Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF

ilustraciones, fotografías, graficas

Autores:
Martinez Ruiz, Diana Camila
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81364
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81364
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Epoxidación de aceites vegetales
Estructuras metal-orgánicas
Complejos de dioxo-molibdeno(VI)
Vegetable oils epoxidation
Metal-organic frameworks
Dioxo-molybdenum(VI) complexes
Aceite vegetal
Química orgánica
Vegetable oils
Organic chemistry
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_9c87757a71c10e0ec8d1f84f1c2361c1
oai_identifier_str oai:repositorio.unal.edu.co:unal/81364
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
dc.title.translated.eng.fl_str_mv Soybean oil epoxidation catalyzed by dioxo-molybdenum (VI) centers incorporated in a metal-organic framework-MOF
title Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
spellingShingle Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
540 - Química y ciencias afines
Epoxidación de aceites vegetales
Estructuras metal-orgánicas
Complejos de dioxo-molibdeno(VI)
Vegetable oils epoxidation
Metal-organic frameworks
Dioxo-molybdenum(VI) complexes
Aceite vegetal
Química orgánica
Vegetable oils
Organic chemistry
title_short Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
title_full Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
title_fullStr Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
title_full_unstemmed Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
title_sort Reacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
dc.creator.fl_str_mv Martinez Ruiz, Diana Camila
dc.contributor.advisor.none.fl_str_mv Catellanos Marquez, Nelson Jair
dc.contributor.author.none.fl_str_mv Martinez Ruiz, Diana Camila
dc.contributor.researchgroup.spa.fl_str_mv Estado Sólido y Catálisis Ambiental
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Epoxidación de aceites vegetales
Estructuras metal-orgánicas
Complejos de dioxo-molibdeno(VI)
Vegetable oils epoxidation
Metal-organic frameworks
Dioxo-molybdenum(VI) complexes
Aceite vegetal
Química orgánica
Vegetable oils
Organic chemistry
dc.subject.proposal.spa.fl_str_mv Epoxidación de aceites vegetales
Estructuras metal-orgánicas
Complejos de dioxo-molibdeno(VI)
dc.subject.proposal.eng.fl_str_mv Vegetable oils epoxidation
Metal-organic frameworks
Dioxo-molybdenum(VI) complexes
dc.subject.unesco.spa.fl_str_mv Aceite vegetal
Química orgánica
dc.subject.unesco.eng.fl_str_mv Vegetable oils
Organic chemistry
description ilustraciones, fotografías, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-24T17:04:45Z
dc.date.available.none.fl_str_mv 2022-03-24T17:04:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81364
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81364
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788–1802. https://doi.org/10.1039/b703294c.
U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.
S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g.
P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (2012) 1538–1558. https://doi.org/10.1039/c1cs15147a.
L. Faba, E. Díaz, S. Ordóñez, Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey, Renew. Sustain. Energy Rev. 51 (2015) 273–287. https://doi.org/10.1016/j.rser.2015.06.020.
A. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, (2007). https://doi.org/10.1021/cr050989d.
G. Knothe, Vegetable oils, Handb. Bioenergy Crop Plants. (2012) 793–810. https://doi.org/10.32741/fihb.19.vegetableoil.
C. Bueno Ferrer, Bio-compuestos termoplásticos basados en aceites vegetales: estudio de su aplicabilidad al envasado de alimentos, (2012) 1.
S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/C7CY00988G.
S.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils, Ind. Crops Prod. 11 (2000) 277–282. https://doi.org/10.1016/S0926-6690(99)00061-8.
H. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification, Appl. Catal. A Gen. 221 (2001) 429–442. https://doi.org/10.1016/S0926-860X(01)00891-2.
H. Hosney, B. Nadiem, I. Ashour, I. Mustafa, A. El-Shibiny, Epoxidized vegetable oil and bio-based materials as PVC plasticizer, J. Appl. Polym. Sci. 135 (2018) 1–12. https://doi.org/10.1002/app.46270.
P. Karmalm, T. Hjertberg, A. Jansson, R. Dahl, Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer, Polym. Degrad. Stab. 94 (2009) 2275–2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019.
P.G. Nihul, S.T. Mhaske, V. V. Shertukde, Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC), Iran. Polym. J. (English Ed. 23 (2014) 599–608. https://doi.org/10.1007/s13726-014-0254-7.
W. He, G. Zhu, Y. Gao, H. Wu, Z. Fang, K. Guo, Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): Continuous synthesis and evaluation in PVC films, Chem. Eng. J. 380 (2020) 122532. https://doi.org/10.1016/j.cej.2019.122532.
A. Guo, W. Zhang, Z.S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci. 41 (2006) 4914–4920. https://doi.org/10.1007/s10853-006-0310-6.
C. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Recent advances in vegetable oil-based polymers and their composites, Elsevier B.V., 2017. https://doi.org/10.1016/j.progpolymsci.2016.12.009.
I. Javni, Z.S. Petrović, A. Guo, R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci. 77 (2000) 1723–1734. https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K.
M.A. Sawpan, Polyurethanes from vegetable oils and applications: a review, J. Polym. Res. 25 (2018). https://doi.org/10.1007/s10965-018-1578-3.
A. Köckritz, A. Martin, Oxidation of unsaturated fatty acid derivatives and vegetable oils, Eur. J. Lipid Sci. Technol. 110 (2008) 812–824. https://doi.org/10.1002/ejlt.200800042.
T.W. Findley, D. Swern, J.T. Scanlan, Epoxidation of Unsaturated Fatty Materials with Peracetic Acid in Glacial Acetic Acid Solution, J. Am. Chem. Soc. 67 (1945) 412–414. https://doi.org/10.1021/ja01219a018.
R. Mungroo, N.C. Pradhan, V. V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin, JAOCS, J. Am. Oil Chem. Soc. 85 (2008) 887–896. https://doi.org/10.1007/s11746-008-1277-z.
A. Campanella, M.A. Baltanás, M.C. Capel-Sánchez, J.M. Campos-Martín, J.L.G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst, Green Chem. 6 (2004) 330–334. https://doi.org/10.1039/B404975F.
X. Zhang, J. Burchell, N.S. Mosier, Enzymatic Epoxidation of High Oleic Soybean Oil, (2018). https://doi.org/10.1021/acssuschemeng.8b00884.
A.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2 / H2O2 catalytic biphasic system, J. Am. Oil Chem. Soc. 79 (2002) 179–181. https://doi.org/10.1007/s11746-002- 0455-0.
Z. Chen, G. Yin, The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations, Chem. Soc. Rev. 44 (2015) 1083–1100. https://doi.org/10.1039/C4CS00244J.
K.A. Joergensen, K.A. Jørgensen, K.A. Joergensen, Transition-Metal-Catalyzed Epoxidations, Chem. Rev. 89 (1989) 431–458. https://doi.org/10.1021/cr00093a001.
J.M. Brégeault, Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies, J. Chem. Soc. Dalt. Trans. 3 (2003) 3289–3302. https://doi.org/10.1039/b303073n.
T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, (2005). https://doi.org/10.1021/cr050523v.
A. Ali, W. Akram, H.Y. Liu, Reactive cobalt-oxo complexes of tetrapyrrolic macrocycles and N-based ligand in oxidative transformation reactions, Molecules. 24 (2019). https://doi.org/10.3390/molecules24010078.
R.A. Sheldon, I. Arends, U. Hanefeld, Wiley InterScience (Online service), Green chemistry and catalysis, Wiley-VCH, 2007.
K.B. Sharpless, T.R. Verhoeven, Metal-catalyzed, highly selective oxygenations of olefins and acetylenes with tert-butyl hydroperoxide. Practical considerations and mechanisms, Aldrichim. Acta. 12 (1979) 63–74.
J. Sobczak, J.J. Ziółkowski, The catalytic epoxidation of olefins with organic hydroperoxides, J. Mol. Catal. 13 (1981) 11–42. https://doi.org/10.1016/0304-5102(81)85028-6.
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18.
J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.
X.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metalorganic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chem. Lett. 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020.
Y.Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene, ChemCatChem. 5 (2013) 3657–3664. https://doi.org/10.1002/cctc.201300529.
K. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J. Catal. 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019.
M. El-Hamidi, F.A. Zaher, Production of vegetable oils in the world and in Egypt: an overview, Bull. Natl. Res. Cent. 42 (2018). https://doi.org/10.1186/s42269-018-0019-0.
P. Quosai, A. Anstey, A.K. Mohanty, M. Misra, Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: For polymer composite applications, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171970.
European Commission, Oilseeds and Protein Crops market situation, (2021). https://circabc.europa.eu/sd/a/215a681a-5f50-4a4b-a953-e8fc6336819c/oilseedsmarketsituation. pdf.
A. Demirbas, S. Karslioglu, Biodiesel production facilities from vegetable oils and animal fats, Energy Sources, Part A Recover. Util. Environ. Eff. 29 (2007) 133–141. https://doi.org/10.1080/009083190951320.
T. Issariyakul, A.K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev. 31 (2014) 446–471. https://doi.org/10.1016/j.rser.2013.11.001.
B.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils in India, Renew. Sustain. Energy Rev. 9 (2005) 363–378. https://doi.org/10.1016/j.rser.2004.05.007.
Frank Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, Second edi, 2011. https://books.google.es/books?hl=es&lr=&id=lnk2tdo8_P4C&oi=fnd&pg=PR11&dq=vegetable+oils+food&ots=2_Ghve8LXI&sig=_l7fNkow-tZrLTxaZMg-jsDCos#v=onepage&q=vegetable oils food&f=false.
R.A. Pineda Beltran, Uso de la oxidación catalítica del acetaldehído en la epoxidación de aceites vegetales, 2018.
A. Enferadi Kerenkan, F. Béland, T.O. Do, Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective, Catal. Sci. Technol. 6 (2016) 971–987. https://doi.org/10.1039/c5cy01118c.
L.L. Monteavaro, E.O. da Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold, Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization, J. Am. Oil Chem. Soc. 82 (2005) 365–371.
P.S. Zade, M.B. Mandake, S. Walke, N. Mumbai, Review: Epoxidation of Vegetable oils, 5 (2018).
M. chao Kuo, T. chuan Chou, Kinetics and Mechanism of the Catalyzed Epoxidation of Oleic Acid with Oxygen in the Presence of Benzaldehyde, Ind. Eng. Chem. Res. 26 (1987) 277–284. https://doi.org/10.1021/ie00062a016.
T. Saurabh, M. Patnaik, S.L. Bhagt, V.C. Renge, Epoxidation of vegetable oils: a review, Int. J. Adv. Eng. Technol. 2 (2011) 491–501.
L. Alejandro, Á. Aurora, L.A. Boyacá, Á.A. Beltrán, Soybean epoxide production with in situ peracetic acid using homogeneous catalysis, Ing. e Investig. 30 (2010) 136–140.
K. Cruz, J. Montañez, C. Aguilar, A. Sáenz, I. Gámez, E. Flores, Obtención De Aceite Epoxidado De Semilla De Algodón Utilizando Un Ácido Débil, Av. En Ciencias e Ing. 6 (2015) 11–18. http://www.redalyc.org/articulo.oa?id=323643356002.
T. Vlček, Z.S. Petrović, Optimization of the chemoenzymatic epoxidation of soybean oil, JAOCS, J. Am. Oil Chem. Soc. 83 (2006) 247–252. https://doi.org/10.1007/s11746-006-1200-4.
S. Sun, X. Ke, L. Cui, G. Yang, Y. Bi, F. Song, X. Xu, Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology, Ind. Crops Prod. 33 (2011) 676–682. https://doi.org/10.1016/j.indcrop.2011.01.002.
K. Konakom, P. Kittisupakorn, I.M. Mujtaba, Chemoenzymatic epoxidation of karanja oil: an alternative to chemical epoxidation, 2011 Int. Symp. Adv. Control Ind. Process. (2011) 361–377. https://doi.org/10.1002/apj.
J. Wu, P. Jiang, X. Qin, Y. Ye, Y. Leng, Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2, Bull. Korean Chem. Soc. 35 (2014) 1675–1680. https://doi.org/10.5012/bkcs.2014.35.6.1675.
W. Cheng, G. Liu, X. Wang, X. Liu, L. Jing, Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol, Eur. J. Lipid Sci. Technol. 117 (2015) 1185–1191. https://doi.org/10.1002/ejlt.201400614.
J. Jiang, Y. Zhang, L. Yan, P. Jiang, Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes, Appl. Surf. Sci. 258 (2012) 6637–6642. https://doi.org/10.1016/j.apsusc.2012.03.095.
M. Farias, M. Martinelli, D.P. Bottega, Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex, Appl. Catal. A Gen. 384 (2010) 213–219. https://doi.org/10.1016/j.apcata.2010.06.038.
M.R. Janković, S. V. Sinadinović-Fišer, O.M. Govedarica, Kinetics of the epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion-exchange resin, Ind. Eng. Chem. Res. 53 (2014) 9357–9364. https://doi.org/10.1021/ie500876a.
R. Turco, C. Pischetola, R. Tesser, S. Andini, M. Di Serio, New findings on soybean nd methylester epoxidation with alumina as the catalyst, RSC Adv. 6 (2016) 31647–31652. https://doi.org/10.1039/c6ra01780k.
S. Sankaranarayanan, A. Sharma, K. Srinivasan, CoCuAl layered double hydroxides-Efficient solid catalysts for the preparation of industrially important fatty epoxides, Catal. Sci. Technol. 5 (2015) 1187–1197. https://doi.org/10.1039/c4cy01138d.
X. Ye, P. Jiang, P. Zhang, Y. Dong, C. Jia, X. Zhang, H. Xu, Novel Ti and Mn mesoporous molecular sieves: Synthesis, characterization and catalytic activity in the epoxidation of vegetable oil, Catal. Letters. 137 (2010) 88–93. https://doi.org/10.1007/s10562-010-0334-z.
M. Farias, M. Martinelli, G.K. Rolim, Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils, Appl. Catal. A Gen. 403 (2011) 119–127. https://doi.org/https://doi.org/10.1016/j.apcata.2011.06.021.
J. Manjanna, T. Kozaki, N. Kozai, S. Sato, A new method for Fe(II)-montmorillonite preparation using Fe(II)-nitrilotriacetate complex, J. Nucl. Sci. Technol. 44 (2007) 929–932. https://doi.org/10.1080/18811248.2007.9711331.
R.A. Sheldon, Aspects of homogeneous catalysis, Vol. 4 (1981) 3–64.
O. S.Ted, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, (n.d.). https://books.google.com.co/books?hl=es&lr=&id=xJpkegngTqAC&oi=fnd&pg=PP1 &dq=S.T.+Oyama,+Mechanisms+in+Homogeneous+and+Heterogeneous+Epoxida tion+Catalysis,+Elsevier,+Burlington,+MA,+2008.+p.+xix.&ots=sgEbCYYU_Y&sig=j VINSnYsWlBG_xCUJIWdrTUQu8k&redir_esc=y# (accessed October 8, 2019).
Y. Shen, P. Jiang, P.T. Wai, Q. Gu, W. Zhang, Recent progress in application of molybdenum-based catalysts for epoxidation of alkenes, Catalysts. 9 (2019). https://doi.org/10.3390/catal9010031.
W. Fan, D. Shi, B. Feng, Immobilizing of oxo-molybdenum complex on cross-linked copolymer and its catalytic activity for epoxidation reactions, Catal. Commun. 74 (2016) 1–4. https://doi.org/10.1016/j.catcom.2015.10.022.
Y. Shen, P. Jiang, J. Zhang, G. Bian, P. Zhang, Y. Dong, W. Zhang, Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins, Mol. Catal. 433 (2017) 212–223. https://doi.org/10.1016/j.mcat.2016.12.011.
M. Masteri-Farahani, S. Mirshekar, Covalent functionalization of graphene oxide with molybdenum-carboxylate complexes: New reusable catalysts for the epoxidation of olefins, Colloids Surfaces A Physicochem. Eng. Asp. 538 (2018) 387–392. https://doi.org/10.1016/j.colsurfa.2017.11.025.
G. Bian, P. Jiang, K. Jiang, Y. Shen, L. Kong, L. Hu, Y. Dong, W. Zhang, MoO2 Formed on Mesoporous Graphene Oxide: Efficient and Stable Catalyst for Epoxidation of Olefins, Aust. J. Chem. 70 (2017) 1039–1047. https://doi.org/10.1071/CH17089.
H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J. Mol. Catal. A Chem. 423 (2016) 248–255. https://doi.org/10.1016/J.MOLCATA.2016.07.006.
G. Bian, P. Jiang, F. Wang, Y. Shen, K. Jiang, L. Liu, W. Zhang, Light driven epoxidation of olefins using a graphene oxide/g-C3N4 supported Mo (salen) complex, New J. Chem. 42 (2018) 85–90. https://doi.org/10.1039/c7nj02894f.
M. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes, Chem. Eng. J. 308 (2017) 160–168. https://doi.org/10.1016/j.cej.2016.09.055.
M. Mirzaee, B. Bahramian, M. Shahraki, H. Moghadam, A. Mirzaee, Molybdenum Containing Catalysts Grafted on Functionalized Hydrous Zirconia Nano-particles for Epoxidation of Alkenes, Catal. Letters. 148 (2018) 3003–3017. https://doi.org/10.1007/s10562-018-2521-2.
W.F. Brill, N. Indictor, Reactions of t-Butyl Hydroperoxide with Olefins, J. Org. Chem. 29 (1964) 710–713. https://doi.org/10.1021/jo01026a045.
K. John, Epoxidation process, (1967).
A.O. Chong, K.B. Sharpless, On the Mechanism of the Molybdenum and Vanadium Catalyzed Epoxidation of Olefins by Alkyl Hydroperoxides, J. Org. Chem. 42 (1977) 1587–1590. https://doi.org/10.1021/jo00429a024.
P. Chaumette, H. Mimoun, L. Saussine, J. Fischer, A. Mitschler, Peroxo and alkylperoxidic molybdenum(VI) complexes as intermediates in the epoxidation of olefins by alkyl hydroperoxides, J. Organomet. Chem. 250 (1983) 291–310. https://doi.org/10.1016/0022-328X(83)85059-1.
R. Hille, Molybdenum and tungsten in biology, Trends Biochem. Sci. 27 (2002) 360–367. https://doi.org/10.1016/S0968-0004(02)02107-2.
R. Hille, The Mononuclear Molybdenum Enzymes.pdf, Chem. Rev. 96 (1996) 2757–2816.
K. Heinze, Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms, Coord. Chem. Rev. 300 (2015) 121–141. https://doi.org/10.1016/j.ccr.2015.04.010.
Y. He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encycl. Inorg. Bioinorg. Chem. (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213.
F. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, An. La Real Soc. Española Química. 108 (2012) 190–196.
T. Rios Carvajal, Síntesis y caracterización de redes metal---orgánicas (MOF) a partir de ligantes orgánicos tipo fenilenvinileno modificados con grupos electrodonores, 2014.
K. Leus, I. Muylaert, V. Van Speybroeck, G.B. Marin, P. Van Der Voort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167- 2991(10)75053-9.
M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m.
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c.
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f.
Z.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH 2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017.
K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation, Chem. Commun. 46 (2010) 5085–5087. https://doi.org/10.1039/c0cc01506g.
T.U. Yoon, S. Ahn, A.R. Kim, J.M. Notestein, O.K. Farha, Y.S. Bae, Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metalorganic framework, Catal. Sci. Technol. 10 (2020) 4580–4585. https://doi.org/10.1039/d0cy00833h.
I.D. Ivanchikova, J.S. Lee, N. V. Maksimchuk, A.N. Shmakov, Y.A. Chesalov, A.B. Ayupov, Y.K. Hwang, C.H. Jun, J.S. Chang, O.A. Kholdeeva, Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks, Eur. J. Inorg. Chem. 373 (2014) 132–139. https://doi.org/10.1002/ejic.201301098.
H.G.T. Nguyen, L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: Support effect on the oxidation of cyclohexene using hydrogen peroxide, Catal. Sci. Technol. 5 (2015) 4444–4451. https://doi.org/10.1039/c5cy00825e.
S. Abednatanzi, A. Abbasi, M. Masteri-Farahani, Post-synthetic modification of nanoporous Cu3(BTC)2 metal-organic framework via immobilization of a molybdenum complex for selective epoxidation, J. Mol. Catal. A Chem. 399 (2015) 10–17. https://doi.org/10.1016/j.molcata.2015.01.014.
ASTM E200-16, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, (2016). www.astm.org.
PanReac AppliChem, Panreac Catálogo General. Reactivos para Análisis y Productos para Química Fina, (n.d.) 594. http://www.ictsl.net/downloads/catpanreac2012.pdf.
G.G. Shimamoto, J.A. Aricetti, M. Tubino, A Simple, Fast, and Green Titrimetric Method for the Determination of the Iodine Value of Vegetable Oils Without Wijs Solution (ICl), Food Anal. Methods. 9 (2016) 2479–2483. https://doi.org/10.1007/s12161-016-0401-1.
A. Of, C. Fats, Oxirane Oxygen, AOCS Off. Method CD 9-57. (1997) 8–9.
Y.Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, Bipyridine-based nanosized metal-organic framework with tunable luminescence by a postmodification with Eu(III): An experimental and theoretical study, J. Phys. Chem. C. 117 (2013) 11302–11310. https://doi.org/10.1021/jp402154q.
M. Tubino, J.A. Aricetti, A green potentiometric method for the determination of the iodine number of biodiesel, Fuel. 103 (2013) 1158–1163. https://doi.org/10.1016/j.fuel.2012.10.011.
W. Xia, S.M. Budge, M.D. Lumsden, New 1H NMR-Based Technique to Determine Epoxide Concentrations in Oxidized Oil, J. Agric. Food Chem. 63 (2015) 5780–5786. https://doi.org/10.1021/acs.jafc.5b01719.
Y. Miyake, K. Yokomizo, N. Matsuzaki, Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy, (n.d.) 15–19.
H.A.J. Aerts, P.A. Jacobs, Epoxide Yield Determination of Oils and Fatty Acid Methyl Esters Using 1 H NMR, (2004).
M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
K.S.W. Sing, F. Rouquerol, J. Rouquerol, P. Llewellyn, Assessment of Mesoporosity, 2013. https://doi.org/10.1016/B978-0-08-097035-6.00008-5.
I. Union, O.F. Pure, A. Chemistry, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem. 66 (1994) 1739–1758. https://doi.org/10.1351/pac199466081739.
F. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F. Moraga, X. Zou, B. Martín-Matute, Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis, Chem. – A Eur. J. 18 (2012) 15337–15344. https://doi.org/10.1002/CHEM.201200885.
M.L. D’Amico, K. Rasmussen, D. Sisneros, C. Magnussen, H. Wade, J.G. Russell, L.L. Borer, Epoxidation of cyclic olefins using dimeric molybdenum(VI) catalysts, Inorganica Chim. Acta. 191 (1992) 167–170. https://doi.org/10.1016/S0020- 1693(00)93456-X.
H. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord. Chem. Rev. 178–180 (1998) 191–202. https://doi.org/10.1016/s0010-8545(98)00056-3.
A. Prazeres, A.M. Santos, M.J. Calhorda, C.C. Roma, I.S. Gonáalves, Octahedral Bipyridine and Bipyrimidine Dioxomolybdenum (VI) Complexes: Characterization, Application in Catalytic Epoxidation, and Density Functional Mechanistic Study, (2002) 2370–2383.
M. Salavati-niasari, M. Bazarganipour, Effect of single-wall carbon nanotubes on direct epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum (VI) complexes with bis-bidentate Schiff-base containing aromatic nitrogen – nitrogen linkers, 278 (2007) 173–180. https://doi.org/10.1016/j.molcata.2007.09.009.
G. Wang, G. Chen, R.L. Luck, Z. Wang, D.G. Evans, X. Duan, New molybdenum (VI) catalysts for the epoxidation of cyclohexene : synthesis , reactivity and crystal structures, 357 (2004) 3223–3229. https://doi.org/10.1016/j.ica.2004.03.030.
M.G. Lindley, The impact of food processing on antioxidants in vegetable oils , fruits and vegetables, 9 (1998) 336–340.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81364/3/1012403105.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81364/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81364/5/1012403105.2021.pdf.jpg
bitstream.checksum.fl_str_mv 60148c833e650be4572b522c263943a3
8153f7789df02f0a4c9e079953658ab2
68145f0455bbb05494fc1b9d3c68c120
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885918279204864
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Catellanos Marquez, Nelson Jair8f988f5393f04fcb78acbf4bb7783224Martinez Ruiz, Diana Camilad16b10cd1bf39720fe0715a424e39338Estado Sólido y Catálisis Ambiental2022-03-24T17:04:45Z2022-03-24T17:04:45Z2021https://repositorio.unal.edu.co/handle/unal/81364Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasLos aceites vegetales representan una de las fuentes renovables más prometedoras para la industria química debido a su disponibilidad mundial, bajo costo y funcionalidad incorporada en su estructura química para obtener compuestos de interés comercial como los epóxidos. En esta tesis de maestría, se evaluó una estructura organometálica de galio funcionalizada con centros activos de dioxo-molibdeno(VI) como catalizador en la epoxidación de aceite de soja empleando ter-butil-hidroperoxido como agente oxidante. Se estudió la influencia del tiempo de reacción, la temperatura y la concentración del agente oxidante y se demostró que la mayor selectividad de epóxido se obtuvo a 110 °C después de 4 horas de reacción (29% de conversión y 91% de selectividad) empleando una relación molar 200:100:1 (ter-butil-hidroperoxido: dobles enlaces: catalizador). La estabilidad de la estructura del catalizador después del proceso catalítico fue confirmada por espectroscopía infrarroja, difracción de rayos X en polvo, termogravimetría, microscopía SEM y espectroscopía EDS. Asimismo, los test de estabilidad demostraron que la actividad de la estructura metal-orgánica MoO2Cl2@COMOC-4 es conservada durante dos ciclos de uso en el proceso de valorización de aceites vegetales, con una disminución de su actividad en un tercer ciclo catalítico. (Texto tomado de la fuente)Vegetable oils represent one of the most promising renewable sources for the chemical industry due to their worldwide availability, low cost, and built-in functionality in their chemical structure to obtain commercially interesting compounds such as epoxides. In this work, a functionalized gallium metal-organic framework with active dioxo-molybdenum(VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using ter-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied and demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 hours of reaction (29% conversion and 91% selectivity) using a molar ratio 200:100:1 (ter-butyl-hydroperoxide: double bonds:catalyst). The stability of the metal-organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction analysis, thermogravimetric analysis, SEM microscopy, and EDS spectroscopy analysis. The stability tests demonstrated that the catalyst could be reused for at least two cycles in the catalytic process for the recovery of vegetable oils with decreasing its activity in a third catalytic cycle.MaestríaMagíster en Ciencias - QuímicaCatálisis heterogénea ambiental, con énfasis en catálisis acida, oxidación y reformadoxix, 74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesEpoxidación de aceites vegetalesEstructuras metal-orgánicasComplejos de dioxo-molibdeno(VI)Vegetable oils epoxidationMetal-organic frameworksDioxo-molybdenum(VI) complexesAceite vegetalQuímica orgánicaVegetable oilsOrganic chemistryReacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOFSoybean oil epoxidation catalyzed by dioxo-molybdenum (VI) centers incorporated in a metal-organic framework-MOFTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788–1802. https://doi.org/10.1039/b703294c.U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g.P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (2012) 1538–1558. https://doi.org/10.1039/c1cs15147a.L. Faba, E. Díaz, S. Ordóñez, Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey, Renew. Sustain. Energy Rev. 51 (2015) 273–287. https://doi.org/10.1016/j.rser.2015.06.020.A. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, (2007). https://doi.org/10.1021/cr050989d.G. Knothe, Vegetable oils, Handb. Bioenergy Crop Plants. (2012) 793–810. https://doi.org/10.32741/fihb.19.vegetableoil.C. Bueno Ferrer, Bio-compuestos termoplásticos basados en aceites vegetales: estudio de su aplicabilidad al envasado de alimentos, (2012) 1.S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/C7CY00988G.S.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils, Ind. Crops Prod. 11 (2000) 277–282. https://doi.org/10.1016/S0926-6690(99)00061-8.H. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification, Appl. Catal. A Gen. 221 (2001) 429–442. https://doi.org/10.1016/S0926-860X(01)00891-2.H. Hosney, B. Nadiem, I. Ashour, I. Mustafa, A. El-Shibiny, Epoxidized vegetable oil and bio-based materials as PVC plasticizer, J. Appl. Polym. Sci. 135 (2018) 1–12. https://doi.org/10.1002/app.46270.P. Karmalm, T. Hjertberg, A. Jansson, R. Dahl, Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer, Polym. Degrad. Stab. 94 (2009) 2275–2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019.P.G. Nihul, S.T. Mhaske, V. V. Shertukde, Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC), Iran. Polym. J. (English Ed. 23 (2014) 599–608. https://doi.org/10.1007/s13726-014-0254-7.W. He, G. Zhu, Y. Gao, H. Wu, Z. Fang, K. Guo, Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): Continuous synthesis and evaluation in PVC films, Chem. Eng. J. 380 (2020) 122532. https://doi.org/10.1016/j.cej.2019.122532.A. Guo, W. Zhang, Z.S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci. 41 (2006) 4914–4920. https://doi.org/10.1007/s10853-006-0310-6.C. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Recent advances in vegetable oil-based polymers and their composites, Elsevier B.V., 2017. https://doi.org/10.1016/j.progpolymsci.2016.12.009.I. Javni, Z.S. Petrović, A. Guo, R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci. 77 (2000) 1723–1734. https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K.M.A. Sawpan, Polyurethanes from vegetable oils and applications: a review, J. Polym. Res. 25 (2018). https://doi.org/10.1007/s10965-018-1578-3.A. Köckritz, A. Martin, Oxidation of unsaturated fatty acid derivatives and vegetable oils, Eur. J. Lipid Sci. Technol. 110 (2008) 812–824. https://doi.org/10.1002/ejlt.200800042.T.W. Findley, D. Swern, J.T. Scanlan, Epoxidation of Unsaturated Fatty Materials with Peracetic Acid in Glacial Acetic Acid Solution, J. Am. Chem. Soc. 67 (1945) 412–414. https://doi.org/10.1021/ja01219a018.R. Mungroo, N.C. Pradhan, V. V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin, JAOCS, J. Am. Oil Chem. Soc. 85 (2008) 887–896. https://doi.org/10.1007/s11746-008-1277-z.A. Campanella, M.A. Baltanás, M.C. Capel-Sánchez, J.M. Campos-Martín, J.L.G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst, Green Chem. 6 (2004) 330–334. https://doi.org/10.1039/B404975F.X. Zhang, J. Burchell, N.S. Mosier, Enzymatic Epoxidation of High Oleic Soybean Oil, (2018). https://doi.org/10.1021/acssuschemeng.8b00884.A.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2 / H2O2 catalytic biphasic system, J. Am. Oil Chem. Soc. 79 (2002) 179–181. https://doi.org/10.1007/s11746-002- 0455-0.Z. Chen, G. Yin, The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations, Chem. Soc. Rev. 44 (2015) 1083–1100. https://doi.org/10.1039/C4CS00244J.K.A. Joergensen, K.A. Jørgensen, K.A. Joergensen, Transition-Metal-Catalyzed Epoxidations, Chem. Rev. 89 (1989) 431–458. https://doi.org/10.1021/cr00093a001.J.M. Brégeault, Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies, J. Chem. Soc. Dalt. Trans. 3 (2003) 3289–3302. https://doi.org/10.1039/b303073n.T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, (2005). https://doi.org/10.1021/cr050523v.A. Ali, W. Akram, H.Y. Liu, Reactive cobalt-oxo complexes of tetrapyrrolic macrocycles and N-based ligand in oxidative transformation reactions, Molecules. 24 (2019). https://doi.org/10.3390/molecules24010078.R.A. Sheldon, I. Arends, U. Hanefeld, Wiley InterScience (Online service), Green chemistry and catalysis, Wiley-VCH, 2007.K.B. Sharpless, T.R. Verhoeven, Metal-catalyzed, highly selective oxygenations of olefins and acetylenes with tert-butyl hydroperoxide. Practical considerations and mechanisms, Aldrichim. Acta. 12 (1979) 63–74.J. Sobczak, J.J. Ziółkowski, The catalytic epoxidation of olefins with organic hydroperoxides, J. Mol. Catal. 13 (1981) 11–42. https://doi.org/10.1016/0304-5102(81)85028-6.A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18.J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.X.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metalorganic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chem. Lett. 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020.Y.Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene, ChemCatChem. 5 (2013) 3657–3664. https://doi.org/10.1002/cctc.201300529.K. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J. Catal. 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019.M. El-Hamidi, F.A. Zaher, Production of vegetable oils in the world and in Egypt: an overview, Bull. Natl. Res. Cent. 42 (2018). https://doi.org/10.1186/s42269-018-0019-0.P. Quosai, A. Anstey, A.K. Mohanty, M. Misra, Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: For polymer composite applications, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171970.European Commission, Oilseeds and Protein Crops market situation, (2021). https://circabc.europa.eu/sd/a/215a681a-5f50-4a4b-a953-e8fc6336819c/oilseedsmarketsituation. pdf.A. Demirbas, S. Karslioglu, Biodiesel production facilities from vegetable oils and animal fats, Energy Sources, Part A Recover. Util. Environ. Eff. 29 (2007) 133–141. https://doi.org/10.1080/009083190951320.T. Issariyakul, A.K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev. 31 (2014) 446–471. https://doi.org/10.1016/j.rser.2013.11.001.B.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils in India, Renew. Sustain. Energy Rev. 9 (2005) 363–378. https://doi.org/10.1016/j.rser.2004.05.007.Frank Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, Second edi, 2011. https://books.google.es/books?hl=es&lr=&id=lnk2tdo8_P4C&oi=fnd&pg=PR11&dq=vegetable+oils+food&ots=2_Ghve8LXI&sig=_l7fNkow-tZrLTxaZMg-jsDCos#v=onepage&q=vegetable oils food&f=false.R.A. Pineda Beltran, Uso de la oxidación catalítica del acetaldehído en la epoxidación de aceites vegetales, 2018.A. Enferadi Kerenkan, F. Béland, T.O. Do, Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective, Catal. Sci. Technol. 6 (2016) 971–987. https://doi.org/10.1039/c5cy01118c.L.L. Monteavaro, E.O. da Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold, Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization, J. Am. Oil Chem. Soc. 82 (2005) 365–371.P.S. Zade, M.B. Mandake, S. Walke, N. Mumbai, Review: Epoxidation of Vegetable oils, 5 (2018).M. chao Kuo, T. chuan Chou, Kinetics and Mechanism of the Catalyzed Epoxidation of Oleic Acid with Oxygen in the Presence of Benzaldehyde, Ind. Eng. Chem. Res. 26 (1987) 277–284. https://doi.org/10.1021/ie00062a016.T. Saurabh, M. Patnaik, S.L. Bhagt, V.C. Renge, Epoxidation of vegetable oils: a review, Int. J. Adv. Eng. Technol. 2 (2011) 491–501.L. Alejandro, Á. Aurora, L.A. Boyacá, Á.A. Beltrán, Soybean epoxide production with in situ peracetic acid using homogeneous catalysis, Ing. e Investig. 30 (2010) 136–140.K. Cruz, J. Montañez, C. Aguilar, A. Sáenz, I. Gámez, E. Flores, Obtención De Aceite Epoxidado De Semilla De Algodón Utilizando Un Ácido Débil, Av. En Ciencias e Ing. 6 (2015) 11–18. http://www.redalyc.org/articulo.oa?id=323643356002.T. Vlček, Z.S. Petrović, Optimization of the chemoenzymatic epoxidation of soybean oil, JAOCS, J. Am. Oil Chem. Soc. 83 (2006) 247–252. https://doi.org/10.1007/s11746-006-1200-4.S. Sun, X. Ke, L. Cui, G. Yang, Y. Bi, F. Song, X. Xu, Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology, Ind. Crops Prod. 33 (2011) 676–682. https://doi.org/10.1016/j.indcrop.2011.01.002.K. Konakom, P. Kittisupakorn, I.M. Mujtaba, Chemoenzymatic epoxidation of karanja oil: an alternative to chemical epoxidation, 2011 Int. Symp. Adv. Control Ind. Process. (2011) 361–377. https://doi.org/10.1002/apj.J. Wu, P. Jiang, X. Qin, Y. Ye, Y. Leng, Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2, Bull. Korean Chem. Soc. 35 (2014) 1675–1680. https://doi.org/10.5012/bkcs.2014.35.6.1675.W. Cheng, G. Liu, X. Wang, X. Liu, L. Jing, Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol, Eur. J. Lipid Sci. Technol. 117 (2015) 1185–1191. https://doi.org/10.1002/ejlt.201400614.J. Jiang, Y. Zhang, L. Yan, P. Jiang, Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes, Appl. Surf. Sci. 258 (2012) 6637–6642. https://doi.org/10.1016/j.apsusc.2012.03.095.M. Farias, M. Martinelli, D.P. Bottega, Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex, Appl. Catal. A Gen. 384 (2010) 213–219. https://doi.org/10.1016/j.apcata.2010.06.038.M.R. Janković, S. V. Sinadinović-Fišer, O.M. Govedarica, Kinetics of the epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion-exchange resin, Ind. Eng. Chem. Res. 53 (2014) 9357–9364. https://doi.org/10.1021/ie500876a.R. Turco, C. Pischetola, R. Tesser, S. Andini, M. Di Serio, New findings on soybean nd methylester epoxidation with alumina as the catalyst, RSC Adv. 6 (2016) 31647–31652. https://doi.org/10.1039/c6ra01780k.S. Sankaranarayanan, A. Sharma, K. Srinivasan, CoCuAl layered double hydroxides-Efficient solid catalysts for the preparation of industrially important fatty epoxides, Catal. Sci. Technol. 5 (2015) 1187–1197. https://doi.org/10.1039/c4cy01138d.X. Ye, P. Jiang, P. Zhang, Y. Dong, C. Jia, X. Zhang, H. Xu, Novel Ti and Mn mesoporous molecular sieves: Synthesis, characterization and catalytic activity in the epoxidation of vegetable oil, Catal. Letters. 137 (2010) 88–93. https://doi.org/10.1007/s10562-010-0334-z.M. Farias, M. Martinelli, G.K. Rolim, Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils, Appl. Catal. A Gen. 403 (2011) 119–127. https://doi.org/https://doi.org/10.1016/j.apcata.2011.06.021.J. Manjanna, T. Kozaki, N. Kozai, S. Sato, A new method for Fe(II)-montmorillonite preparation using Fe(II)-nitrilotriacetate complex, J. Nucl. Sci. Technol. 44 (2007) 929–932. https://doi.org/10.1080/18811248.2007.9711331.R.A. Sheldon, Aspects of homogeneous catalysis, Vol. 4 (1981) 3–64.O. S.Ted, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, (n.d.). https://books.google.com.co/books?hl=es&lr=&id=xJpkegngTqAC&oi=fnd&pg=PP1 &dq=S.T.+Oyama,+Mechanisms+in+Homogeneous+and+Heterogeneous+Epoxida tion+Catalysis,+Elsevier,+Burlington,+MA,+2008.+p.+xix.&ots=sgEbCYYU_Y&sig=j VINSnYsWlBG_xCUJIWdrTUQu8k&redir_esc=y# (accessed October 8, 2019).Y. Shen, P. Jiang, P.T. Wai, Q. Gu, W. Zhang, Recent progress in application of molybdenum-based catalysts for epoxidation of alkenes, Catalysts. 9 (2019). https://doi.org/10.3390/catal9010031.W. Fan, D. Shi, B. Feng, Immobilizing of oxo-molybdenum complex on cross-linked copolymer and its catalytic activity for epoxidation reactions, Catal. Commun. 74 (2016) 1–4. https://doi.org/10.1016/j.catcom.2015.10.022.Y. Shen, P. Jiang, J. Zhang, G. Bian, P. Zhang, Y. Dong, W. Zhang, Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins, Mol. Catal. 433 (2017) 212–223. https://doi.org/10.1016/j.mcat.2016.12.011.M. Masteri-Farahani, S. Mirshekar, Covalent functionalization of graphene oxide with molybdenum-carboxylate complexes: New reusable catalysts for the epoxidation of olefins, Colloids Surfaces A Physicochem. Eng. Asp. 538 (2018) 387–392. https://doi.org/10.1016/j.colsurfa.2017.11.025.G. Bian, P. Jiang, K. Jiang, Y. Shen, L. Kong, L. Hu, Y. Dong, W. Zhang, MoO2 Formed on Mesoporous Graphene Oxide: Efficient and Stable Catalyst for Epoxidation of Olefins, Aust. J. Chem. 70 (2017) 1039–1047. https://doi.org/10.1071/CH17089.H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J. Mol. Catal. A Chem. 423 (2016) 248–255. https://doi.org/10.1016/J.MOLCATA.2016.07.006.G. Bian, P. Jiang, F. Wang, Y. Shen, K. Jiang, L. Liu, W. Zhang, Light driven epoxidation of olefins using a graphene oxide/g-C3N4 supported Mo (salen) complex, New J. Chem. 42 (2018) 85–90. https://doi.org/10.1039/c7nj02894f.M. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes, Chem. Eng. J. 308 (2017) 160–168. https://doi.org/10.1016/j.cej.2016.09.055.M. Mirzaee, B. Bahramian, M. Shahraki, H. Moghadam, A. Mirzaee, Molybdenum Containing Catalysts Grafted on Functionalized Hydrous Zirconia Nano-particles for Epoxidation of Alkenes, Catal. Letters. 148 (2018) 3003–3017. https://doi.org/10.1007/s10562-018-2521-2.W.F. Brill, N. Indictor, Reactions of t-Butyl Hydroperoxide with Olefins, J. Org. Chem. 29 (1964) 710–713. https://doi.org/10.1021/jo01026a045.K. John, Epoxidation process, (1967).A.O. Chong, K.B. Sharpless, On the Mechanism of the Molybdenum and Vanadium Catalyzed Epoxidation of Olefins by Alkyl Hydroperoxides, J. Org. Chem. 42 (1977) 1587–1590. https://doi.org/10.1021/jo00429a024.P. Chaumette, H. Mimoun, L. Saussine, J. Fischer, A. Mitschler, Peroxo and alkylperoxidic molybdenum(VI) complexes as intermediates in the epoxidation of olefins by alkyl hydroperoxides, J. Organomet. Chem. 250 (1983) 291–310. https://doi.org/10.1016/0022-328X(83)85059-1.R. Hille, Molybdenum and tungsten in biology, Trends Biochem. Sci. 27 (2002) 360–367. https://doi.org/10.1016/S0968-0004(02)02107-2.R. Hille, The Mononuclear Molybdenum Enzymes.pdf, Chem. Rev. 96 (1996) 2757–2816.K. Heinze, Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms, Coord. Chem. Rev. 300 (2015) 121–141. https://doi.org/10.1016/j.ccr.2015.04.010.Y. He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encycl. Inorg. Bioinorg. Chem. (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213.F. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, An. La Real Soc. Española Química. 108 (2012) 190–196.T. Rios Carvajal, Síntesis y caracterización de redes metal---orgánicas (MOF) a partir de ligantes orgánicos tipo fenilenvinileno modificados con grupos electrodonores, 2014.K. Leus, I. Muylaert, V. Van Speybroeck, G.B. Marin, P. Van Der Voort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167- 2991(10)75053-9.M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m.J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c.J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f.Z.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH 2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017.K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation, Chem. Commun. 46 (2010) 5085–5087. https://doi.org/10.1039/c0cc01506g.T.U. Yoon, S. Ahn, A.R. Kim, J.M. Notestein, O.K. Farha, Y.S. Bae, Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metalorganic framework, Catal. Sci. Technol. 10 (2020) 4580–4585. https://doi.org/10.1039/d0cy00833h.I.D. Ivanchikova, J.S. Lee, N. V. Maksimchuk, A.N. Shmakov, Y.A. Chesalov, A.B. Ayupov, Y.K. Hwang, C.H. Jun, J.S. Chang, O.A. Kholdeeva, Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks, Eur. J. Inorg. Chem. 373 (2014) 132–139. https://doi.org/10.1002/ejic.201301098.H.G.T. Nguyen, L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: Support effect on the oxidation of cyclohexene using hydrogen peroxide, Catal. Sci. Technol. 5 (2015) 4444–4451. https://doi.org/10.1039/c5cy00825e.S. Abednatanzi, A. Abbasi, M. Masteri-Farahani, Post-synthetic modification of nanoporous Cu3(BTC)2 metal-organic framework via immobilization of a molybdenum complex for selective epoxidation, J. Mol. Catal. A Chem. 399 (2015) 10–17. https://doi.org/10.1016/j.molcata.2015.01.014.ASTM E200-16, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, (2016). www.astm.org.PanReac AppliChem, Panreac Catálogo General. Reactivos para Análisis y Productos para Química Fina, (n.d.) 594. http://www.ictsl.net/downloads/catpanreac2012.pdf.G.G. Shimamoto, J.A. Aricetti, M. Tubino, A Simple, Fast, and Green Titrimetric Method for the Determination of the Iodine Value of Vegetable Oils Without Wijs Solution (ICl), Food Anal. Methods. 9 (2016) 2479–2483. https://doi.org/10.1007/s12161-016-0401-1.A. Of, C. Fats, Oxirane Oxygen, AOCS Off. Method CD 9-57. (1997) 8–9.Y.Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, Bipyridine-based nanosized metal-organic framework with tunable luminescence by a postmodification with Eu(III): An experimental and theoretical study, J. Phys. Chem. C. 117 (2013) 11302–11310. https://doi.org/10.1021/jp402154q.M. Tubino, J.A. Aricetti, A green potentiometric method for the determination of the iodine number of biodiesel, Fuel. 103 (2013) 1158–1163. https://doi.org/10.1016/j.fuel.2012.10.011.W. Xia, S.M. Budge, M.D. Lumsden, New 1H NMR-Based Technique to Determine Epoxide Concentrations in Oxidized Oil, J. Agric. Food Chem. 63 (2015) 5780–5786. https://doi.org/10.1021/acs.jafc.5b01719.Y. Miyake, K. Yokomizo, N. Matsuzaki, Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy, (n.d.) 15–19.H.A.J. Aerts, P.A. Jacobs, Epoxide Yield Determination of Oils and Fatty Acid Methyl Esters Using 1 H NMR, (2004).M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.K.S.W. Sing, F. Rouquerol, J. Rouquerol, P. Llewellyn, Assessment of Mesoporosity, 2013. https://doi.org/10.1016/B978-0-08-097035-6.00008-5.I. Union, O.F. Pure, A. Chemistry, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem. 66 (1994) 1739–1758. https://doi.org/10.1351/pac199466081739.F. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F. Moraga, X. Zou, B. Martín-Matute, Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis, Chem. – A Eur. J. 18 (2012) 15337–15344. https://doi.org/10.1002/CHEM.201200885.M.L. D’Amico, K. Rasmussen, D. Sisneros, C. Magnussen, H. Wade, J.G. Russell, L.L. Borer, Epoxidation of cyclic olefins using dimeric molybdenum(VI) catalysts, Inorganica Chim. Acta. 191 (1992) 167–170. https://doi.org/10.1016/S0020- 1693(00)93456-X.H. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord. Chem. Rev. 178–180 (1998) 191–202. https://doi.org/10.1016/s0010-8545(98)00056-3.A. Prazeres, A.M. Santos, M.J. Calhorda, C.C. Roma, I.S. Gonáalves, Octahedral Bipyridine and Bipyrimidine Dioxomolybdenum (VI) Complexes: Characterization, Application in Catalytic Epoxidation, and Density Functional Mechanistic Study, (2002) 2370–2383.M. Salavati-niasari, M. Bazarganipour, Effect of single-wall carbon nanotubes on direct epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum (VI) complexes with bis-bidentate Schiff-base containing aromatic nitrogen – nitrogen linkers, 278 (2007) 173–180. https://doi.org/10.1016/j.molcata.2007.09.009.G. Wang, G. Chen, R.L. Luck, Z. Wang, D.G. Evans, X. Duan, New molybdenum (VI) catalysts for the epoxidation of cyclohexene : synthesis , reactivity and crystal structures, 357 (2004) 3223–3229. https://doi.org/10.1016/j.ica.2004.03.030.M.G. Lindley, The impact of food processing on antioxidants in vegetable oils , fruits and vegetables, 9 (1998) 336–340.EstudiantesInvestigadoresMaestrosORIGINAL1012403105.2021.pdf1012403105.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf6189466https://repositorio.unal.edu.co/bitstream/unal/81364/3/1012403105.2021.pdf60148c833e650be4572b522c263943a3MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81364/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1012403105.2021.pdf.jpg1012403105.2021.pdf.jpgGenerated Thumbnailimage/jpeg4401https://repositorio.unal.edu.co/bitstream/unal/81364/5/1012403105.2021.pdf.jpg68145f0455bbb05494fc1b9d3c68c120MD55unal/81364oai:repositorio.unal.edu.co:unal/813642024-08-05 23:10:12.573Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK