ S, , 0493(JANUARY 1969), doi:10.1175/1520-0493(1969)09760, 1969.Mancipe-Munoz, N. A., Buchberger, S. G., Suidan, M. T. y Lu, T.: Calibration of Rainfall-Runoff Model in Urban Watersheds for Stormwater Management Assessment, J. Water Resour. Plan. Manag., 140(6), 05014001, doi:10.1061/(asce)wr.1943-5452.0000382, 2014.Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A. y Verhoest, N. E. C.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10(5), 1903–1925, doi:10.5194/gmd-10-1903-2017, 2017.Mianabadi, A., Coenders-gerrits, M., Shirazi, P., Ghahraman, B. y Alizadeh, A.: A global Budyko model to partition evaporation into interception and transpiration, , 4983–5000, 2019.Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P. y Pan, M.: Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi basin and closure correction model, J. Geophys. Res., 119(21), 12,100-12,116, doi:10.1002/2014JD021953, 2014.Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Clim. Data Store, 1–10, doi:10.24381/cds.e2161bac, 2019.Nash, J. E. y Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., doi:10.1016/0022-1694(70)90255-6, 1970.Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B. y Nearing, G.: Benchmarking of a physically based hydrologic model, J. Hydrometeorol., 18(8), 2215–2225, doi:10.1175/JHM-D-16-0284.1, 2017.Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M. y Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res. Atmos., 116(12), 1–19, doi:10.1029/2010JD015139, 2011.Noilhan, J. y Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989.Paca, V. H. da M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D. M., Comair, G. F. y Bastiaanssen, W. G. M.: The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers, Ecol. Process., 8(1), doi:10.1186/s13717-019-0158-8, 2019.Pan, M. y Wood, E. F.: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter, J. Hydrometeorol., 7(3), 534–547, doi:10.1175/JHM495.1, 2006.Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J. y Wood, A. E. F.: Multisource estimation of long-term terrestrial water budget for major global river basins, J. Clim., 25(9), 3191–3206, doi:10.1175/JCLI-D-11-00300.1, 2012.Pietroniro, A., Caldwell, R., Soulis, E. D., Fortin, V., Neal, C., Kouwen, N., Turcotte, R., Verseghy, D., Davison, B., Pietroniro, A., Pellerin, P. y Evora, N.: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrol. Earth Syst. Sci. Discuss., 11(4), 1279–1294, doi:10.5194/hessd-3-2473-2006, 2007.Prem, M., Saavedra, S. y Vargas, J. F.: End-of-conflict deforestation: Evidence from Colombia’s peace agreement, World Dev., 129(May), 1–37, doi:10.1016/j.worlddev.2019.104852, 2020.Razavi, S., Sheikholeslami, R., Gupta, H. V. y Haghnegahdar, A.: VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis, Environ. Model. Softw., 112(October 2018), 95–107, doi:10.1016/j.envsoft.2018.10.005, 2019.Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. y Toll, D.: The Global Land Data Assimilation System, Bull. Am. Meteorol. Soc., 85(3), 381–394, doi:10.1175/BAMS-85-3-381, 2004.Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C. y Burke, S.: Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia, Water Resour. Manag., doi:10.1007/s11269-019-02236-5, 2019.Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S. y Wu, Q.: Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices, Environ. Model. Softw., 114(January), 29–39, doi:10.1016/j.envsoft.2019.01.012, 2019.Sánchez, I.: Evaluación del desempeño del esquema ISBA en la cuenca del río La Vieja-departamentos de Valle del Cauca, Risaralda y Quindío (Colombia), Universidad Nacional de Colombia., 2014.Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J. y Randall, D. A.: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data, J. Clim., 9(4), 706–737, doi:10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2, 1996.Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B. y Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science (80-. )., 275(5299), 502–509, doi:10.1126/science.275.5299.502, 1997.Sheikholeslami, R. y Razavi, S.: Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models, Environ. Model. Softw., 93, 109–126, doi:10.1016/j.envsoft.2017.03.010, 2017.Soulis, E. D., Snelgrove, K. R., Kouwen, N., Seglenieks, F. y Verseghy, D. L.: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme class with the distributed hydrological model watflood, Atmos. - Ocean, 38(1), 251–269, doi:10.1080/07055900.2000.9649648, 2000.Sposito, G.: Understanding the budyko equation, Water (Switzerland), 9(4), 1–14, doi:10.3390/w9040236, 2017.Strauch, M., Kumar, R., Eisner, S., Mulligan, M., Reinhardt, J., Santini, W., Vetter, T. y Friesen, J.: Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds, Clim. Change, 141(3), 547–560, doi:10.1007/s10584-016-1706-1, 2017.Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. Atmos., 106(D7), 7183–7192, doi:10.1029/2000JD900719, 2001.Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., De Perez, E. C. y Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23(7), 3057–3080, doi:10.5194/hess-23-3057-2019, 2019.Vallejo-bernal, S. M., Carmona, A. M. y Poveda, G.: Evaluating Diverse Potential Evapotranspiration Methodologies and Databases for the Amazon River Basin, , (May) [en línea] Available from: www.elespectador.com. (Consultado 26 mayo 2021), 2018.Verseghy, D. L.: The Canadian land surface scheme (CLASS): Its history and future, Atmos. - Ocean, 38(1), 1–13, doi:10.1080/07055900.2000.9649637, 2000.Verseghy, D. L.: CLASS (version 3.4)– Technical documentation, , (January), 2009.Wong, J. S., Zhang, X., Gharari, S., Shrestha, R. R., Wheater, H. S. y Famiglietti, J. S.: Assessing Water Balance Closure Using Multiple Data Assimilation and Remote Sensing-Based Datasets for Canada, J. Hydrometeorol., 1569–1589, doi:10.1175/jhm-d-20-0131.1, 2021.Zhao, W. y Li, A.: A Review on Land Surface Processes Modelling over Complex Terrain, Adv. Meteorol., 2015, doi:10.1155/2015/607181, 2015.Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W. y Guyot, J. L.: A critical assessment of the JULES land surface model hydrology for humid tropical environments, Hydrol. Earth Syst. Sci., 17(3), 1113–1132, doi:10.5194/hess-17-1113-2013, 2013.EstudiantesInvestigadoresPúblico generalORIGINAL1026584857.2022.pdf1026584857.2022.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf6064776https://repositorio.unal.edu.co/bitstream/unal/81478/3/1026584857.2022.pdfbae7a7d4d100c1abd135c1c425fd6351MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81478/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1026584857.2022.pdf.jpg1026584857.2022.pdf.jpgGenerated Thumbnailimage/jpeg5809https://repositorio.unal.edu.co/bitstream/unal/81478/5/1026584857.2022.pdf.jpgfbc1615f7b68ac9aa2ce4576f7b3a208MD55unal/81478oai:repositorio.unal.edu.co:unal/814782024-08-06 23:09:44.875Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK